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Background: Traditional drug discovery approaches are time-consuming, tedious and expensive. Identifying a
potential drug-like molecule using high throughput screening (HTS) with high confidence is always a challenging
task in drug discovery and cheminformatics. A small percentage of molecules that pass the clinical trial phases
receives FDA approval. This whole process takes 10-12 years and millions of dollar of investment. The inconsistency
in HTS is also a challenge for reproducible results. Reproducible research in computational research is highly
desirable as a measure to evaluate scientific claims and published findings. This paper describes the development
and availability of a knowledge based predictive model building system using the R Statistical Computing
Environment and its ensured reproducibility using Galaxy workflow system.

Results: We describe a web-enabled data mining analysis pipeline which employs reproducible research approaches
to confront the issue of availability of tools in high throughput virtual screening. The pipeline, named as “Galaxy for
Compound Activity Classification (GCAQ)" includes descriptor calculation, feature selection, model building, and
screening to extract potent candidates, by leveraging the combined capabilities of R statistical packages and literate
programming tools contained within a workflow system environment with automated configuration.

Conclusion: GCAC can serve as a standard for screening drug candidates using predictive model building
under galaxy environment, allowing for easy installation and reproducibility. A demo site of the tool is

Keywords: Predictive model building, Reproducible results, Galaxy workflow system, High throughput screening, Drug

Background

Over the past few decades, the time and cost of drug de-
velopment have increased. Today, it typically takes about
10-15 years and costs up to $1300 - $1500 million to
convert a promising new compound into a drug in the
market, which reflects the complexity of the drug
discovery process [1]. One challenge for the scientific
community is to bring down cost and time for drug de-
velopment. The computational studies of biological and
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chemical molecules for drug-like properties falls under a
separate branch of science called Cheminformatics. It in-
cludes high-throughput screening of chemical mole-
cules, which is useful to screen large chemical library
using knowledge-based rules to narrow down chemical
space for identifying promising drug-like molecules with
certain physico-chemical properties. In Cheminfor-
matics, two major computational screening approaches
are available in an early phase of drug discovery. First,
the Structure-based Virtual Screening (VS) and second,
Ligand-based VS [2]. The structure based VS includes
high-throughput docking of candidate molecules to tar-
get receptors to rank them based on their predicted
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binding affinity [3]. This approach is relatively fast com-
pared to conventional methods such as whole cell bioassay
and in-vivo screening of individual candidates. However, it
is not as accurate due to a multilevel preparation of
ligands and insufficient information about the local and
global environment for efficient binding prediction besides
being time consuming when the compound library is large
[4]. Studies reveal that ligand-based VS methods have the
higher potency of hits identified than the structure-based
VS [5, 6]. The Ligand-based VS includes 2D, 3D similarity
search, pharmacophore mapping and Quantitative Struc-
ture Activity Relationship (QSAR) modelling. The 2D simi-
larity based methods outperform 3D similarity search
methods. However, the accuracy of search results heavily
relies on a number of available positive cases because the
fundamental idea of ligand-based VS is to correlate
structure similarity to functional similarity. In the present
study, we focus on Ligand-based VS method, especially on
QSAR based modelling, and describe the development of
an installable platform containing all the steps required for
predictive model building and screening using a
web-interface deployed using the Galaxy Workflow system.

Predictive model building in drug discovery process
Ligand-based VS is an example of empirical research
where prediction is made for the new case, based on the
observed pattern in data under study. The empirical
VHTS include predictive model building in which differ-
ent Machine Learning (ML) methods are combined with
data mining to extract hidden patterns and important
physical factors for drug-likeness. Predictive model
building is a widely used term in the field of economics
and has been used in cheminformatics for vHTS of
drug-like molecules for various diseases [7—10]. There
are several standalone packages and executables available
for many ML methods to perform data mining and pre-
dictive model building such as Weka [11], RapidMiner
[12] and KNIME [13] but their applications in bioinfor-
matics and cheminformatics are not comprehensive,
leaving the scope for alternatives. None of the above men-
tioned tools provides a completely reproducible platform
for descriptor calculation, model building, prediction tasks
as well as user-friendly appearance.

