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Abstract

Background: The study of cell metabolism is becoming central in several fields such as biotechnology, evolution/
adaptation and human disease investigations. Here we present CiliateGEM, the first metabolic network reconstruction
draft of the freshwater ciliate Tetrahymena thermophila. We also provide the tools and resources to simulate different
growth conditions and to predict metabolic variations. CiliateGEM can be extended to other ciliates in order to set up
a meta-model, i.e. a metabolic network reconstruction valid for all ciliates.
Ciliates are complex unicellular eukaryotes of presumably monophyletic origin, with a phylogenetic position that is
equal from plants and animals. These cells represent a new concept of unicellular system with a high degree of
species, population biodiversity and cell complexity. Ciliates perform in a single cell all the functions of a pluricellular
organism, including locomotion, feeding, digestion, and sexual processes.

Results: After generating the model, we performed an in-silico simulation with the presence and absence of glucose.
The lack of this nutrient caused a 32.1% reduction rate in biomass synthesis. Despite the glucose starvation, the growth
did not stop due to the use of alternative carbon sources such as amino acids.

Conclusions: The future models obtained from CiliateGEM may represent a new approach to describe the metabolism
of ciliates. This tool will be a useful resource for the ciliate research community in order to extend these species as
model organisms in different research fields. An improved understanding of ciliate metabolism could be relevant to
elucidate the basis of biological phenomena like genotype-phenotype relationships, population genetics, and cilia-
related disease mechanisms.

Keywords: Ciliates, Tetrahymena thermophila, Genome scale reconstruction, Flux balance analysis, Metabolic pathways

Background
A metabolic network represents in an organism the
complete set of biochemical reactions suitable to synthe-
sise or break-down metabolites. These reactions drive
the production of biomass and energy to support all cel-
lular processes. The reconstruction of a full metabolic

network occurring within each cell has advanced from
early biochemical studies to algorithmically-generated
pathway diagrams starting from genomic sequencing [1].
Genome-scale models (GEMs) offer a comprehensive ex-
ploration and a rapid analysis of genomic data. GEMs
have been used extensively to study metabolic engineer-
ing [2, 3], model-driven drug discoveries [4, 5], predic-
tion of cellular phenotypes after perturbations [6, 7],
analysis of evolutionary processes [8–11] and models
of interspecies interactions [12]. Organism-specific re-
constructed metabolic networks may be further imple-
mented to build mathematical models capable of
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simulating metabolic fluxes [13]. GEM pathway recon-
struction has been used in Caenorhabditis elegans to pre-
dict genes essentiality [14] and to better understand the
biology of arthropods [15], including those with a negative
impact (vectors of human or animal diseases, agricultural
pests). The latter approach is particularly useful to control
harmful species and to develop new precautionary strat-
egies [15]. Genome-scale metabolic modelling has also
been successfully applied to study metabolic networks in
microbes [16], including a Polychlorinated Biphenyl-
degrading Pseudomonas [17, 18], thermophilic bacteria
[19] and members of the human gut microbiota [20].
Among eukaryotic microbes, at least 25 models of Sac-

charomyces cerevisiae have been published since 2003
[21], helping to understand yeast metabolism. Ciliated
protozoans may represent an alternative and useful
eukaryotic model. Ciliates have been the main subject of
projects supported by the EU Framework Programme
Horizon 2020 such as the COST Actions. Moreover, the
National Centre for Genome Resources and the Gordon
and Betty Moore Foundation’s supported the Marine
Microbiology Initiative (MMI). MMI created a valuable
benchmark against the analysis of environmental tran-
scriptomic data [22]. Ciliates, as yeasts, are eukaryotic
single cells, but their structural and functional complex-
ity is comparable to human and other metazoan cells.
These unicellular organisms are similar to differentiated
animal cells with complex functions and membrane-
bound structures [23]. The potential number of extant
ciliate species has been estimated at nearly 30,000 [24].
They represent an important mediator in the food chain
by transforming ultrafine organic matter useful for zoo-
plankton. Being individual cells, they are directly ex-
posed to environmental changes, making them good
models for studying cell-stress response and adaptation.
Ciliates propagate mainly asexually by transverse fission,
even though they perform conjugation, a sexual process
that “renews” the genetic material. The complexity of
ciliates is further represented by the presence of two dif-
ferent nuclei: the diploid micronucleus involved in con-
jugation and the polyploid macronucleus. While the first
represents the germinal line, the second represents the
somatic line. The macronucleus is responsible for gene
expression during the vegetative phase.
We describe below a preliminary open software tool

