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Abstract

Background: Inflammation is a core element of many different, systemic and chronic diseases that usually involve
an important autoimmune component. The clinical phase of inflammatory diseases is often the culmination of a long
series of pathologic events that started years before. The systemic characteristics and related mechanisms could be
investigated through the multi–omic comparative analysis of many inflammatory diseases. Therefore, it is important
to use molecular data to study the genesis of the diseases. Here we propose a new methodology to study the
relationships between inflammatory diseases and signalling molecules whose dysregulation at molecular levels could
lead to systemic pathological events observed in inflammatory diseases.

Results: We first perform an exploratory analysis of gene expression data of a number of diseases that involve a
strong inflammatory component. The comparison of gene expression between disease and healthy samples reveals
the importance of members of gene families coding for signalling factors. Next, we focus on interested signalling
gene families and a subset of inflammation related diseases with multi–omic features including both gene expression
and DNA methylation. We introduce a phylogenetic–based multi–omic method to study the relationships between
multi–omic features of inflammation related diseases by integrating gene expression, DNA methylation through
sequence based phylogeny of the signalling gene families. The models of adaptations between gene expression and
DNA methylation can be inferred from pre–estimated evolutionary relationship of a gene family. Members of the
gene family whose expression or methylation levels significantly deviate from the model are considered as the
potential disease associated genes.

Conclusions: Applying the methodology to four gene families (the chemokine receptor family, the TNF receptor
family, the TGF–β gene family, the IL–17 gene family) in nine inflammation related diseases, we identify disease
associated genes which exhibit significant dysregulation in gene expression or DNA methylation in the inflammation
related diseases, which provides clues for functional associations between the diseases.
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Background
Inflammation is the body’s attempt at removing harmful
or irritating affects, which is part of the body’s immune
response. The inflammatory response is essential for the
recruitment and activation of lymphocytes in order to
respond to an infection and the subsequent promotion of
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wound healing and repair. Strong intensity and long dura-
tion of unconstrained inflammatory response will cause
the consequences of unregulated inflammation, which
might result in many acute and chronic autoimmune
diseases and comorbidities [1–4]. The inflammatory sys-
tem is complex because of comorbidities, which involves
depression, immune–inflammatory, oxidative stress, gut–
brain pathways and so on [5]. For example, inflamma-
tion and altered gut microbiota (dysbiosis) could lead to
colorectal cancer carcinogenesis [6, 7]. The severity of
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inflammatory diseases is strongly correlated with high lev-
els of proinflammatory cytokine. Scientific evidence has
shown that gut microbiota plays important roles in the
genesis of several inflammatory diseases such as arthritis,
systemic lupus erythematosus (SLE), pathogen induced
colitis, Crohn’s disease, inflammatory bowel disease (IBD)
[8–16]. Besides, inflammation has also been reported one
of the enabling characteristics of cancer development such
as colon cancer and breast cancer [17]. The genesis of
cancers are considered to be related with the inflamma-
tory responses to microbial or damaged-self stimuli. Both
arms of immunity, innate and adaptive, play important
roles during tumorgenesis. Growing attentions have been
attracted in identifying early biomarkers for inflammatory
diseases by exploring the associated molecular mecha-
nisms [18], because the genesis of inflammatory diseases
usually take a long preclinical period [19] and the iden-
tification of early disease markers could provide valuable
clues for better clinical therapies. It is reported that a set of
circulating proteins such as inflammatory cytokines and
endocrine factors (e.g., TGF–β , TNF, and chemokines),
forming a communicome, are involved in inter-cellular
and organs communication, which are responsible for
spreading inflammation in the body [20].

Recent advances in high–throughput genomics biotech-
nology such as microarrays and next generation sequenc-
ing have produced various omic data such as genome,
epigenome, transcriptome, proteome and so on. The rapid
growth of the amount of multi–omic data provides great
opportunities to understand the mechanisms of com-
plex biological systems such as human diseases from
multiple molecular levels [21, 22]. For example, Zhang
et al. [23] predicted the driver genes associated with dif-
ferent clinical outcome subtypes of ovarian cancer by
integrating genome–wide gene expression, DNA methy-
lation, microRNA expression and copy number alteration
profiles. Cabezas-Wallscheid et al. [24] performed a com-
prehensive analysis of proteome, transcriptome and DNA
methylome data to identify coordinated changes at the
protein, RNA, and DNA levels during early differentiation
steps of hematopoietic stem cells (HSCs). Cantini et al.
[25] proposed a multilayer network community detection
method to identify cancer related gene modules, which
reveals cancer driver genes, through the integration of
gene expression, protein interactome and transcription
factor regulation network. Chaudhary et al. [26] introduced
a neural network model to predict survival in liver cancer
by integrating multi–omic data including gene expression,
DNA copy number and miRNA expression data.