QSAR model based VS uses the power of ML and data
mining for accurate bioactivity prediction [14]. Lack of a
web-enabled reproducible QSAR model based prediction
platform also causes a serious impediment to empirical Vir-
tual High Throughput Screen (VHTS). In the field of drug
discovery, a reproducible screening workflow is indeed es-
sential due to the high cost of the procedure [15].
Cloud-based virtual machines with a pre-set computing en-
vironment provides a solution to overcome this problem.
However, web-enabled QSAR modelling and prediction is
still under development with only a few successful
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implementations e.g. CADDSuite [16], but an absence of
many widely accepted classifiers for model building and lack
of information about response value (e.g., binding energy,
IC 50 value) restricts its advantages. Another web-enabled
QSAR modelling tools is ChemModLab [17] which pro-
vides many utilities such as descriptor calculation, model
building and prediction on unlabelled set but it lacks the
generation of dynamic reports for model building and vari-
ous cross-validation methods to ensure robustness of the
model. Although ChemModLab is an excellent and sophis-
ticated implementation of the computational drug discovery
process, its usage is limited due to lack of availability for lo-
cally installable versions. Therefore, a robust web-enabled,
as well as locally installable platform, is strongly required to
expedite large molecule library screen and model building
ensuring reproducibility of results. An ideal protocol for
model building applied to QSAR is shown in Fig. 1, used to
design the system described in this manuscript.

Galaxy workflow system

Galaxy is an open source workflow system that can sub-
sume almost all command line based bioinformatics
tools. In computational biological analysis, the issue of
transparency, reproducibility and accessibility can be ad-
dressed by using Galaxy [18]. It has a large community
supportand features like history, workflow, data library
and pages leveraged for sharing of analysis pipelines
among users. Galaxy can be easily integrated with cluster
and cloud computing, which is the biggest requirement
for continuously growing biological data and multilevel
analysis. We have extended the work by incorporating
the R Sweave script with open source web-based Galaxy
framework as a part of model building tool to foster “re-
producible research”. The Galaxy workflow for predict-
ive model building can be easily understood by Fig. 2,
which shows the tools developed as part of GCAC
linked together to form a workflow. The availability of
the script as a Galaxy tool extend its usefulness. The
Galaxy framework provides a graphical interface to users
and facilitates creating reusable computing pipelines for
execution, analysis and publishing of results. Notwith-
standing the applicability of Galaxy for virtual screening
and preclinical analysis, only a few tools have been de-
veloped in Galaxy.

Implementation

Here we introduce a galaxy suite of tools collectively re-
ferred to as GCAC (Galaxy-enabled- Compound Activity
Classification), which allows the use of predictive analysis
within the Galaxy platform. We used Python, R statistical
package [19], Sweave [20] and bash to develop wrappers for
already existing open-source packages as well as in-house
scripts for various tasks (Table 1).
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Fig. 1 QSAR based predictive model building - a typical protocol used in GCAC: The initial data is molecular structural information file (SDF/MOL/SMILE)
which can be used to generate molecular descriptors. Once descriptors are generated, data cleaning is performed which ensures the removal of data
redundancy. Preprocessing is performed in two steps - first, the removal of missing values and near zero variance features as they are not useful for model
building. The input data is split into training and test datasets. The training data set is used for model building and test data is used for model evaluation.
In a second step of preprocessing, further treatment is applied as per selected method for model building. It includes removal of zero variance features,
highly correlated values, centering and scaling of data in the training data. In the model building step, learning and hyper-parameter optimization is
facilitated using resampling, internal cross-validation and performance evaluation over the set of parameters chosen. The most accurate model is selected
and evaluated on test data set. The selected model is saved and utilized further when a new set of compounds need to be predicted from a set of
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We developed a wrapper for the PaDEL-descriptor
package for descriptor calculation and R-caret [21] pack-
age for predictive model building. The power of caret
package is embedded within sweave template scripts for
generation of dynamic reports. Sweave allows statistical
analysis and documentation simultaneously which is re-
producible over any similar or identical computing en-
vironment. For extraction of compounds from rest of
molecules which qualifies in prediction set, we devel-
oped a MayaChemTools [22] based wrapper. To choose
the optimal set of features we developed the caret based
feature selection tool. There are many additional
intermediate helper tools designed to connect these
major tools. The GCAC tools are hosted on galaxy main
tool shed (https://toolshed.g2.bx.psu.edu/repository?re-
pository_id=351af44ceb587e54) as well as a virtual ma-
chine (http://ccbbjnu.ac.in/gcac). Providing an open
source resource for QSAR predictive analysis will

undoubtedly improve accessibility, transparency and re-
producibility in in-silico drug discovery process.