(CiliateGEM), focused on the T. thermophila macronu-
clear genomic sequences, which allows ciliates re-
searchers to analyse a reconstructed network via Flux
Balance Analysis (FBA). By studying this ciliate, we
could discover new mechanisms for evolution and adap-
tation within metabolism, population, species and
host-symbiont association. Cellular responses described
in T. thermophila can be of fundamental importance to
understand the biology of all ciliates. CiliateGEM is to

date the most advanced tool available for ciliates and
contains the highest number of curated biochemical
reactions.

Results
CiliateGEM: An open project and a methodological
pipeline
The complexity of ciliates makes it necessary to adopt a
new approach to study their metabolism. To understand
these organisms is fundamental to consider that they
can feed, move, and reproduce in a single cell. Ciliate
complexity includes also cell compartmentalisation,
which ensures the optimal environment for each specific
metabolic reaction (i.e. optimal lysosomes pH for macro-
molecule hydrolysis).
To date, CiliateGEM allows the analysis of their recon-

structed networks using the ciliate Tetrahymena thermo-
phila as a case study. We choose this organism because
Tetrahymena micro [25] and macro-nuclear [26] ge-
nomes have been sequenced and its biology has been ex-
tensively studied. The goal of this open project is to
create a tool to simulate the growth of Tetrahymena
cells in different conditions and then to expand it to all
ciliates. The development and the refinement of this
tool, coupled with the COBRA toolbox [27], can lead re-
searchers to predict gene essentiality and genotype-
phenotype relationship. CiliateGEM has been obtained
using a bottom-up approach, from genome annotation
to a mathematical model. The steps we followed are rep-
resented in Fig. 1.

Tetrahymena growth simulation
One of the first experimental in vitro studies of meta-
bolic pathways in ciliates were performed using Tetra-
hymena pyriformis as a model organism [28–30].
Tetrahymena cells were grown in a standard mixture
of l4C radiolabelled substrates including glucose, gly-
cerol, pyruvate and glutamate. The incorporation of
l4C in CO2, glycogen and nucleic acids was measured
with ranges of values depending on the carbon la-
belled position in the substrate structure. Borowitz
et al. [29] reported a higher incorporation of l4C into
CO2 after 1 h of incubation with [l4C]glucose than in
the same experiment with [l4C]glycerol, i.e. 43.9–
64.2 nmol/106 cells versus 19.8–19.9 nmol/106 cells.
Stein et al. [30] further reported a higher radiolabelled
C incorporation in CO2 from [l4C]glucose than from
pyruvate, glutamate and glycerol. The measured values
of the labelled carbon incorporation into the CO2

product were as follows: [l4C]glucose (106–255 nmol/
106 cells); [l4C]pyruvate (55.4–121 nmol/106 cells);
[l4C]glutamate (1.90–3.96 nmol/106 cells); [l4C]gly-
cerol (11.0–13.6 nmol/106 cells). Then, they tested
glycogen as product, and the [l4C]glucose resulted the
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preferred substrate with the highest incorporation
rates (313–496 nmol/106 cells). A comparable incorp-
oration rate between glycerol and pyruvate was re-
ported (~ 6.5 nmol/106 cells), as well as an absent
incorporation from glutamate (< 0.2 nmol/106 cells).
The results differed from those of CO2 among the sec-
ondary substrates (glutamate, pyruvate and glycerol),
but agreed on the highest used substrate (glucose).
Our initial simulation showed the maximum growth

when glucose, glutamate, glycerol and pyruvate were
used as growth media. In agreement with literature [29,
30], simulations of CiliateGEM showed that glucose is
utilised as the preferred carbon source (Fig. 2). The up-
take for glucose in our model (− 10 mmol/gDW/hr) is
proportionally much higher than those of the secondary
substrates (glutamate, pyruvate and glycerol) described
by the authors in the previous in-vitro experiments [29,
30]. We allowed such uptake to saturate the system so
the full amount is not necessarily utilised because of the
thermodynamics constraints. Glucose is metabolised
through glycolysis in the cytosol. A simulation in the