In order to explore the associations between signalling
factors and inflammatory diseases as well as cancers,
we propose a new methodology based on phylogenetic
inference on multi–omic data to identify gene markers
of diseases. Taking full advantage of the pre–estimated

evolutionary relationship of a gene family with multi–
omic information including gene expression and DNA
methylation, it is capable of identification of genes exhibit-
ing significant alterations in expression or methylation
levels in diseases. A multi–omic approach is necessary as
it integrates information from all sources. Phylogenetic
information is important as some genetic behaviours may
be due to evolutionary inertia. The phylogenetic corre-
lations between gene expression and methylation help in
identifying disease relationship due to perturbations of
the same or closely related gene family members.

Applying the proposed method, we perform a compar-
ative study of the signatures of signalling molecules in
several inflammation related diseases, which consists of a
two-step analysis: Firstly, we present a systematic study of
genomewide molecular signatures, based on gene expres-
sion, for several inflammatory diseases as well as cancers.
Most of the significant molecular signatures are related
to members of a few important gene families. Then, we
propose a phylogenetic–based multi–omic approach and
apply it to four signalling related gene families selected
from the first step to study the correlated or independent
roles of the genes as disease markers by integrating the
sequences, gene expression and DNA methylation data of
the gene families in specific inflammatory diseases.

Methods
The methodology of this work follows a two-step pro-
cedure: Firstly, we analyse case-control gene expression
data of a number of inflammatory diseases, focusing on
signalling factors and receptors. In the second step, we
select the gene families including genes with statistical
significant p-values in the first step focusing on specific
inflammation related diseases for which both gene expres-
sion and DNA methylation data are available. We use an
Ornstein–Uhlenbeck phylogenetic approach to identify
disease associated genes by integrating the gene expres-
sion and DNA methylation data. On the basis of the
identified genes, we explore the correlations among the
inflammation related diseases. The flowchart of the whole
analysis is shown in Fig. 1.

Step 1: Genome–wide comparison of gene expression in
inflammatory diseases
Recent research has increasingly demonstrated that many
seemingly dissimilar diseases have common molecular
mechanisms. Diseases are more likely to be comorbid if
they share pathways. Exploring relations between genes
and diseases at the molecular level could greatly facili-
tate our understanding of pathogenesis, and eventually
lead to better diagnosis and treatment. Some diseases
have a direct positive association between them while
other diseases may have indirect positive associations
among them through biological pathways. The analysis of
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Fig. 1 The flowchart of the methodology. To identify the significant members in a gene family which are significantly associated with a disease, the
input data include the protein sequences of members of the gene family and the case–control gene expression and DNA methylation data of the
gene family in the disease

pathway–disease associations, in addition to gene–disease
associations, could be used to clarify the molecular mech-
anisms of a disease.

We take advantage of the large number of molec-
ular measurements from experimental results that are
now publicly available and identify commonly implicated
genes across different pathologies and deliberately varied
experimental conditions. We propose the application of
a gene expression based genome–wide association study
(eGWAS) to evaluate the statistical significance of the dif-
ferential expression for each gene across a large number
of case and control microarray experiments of human
inflammatory diseases.

Gene expression data for Step 1
We collect a large ensemble of gene expression data
related to diseases that have frequent inflammation
comorbidities from different cell types/tissues in patients
and healthy people, including Type 1 Diabetes, Type 2
Diabetes, Rheumatoid arthritis, Osteoporosis, Osteopet-
rosis, Osteoarthritis, HIV infection, Osteomyelitis,
Measles, Paget’s disease, Periodontitis, Renal disorder,
Osteosarcoma, Breast cancer and Multiple myeloma.
The raw microarray gene expression data are down-
loaded from the Gene Expression Omnibus (GEO) (see
Additional file 1).

Evaluation of differentially expressed genes
Using the case-control gene expression data, we evalu-
ate the significance of differential expression of each gene
between healthy and disease samples using a linear model
based statistical method. Differentially expressed genes ar
eselectedasgeneswithsignificantp-values(e.g. p<0.05 ) in dif-
ferent diseases. In particular we focus on genes that code
for extracellular signalling molecules (including receptors)
as they are linked to metabolic physiological flexibility.
The normalisation procedures and statistical analysis are
implemented in R by using Bioconductor R packages [27].

For each raw microarray gene expression dataset, the
background correction and normalization is performed by
using the PLIER algorithm [28]. The PLIER algorithm uses
a probe affinity parameter, which represents the strength
of a signal produced at a specific concentration for a given
probe. The error model employed by PLIER assumes that
the error is proportional to the observed intensity, rather
than to the background–subtracted intensity using the
following error function:

εij = μ̂ij/pmij +
√(

μ̂ij/pmij
)2 + 4

(
mmij/pmij

)

2
, (1)

where, μij is the binding level of probe i on array j, pmij is
a perfect match and mmij is a mismatch probe.
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Then, we sort out the genes with consistently highly dif-
ferentially expressed between case and control samples
using the following linear model:

yik = αk + εik i = 1, 2, ...., nk , k = 1, 2, (2)

where k indicates the patient type and i the individual
samples. For every gene g, we define the rank consistency
score S(g; r) as the normalized maximal rank of this gene
among all the patients samples, i.e.,

S(g; r) = max1kyRk(g)/N . (3)