Results and discussion

Data

The initial data for predictive model building can be any
file in sdf, smile or mol format. There are a multiple
sources of data present in publically available chemical
databases like PubChem [23], ZINC [24], ChEMBL [25],
etc. The PubChem bioassays are the biggest resource of
chemical data. ZINC contains commercially-available
compounds for virtual screening while ChEMBL is a
manually curated database of drug-like molecules. All
three databases provide chemical data in a various for-
mat including sdf, mol, and smile which are required
format for initial data used in proposed Galaxy work-
flow. For demonstration purpose, we selected the
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Fig. 2 GCAC example workflow. The figure is a screenshot of the galaxy workflow canvas showing the arrangements of individual elements which can be
used to create a workflow for model building and prediction of active molecules. Each element is described in more detail in Table 1 of this manuscript
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standard “Fontaine” data sets [26] for evaluating the per-
formance of proposed galaxy pipeline. The dataset com-
prises of hepatitis ¢ virus (HCV) NS3 protease inhibitors
and acetylcholinesterase (AChE) inhibitors. The HCV
NS3 protease is a highly studied serine protease that plays
a crucial role in viral replication and well-known drug tar-
get [27]. While AChE datasets contain inhibitors of acetyl-
cholinesterase, their activity may result in a rise in
acetylcholine concentration in Alzheimer patients [28].
There are total 435 compounds are present in the dataset
of which 279 are actives, and 155 are inactive. The proto-
col performs adequately, as shown in Fig. 3. GCAC offers
the user multiple methods for model-building, some of
which are superior to earlier published methods, while
showing comparable results when the same method is
used. Additional file 1: Tables S1 and S2 show details of
multiple methods applied to the Fontaine dataset.

GCAC tool repositories

The GCAC tools are organized into three main director-
ies within one Git Repository: descriptor_calculation,
model_building_and_prediction and candidate_com-
pound_extraction. Each of them comprises of one or
more subdirectories containing a tool for the particular
job. The underlying idea of creating directories is a sep-
aration of primary tasks and associated tools - namely 1)
descriptor calculation 2) feature selection and model
building 3) screening to extract potent candidates.

Descriptor calculation

In recent years, descriptor based model building are encour-
aged for faster virtual screening. Many commercial and
open source descriptor calculation software like CDK, JOE-
Lib, Dragon, and PowerMV [29-32], etc., are available for
the user community. PaDEL is open source software for de-
scriptor calculation [33]. It calculates 1785 various 1D, 2D,
and 3D descriptors. Additionally, it also calculates 12
types of chemical fingerprints. The input file can be a
smile, mol or sdf and output is CSV file of calculated
descriptors. We developed Galaxy wrapper for
PaDEL-descriptor consisting it’s all essential parame-
ters. There are two helper tools also designed to
concatenate files after adding class information, and for
eliminating repeated entries which ultimately returns a
merged descriptor file having labels (i.e., Class
information).

Feature selection

The objectives of feature (also known as a predictors, attri-
butes, variables, etc.) selection can be summed into three
points. First, for improving the prediction performance of
the predictors. Second, providing faster and cost-effective
predictors for quick learning, and thirdly, providinga better
understanding of the underlying rules that generated the
data [34]. Featureselection techniques can be summarized
into three categories, depending on their integration with
the model building process: filter methods, wrapper
methods, and embedded methods [35]. Filter methods are



Bharti et al. BMC Bioinformatics 2019, 19(Suppl 13):550

Page 203 of 242

Table 1 List of Galaxy Tools developed as part of GCAC: The GCAC suite comprises mainly four major tasks. Each task contains one
repository and at least one tool associated with it. The GCAC tools are available in galaxy main toolshed (https://toolshed.g2.bx.psu.edu/
repository?repository_id=351af44ceb587e54)