presence of the above metabolites but without glucose
showed a 32.1% reduction rate on biomass synthesis
(Fig. 3). Despite the reduced biomass production, the
growth without glucose is largely maintained by utilis-
ing alternative carbon sources such as amino acids (Fig.
3), as shown by the higher increase of biomass produc-
tion for reactions R00891 (i.e. L-Serine + Hydrogen sul-
fide <= > L-Cysteine + H2O) and R00258 (L-Alanine +
2-Oxoglutarate <= > Pyruvate + L-Glutamate).
After glucose starvation, reactions R10822 [ADP +

DNA(n) + 5’-Phospho-DNA(m) < => AMP+Orthophos-
phate + DNA(n +m)] and R00381 [ATP +DNA(n) +
5’-Phospho-DNA(m) < => AMP+Diphosphate + DNA(n
+m)] showed the highest positive and negative values.
Both reactions are catalysed by DNA ligases during DNA
repair or recombination. These two reactions differ only
on ATP or ADP cofactors. ATP is the phosphorylated
form of ADP and is the preferred cofactor because phos-
phoanhydride bonds store a high amount of energy. Since
ATP is synthesised from ADP during glycolysis by phos-
phorylation, we can speculate that in absence of glucose

Fig. 1 CiliateGEM pipeline. CiliateGEM was constructed using the protocol by Thiele and Palsson [13], as well as manual curation. To characterise
the metabolic networks, we have gathered all core pathways from different organisms, including bacteria. CiliateGEM is provided in SBML and
Matlab format as Additional files 6 and 7
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Fig. 3 Differential biomass production (%) after glucose starvation. Values for growth with (Gg) and without glucose (Gwg) were used in
this formula (Gwg-Gg)/|Gg|*100

Fig. 2 Rate of biomass synthesis by CiliateGEM from different substrates. The CiliateGEM model was allowed to utilise different carbon sources for
growth. Glucose, glutamate and pyruvate consumption (illustrated by negative flux) directly affects the growth rate of CiliateGEM (depicted by positive
flux values)
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DNA ligation by ligase is performed by using ADP mole-
cules as an alternative. DNA ligase using ADP has been
reported from the aerobic hyper-thermophilic archaeon
Aeropyrum pernix K1 [31].
Other opposite values were reported for reactions

R02549 (4-Aminobutyraldehyde + NAD+ + H2O < =>
4-Aminobutanoate + NADH + H+) and R01986
(4-Aminobutyraldehyde + NADP+ + H2O < => 4-Ami-
nobutanoate + NADPH + H+), both involving in the
arginine-catabolism pathway. Like R10822 and R00381
they only differ on cofactors, in this case NAD and
NADP. While the structural difference between these
two molecules is only the phosphate group, NADH
participates in catabolic reactions, i.e. reactions that
break down molecules to release energy, while NADPH
participates in anabolic reactions, namely those that
consume energy in order to build up or synthesise lar-
ger molecules.
Finally, reactions R04241 (ATP + THF-polyglutamate(n)

+ L-Glutamate <= > ADP + Orthophosphate + THF-
polyglutamate(n + 1)) and R04242 (THF-polyglutamate +
n H2O < => Tetrahydrofolate + n L-Glutamate) showed
an increase of biomass production in the simulation with-
out glucose. Both reactions are involved in folate biosyn-
thesis, an essential cofactor for DNA and amino acid
synthesis.

Discussion
Studies on Tetrahymena have led ciliate researchers to
landmark discoveries on cellular mechanisms, including
the first cytoskeletal motor [32] and programmed trans-
lational frameshifting [33]. Some other studies have been
awarded two Nobel prizes: to T. Cech and S. Altman for
the discovery of catalytic RNA in 1989; and to E. H.
Blackburn, C. W. Greider and J. W. Szostak for their
work on telomeres in 2009. In general, mechanisms first
described in ciliates have proven to be of widespread oc-
currence and of fundamental importance for the biology
of all eukaryotes. Furthermore, ciliates are the only uni-
cellular organisms in which programmed DNA elimin-
ation during somatic differentiation, widespread in
animals [34], has been deeply characterised [35].
In this study, we set the basis of the open project

CiliateGEM and we constructed a metabolic model draft
of T. thermophila, made freely available to researchers.
We checked the model robustness by simulating the or-
ganism cell growth in the presence or absence of glucose
(the preferred carbon source utilised by this organism).
Then we compared glucose to glutamate, pyruvate and
glycerol consumption. Despite the organisms shows a
decreased rate of biomass production, the growth with-
out glucose is maintained by using alternative carbon
sources, as amino acids and the tetrahydrofolate synthe-
sis (essential cofactor in several metabolic reactions).

This metabolic variation appears to increase the activity
of ADP dependent DNA ligase I, possibly involved in
DNA repair or recombination (R10822). We also specu-
lated that in absence of glucose, ADP may be the pre-
ferred energy molecule instead of ATP, and the
metabolism is switched towards catabolic reactions in
order to obtain energy for growth. Our results showed
consistency with previous studies on Tetrahymena pyri-
formis [28–30], therefore suggesting that CiliateGEM
could provide a framework for the entire community.
CiliateGEM is freely available for academics and can

be fully customised and updated. Our long-term object-
ive is to achieve a “meta-model” that can be applied for
metabolic simulations using other ciliates genomic re-
sources (Additional file 1). The impact of CiliateGEM is
to allow researchers to predict the response to changes
in experimental conditions (e.g. starvation), and conse-
quently to optimise the design of experimental proto-
cols. Although this study focuses on T. thermophila, the
findings may be shared with other ciliates as Parame-
cium and Euplotes species, including Antarctic strains
[36]. In the future, we aim to reconstruct a multi-
compartment model in symbiosis with algae by incorp-
orating our datasets with an algal genome-scale model
[37] (53% of reactions in the CiliateGEM are common
in algae). Moreover, the complex systems of ciliates
membranous compartments associated to phagocytosis
and trafficking is strictly correlated with nutrients uptake
and metabolism [38, 39]. We believe that understanding
the role of compartments is even more important in
multi compartmentalised unicellular organisms than in
multicellular organisms (a list of ciliate organelles is re-
ported in Additional file 2: Table S2). Reactions from dif-
ferent ciliates can be integrated in order to build up a
hypothesis-driven scalable metabolic model based on
common reactions.

Conclusions
In conclusion, our work confirms that Tetrahymena can
be used as model organism also for metabolic network
reconstruction. Even though Tetrahymena is much less
known from the metabolic point of view than others
model organisms such as Saccharomyces and C. elegans
(including the metabolic network operating during
grown at laboratory-controlled conditions), the availabil-
ity of “omic” resources allows reliable modelling of
metabolic fluxes. Tools and resources obtained for Tet-
rahymena can then be applied to other ciliates and can
elucidate genotype-phenotype mapping. A key point of
this project is to create a collaborative network useful to
expand and validate CiliateGEM with in vitro experi-
ments on metabolic reactions already collected inside
the model, and ultimately add new reactions. Collabor-
ation between research teams in this type of projects is
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essential to speed up the process and to join the expertise
of different research groups. A consensus modelling ap-
proach, already successfully adapted for many metabolic
reconstructions including human and yeast, might help
researchers to understand the ciliate differences at genera,
species, subspecies and populations level. Furthermore,
with a combination of shared resources, it will be possible
to study full ecosystems (food chain from endosymbionts,
associated bacteria, predators-preys). These models,
coupled with multi-omic approaches [40], could also high-
light aspects of evolutionary biology and biogeography,
sympatric and allopatric speciation.