Major Tasks

Toolshed Repositories

Tool Name

Description

Descriptor Calculation

Feature Selection

Model Building and
Prediction

Candidate Compound
Extraction

padel_descriptor_calculation

activity_files_merge

redundant_entries_remove
feature_selection
csv_to_rdata

rcaret_classification_model

activity_predict

candidate_compound_select

compound_id_extract

mayatools_extract

PaDELDescriptor

Merge Activity Files

Remove Redundancy
Feature Selector
Prepare input file

R-Caret Classification
Model-Builder

Predict Activity

Candidate Compound Selector

CompoundID Extractor

ExtractFromSDFiles

calculates descriptors for active and inactive
datasets.

assigns response values and merges positive
and negative datasets.

removes redundant entries of molecules.
selects best features subset
converts csv_files to RData format

builds classification model using ‘caret’ R
package

predicts activity of molecules using their
descriptor file (prediction set) and supplied
model.

selects compound name or ids of interesting
molecules based on certain cutoff range.

extracts compound IDs to be used in
downstream compound extraction from sdf
files

provides sdf file of extracted compounds from
the prediction set

computationally fast and easy to implement, but most filter
techniques are univariate which fails to identify any interac-
tions among features. Embedded methods are more compu-
tationally efficient than wrapper methods but rely on a
specified learning algorithm. Wrapper methods outperform
filter methods as they search for the optimal set of features,
and are sufficient to classify data at the expense of computa-
tional cost. Moreover, wrapper methods have the benefits of

identifying dependencies among features and the relation-
ships between the feature subset and model selection. As fil-
ter methods are insufficient for the optimal feature set and
caret has many classifiers with built-in feature selection, we
have developed a feature selection tool, using the Recursive
Feature Elimination (RFE), a wrapper method for feature se-
lection provided within caret package. After conversion of
csv file into RData one can employ feature selection tool for
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identifying optimal feature subset for model building step.
Currently, a user can choose any of four functions (random
forest, linear, treebag, and naive bayes) for model fitting and
several options for cross-validation measures.

Model building

Model building is an important aspect of GCAC pipe-
line. We focused on ensuring its reproducibility and
added a feature of automated dynamic report creation
that has not been available in most of the predictive ana-
lysis pipeline. The report thus generated is vital in con-
text containing information about the computing
environment, data properties, statistical measures and
their significance. The merged descriptor file obtained
after “Descriptor Calculation” step is converted into
required input data format (i.e.,RData) and then may op-
tionally be subjected to the feature selection tool or can
be used solely for building a model using the tool,
“Build-Classification-Model”. At the backend, it uses an
R Sweave template which creates a runtime script having
information of applied classification method and various
other parameters set by the user. It produces three out-
puts: Model, Document, and Datasets used (i.e., train
and test set).

For classification purpose, GCAC provides 15 machine
learning (ML) methods for model building including
Generalised Linear Model (GLM), Random Forest(RF),
Naive Bayes(NB), K- Nearest- Neighbours (KNN), Sup-
port Vector Machine (SVM), C5.0, Adaptive Boosting
(AdaBoost), etc. Additional file 1: Table S3 contains a list
of methods tested, along with tunable parameters. If an
imbalanced dataset is used for modelling, GCAC pro-
vides sampling methods like “downsample” and “upsam-
ple” to ameliorate class information. GCAC also
provides options for selecting resample methods such as
CV, LOOCY, repeated CV, Bootstrap 632 and boot for
cross-validation study. A model is evaluated over many
performance metrics like accuracy, sensitivity, specificity,
kappa statistics and ROC curve analysis. The pdf docu-
ment generated consists of preliminary information and
properties of the data under study, the applied pre-pro-
cessing steps, performance measures, graph(s), table(s),
and confusion matrix. A well-formatted PDF generation
is one of the major features of GCAC pipeline. Addition-
ally, the user has access to train and test datasets, which
are used for model building. The model generated can
be utilized to predict the activity of unlabelled com-
pound library and may also be employed for making en-
sembles of various models to improve the predictive
power of data mining applications. The prediction result
consists of identifier or molecule names along with
probability score of being a positive or negative case. A
high value indicates a higher chance of belonging to the
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particular class. Predicted molecules can be extracted
from a prediction set at the later stage.

Extract potential Lead like compounds

Once prediction result obtained, it is essential to extract
potential molecules from prediction set for further ana-
lysis. We developed Galaxy wrapper tools for three im-
portant tasks: selecting interesting molecules using
probability score cut-off, input preparation and extrac-
tion of molecules into a distinct file. The required for-
mat for the prediction set is structure data file (sdf).
Based on prediction score, a user may choose interesting
molecules which are extracted from prediction set and
written into different sdf file using the “MayaChem-
Tools” based Galaxy tool.