Methods
Tetrahymena model (CiliateGEM) reconstruction
CiliateGEM was created using the protocol described by
Thiele and Palsson [13]. First, AUGUSTUS (a gene predic-
tion web server [41]), was used to identify all the Tetrahy-
mena protein-encoding genes from the macronuclear
genome assembly and then to assign the functional roles
through accurate annotation with EC (Enzyme Commis-
sion) number. Next, a list of metabolic reactions was gen-
erated from KEGG and converted into a stoichiometric
matrix. KEGG was used to search for Tetrahymena path-
ways and all the reactions were manually assembled. The
specific links are listed in Additional file 3. A general list
of exchange reactions was obtained from the literature
[42]. The reaction list was reduced and adapted to fit Tet-
rahymena metabolism (Additional file 4). Establishing
enzyme-reaction relationship is a complex step because
an enzyme can be encoded by one or many genes, and
each enzyme can catalyse one or more reactions [43]. We
defined the growth media and external factors based on
Tetrahymena experimental studies [28–30]. This facili-
tated us in capturing the organism physiological proper-
ties. The produced model was then converted into a
mathematical one used to simulate the maximal growth
with flux-balance analysis (FBA) [44].
FBA requires reactions to be represented as a stoichio-

metric matrix (S), with dimensions of m × n, where the
metabolites (m) are represented as rows and the reac-
tions (n) are represented as columns. The stoichiometric
matrix is a numerical matrix of stoichiometric coeffi-
cients for each metabolite participating in a reaction.
FBA assumes the system to be in a pseudo-steady state
S ⋅ v = 0 holding for internal metabolites (reactants and
products of the chemical reactions), where the vector v
represents the flux distribution. An internal metabolite
constitutes the model but cannot be imported or
exported directly. An “exchange” counterpart of that
metabolite, and an exchange reaction are required for
modelling import/export reactions. Exchange metabo-
lites can be imported and exported from the system, so
they do not satisfy the steady state assumption. The flux

distribution v is a vector of reaction rates and represents
a feasible flux of metabolites through the reaction net-
work, where under the principle of mass conservation,
the total amount of metabolite consumed and total
amount of metabolite produced are equal to zero.
In FBA, directionality and capacity constraints are

placed on individual reactions by defining the upper
(Vmax) and lower (Vmin) bounds on the range of values
that the flux of each reaction can have (Vmin ≤ v ≤
Vmax). These constraints define the space of allowable
flux distributions at which every metabolite is consumed
or produced by each reaction in the system. Such flux
bounds, coupled with gene-protein-reaction association
rules, can also be used to map multiple environmental
conditions, using binary threshold-based or continuous
valve-based approaches [45, 46]. Despite these con-
straints, the system is still underdetermined (more un-
knowns than equations) and, as a result, infinite viable
solutions exist. A flux distribution is obtained by defin-
ing an objective function that is a scalar product of the
vector of flux rates v, and a vector of weights c, measur-
ing how each component in the network contributes to
the production of a biologically desirable phenotype.
Formally, we adopted the following linear program:

max c � v; such that

S � v ¼ _x

Vmin ≤ v ≤ Vmax

_xl ¼ 0 if Mi ∈ internal metabolites

_xl ∈ R if Mi ∈ exchangemetabolites

CiliateGEM, consists of 545 reactions, 828 metabo-
lites, 64 transport step reactions (which represent the
import and export of metabolites between extra- and
intra-cellular space), and 84 boundary steps (which rep-
resent the input and output of metabolites from extra-
cellular space and a biomass reaction). The biomass
reaction defines a unique objective function to effective
growth. This describes the rate at which all of the bio-
mass precursors are made in the correct proportions.
Linear programming was used to calculate the optimal
flux distribution that maximizes growth. The model was
encoded in SBML format [47] and fulfils MIRIAM re-
quirements [48]. It was then imported in MATLAB (ver-
sion R2016b). The simulation was carried out using
COBRA [49] toolbox with the linear programming
solver GLPK. All biomass flux values were given in milli-
moles/hour/grams of dry weight (mmol/gDW/hr). Cilia-
teGEM is provided as Additional files (Additional file 5:
CiliateModel.mat).

Mancini et al. BMC Bioinformatics 2018, 19(Suppl 15):442 Page 128 of 143



Additional files

Additional file 1: Databases and bioinformatics resources for ciliates
[50–54]. (DOCX 14 kb)

Additional file 2: List of organelles found in most ciliates. (DOCX 13 kb)

Additional file 3: Links of the KEGG reactions. (XLSX 11 kb)

Additional file 4: List of reactions. (XLSX 98 kb)

Additional file 5: Simulation file. (XLSX 226 kb)

Additional file 6: SBML version of the model. (XML 716 kb)

Additional file 7: Matlab version of the model. (MAT 48 kb)
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