Conclusions

The cost and time are the greatest bottlenecks in drug
discovery process. It’s essential that drug discovery stages
remain as replicable, transparent, reviewable and access-
ible as much as possible. The GCAC platform in Galaxy
helps to facilitate all of these goals. In the present study,
the PaDEL-descriptor tools can be used to calculate mo-
lecular descriptors using publicly available chemical
datasets (PubChem, zinc, ChREMBL etc.). The most influ-
encing feature subset can be obtained by using the RFE
based feature selection tool. The model building module
provides many commonly used state-of-the-art classifiers
available in caret package. The workflow uses R-caret -
where parameters specific to a model-building method
are optimised within the model building process.
Though the default model used is PLS, the user may
choose from a large range of model-building methods,
which is dependent of available computational time and
expected accuracy. From our preliminary results on the
use of the protocol, different models may perform better
with different data sets. To address the problem of large
class imbalance in datasets, we implemented downsam-
pling and upsampling methods to optimise ratio of posi-
tive and negative cases. Each model can be evaluated
using widely accepted performance measures like AuROC,
Accuracy, Sensitivity, Specificity and Kappa statistics. The
best model selected can be used to predict the activity of
unknown compound library and predicted active or posi-
tive cases can be extracted using maya tool which may
further be subjected to computational analysis.

If the scientific community succeeds to lower the cost
and time required for initial drug discovery processes
without losing confidence about the reproducibility of
results, millions of dollars and many lives will be saved.
By applying QSAR based virtual screening, we can re-
duce the time taken for virtual screening. In silico
ADMET test can also be subjected to automation and
parallelization using Galaxy workflow system which
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again will result in lowering time. One of the limiting
factors for QSAR based model building is the availability
of data for training for “global” model. This problem can
be addressed by making “local” models exclusively for
given target or chemical-series-specific data.

Future development of GCAC will comprise of three
major additions: A wide range of ML methods for classi-
fication, open source ADMET tools development and
provisioning of target specific models via shared data. As
improved and efficient open source packages will be
published for descriptor calculation, ADMET prediction
and model building, We integrate them accordance to
their utility. As more users participate in GCAC user
community, sharing of data, tools, and models will even-
tually bring more attention of the scientific community.
The Galaxy workflow system is well adapted for
cloud-based resources and which make Galaxy a more
reasonable choice for developing pipelines for drug dis-
covery as well as other biological sciences.

Availability and requirements

Project name: GCAC.

Project home page: https://github.com/LynnLab-JNU/
gcac-galaxy-tools

Demo Server: http://ccbb.jnu.ac.in/gcac

Operating system(s): Linux - Developed, tested and dis-
tributed as VM with CentOS 7.

Programming language: R, Python, Shell, Bash.

Other requirements: None.

License: MIT License.

Any restrictions to use by non-academics: None.

A list of required dependencies, more information and
download links can be found in the documentation
available on the demo site at http://ccbb.jnu.ac.in/gcac.
The GCAC module is made available to users via fol-
lowing standard methods.

i. Provided via VirtualBox VM: - This is the easiest
means to get the GCAC module in a standalone VM
environment. Users are required to download and
import the VM to their VirtualBox environment.

ii. Provided via Toolshed: - The GCAC module galaxy
tools are made available via publicly available
Toolshed repository which can be installed via
admin interface on running Galaxy server. Users
are also required to install system-level dependen-
cies on the Galaxy host machine.

Additional file

Additional File 1: Table S1. Fontaine (Factor Xa) Data set: After feature
selection, 201 features remained for model building. Model building was
performed on default GCAC-parameters. The bootstrap 632 rule (10 reps)
was used for hyper-parameter optimisation. There were 273 active and
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151 inactive molecules in complete data set. The model was built using a
training set of 340 molecules and evaluated on test set of 84 molecules.
Table S2. Performance comparison over fontaine data set with previously
published results. (In case of multiple modelling conditions, the best re-
sult was taken from literature for comparison. All reported work has ac-
curacy reported over training). Table S3. List of model-building methods
tested and reported in this manuscript, with tunable parameters for each
model. (DOCX 23 kb)
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