Step 2: Phylogenetic–based multi–omic analysis of gene
families through an Ornstein–Uhlenbeck model
Gene families have extraordinary importance in eluci-
dating genome dynamics, which combine the study of
diseases at the pathway level with the evolutionary muta-
tional divergence and selection trajectories. The evolu-
tionary information is contained in a phylogenetic tree
consisting of all the members of a gene family connected
through the similarities of their sequences. The effects
of phylogenetic relationships on observed phenotype data
has been studied for a long time in evolutionary biol-
ogy under the generic name of phylogenetic compara-
tive methods. These methods assume a continuous time,
continuous (or discrete for discrete phenotypes) space
stochastic process for the phenotype and allow it to evolve
on top of the phylogenetic tree. At speciation times the
process splits into two independent copies which evolve
along the branches. Then the process parameters can be
inferred based on the law of the values at the tips (the
contemporary species). Gene families may provide clues
for identifying genes that are involved in particular dis-
eases, e.g., chemokine receptor, TGF–β and TNF gene
families play important roles in inflammatory diseases and
cancers [29–35]. However, the coordinative functional
relationships between members of the gene family are still
unknown. Studying the dynamic regulation mechanisms
will help understanding the genesis of the diseases and
improving the effective drug discovery [36]. Because of
the complexly structured interaction between the process
of evolutionary functional divergence of the gene family
members and the process of pathway proximity of some
members, it is important to model together the two pro-
cesses by using all the available multi–omic information
such as epigenetic modification and gene expression. The
multi–omic information could help identifying the trajec-
tory between healthy and disease condition. For instance
epigenetic variability may drive phenotypic selection on a
much shorter timescale than mutation.

We can use an ecological analogy to describe together
the healthy and disease conditions with their omic infor-
mation. The mutational (generated by epigenetic modifi-
cation and gene expression changes) and natural selection
pressure could be modeled by an Ornstein–Uhlenbeck
(OU) model acting on a landscape. The OU model is
frequently used in physics to model an overdamped Brow-
nian harmonic oscillator — that is, the stochastic variation
from a normal state with no persistence of the rate of
change — opposed by a stronger restoring force towards
the equilibrium point. In our system, stochastic changes
in multi–omic represent a restoring force constraining
the patient in its normal state. A possible visualisation
of healthy and disease states is the landscape analogy
described by Waddington where the multi–omic infor-
mation determines the walls of a valley that traps a
rolling ball (the condition of the patient). The walls act as
restoring forces (representing the natural selection). The
multi–omic information may provide a potential mecha-
nism for control of the level of the phenotypic variation
(which is represented by the slope of the valley walls).
In diseases the multi–omic deregulation would change
the valley, altering the balance of regulation that main-
tained the stable multi–omic signature in the face of
noise. This could be the result of repeated restructuring
of the multi–omic landscape through inflammatory con-
dition. Clearly different diseases have specific multi–omic
structure requirements, i.e. valleys.

The multi–omic OU could be considered within a phy-
logenetic framework [37–41], which is biologically moti-
vated by the ideas of adaptation, selection, stasis. The
mean phenotype of the species is expected to exhibit small
oscillations around an optimal state defined by the envi-
ronment where it lives in stasis [42]. If the environment
changes, the optimal state will be affected, which will lead
to rapid evolution of species towards the new optimum.

The concepts from the evolutionary biology have been
recently used in the study of genes [43, 44]. Further-
more, Bartoszek and Lio’ [45] used a branching Brownian
motion (BM) process, implemented in the mvSLOUCH
package [37], to distinguish between competing phyloge-
netic trees for bacterial species. The aim of this work is to
find the associations between diseases and the genes in a
gene family. Phylogenetic comparative methods can pro-
vide us with a probability law that takes into account the
phylogeny. We can then estimate the expected variability
at the level of tips and test that if a certain gene lies outside
the null distribution of healthy cases.

In terms of the phylogenetic trees connecting the genes,
more recently diverged genes should show similar expres-
sion levels due to the common descent. Moreover, the
association with a disease of one member in the gene fam-
ily suggests that closely related genes will have a higher
chance of sharing some of this relationship than more
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distant ones. Recent studies found that DNA methyla-
tion plays a regulatory roles on gene expression [46]. The
methylation and expression levels of genes usually exhibit
dependencies in human diseases such as cancers [47].
Recent studied of DNA methylation data have provided
evidences of different patterns of changes existing at pro-
moter and gene body levels [48, 49]. Therefore, in this
paper, we study the roles of gene promoter methylation
and gene body methylation vs. gene expression respec-
tively constrained by the phylogenetic information. The
proposed methodology is a generalized method and could
easily accommodate multiple epigenetic features, con-
strained only by the computational capabilities of available
software. In the following sections, we provide the theo-
retical basis of the methodology. The flowchart of Step 2
is shown in Fig. 2.

DNA methylation and gene expression data for Step 2
In Step 2, we focus on nine inflammation related diseases,
Allergy, Asthma, Ulcerative Colitis (Colitis), Crohns’ Dis-
ease (Crohn), Rheumatoid Arthritis (RA), Chronic Fatigue
Syndrome (CFS), Systemic Lupus Erythematosus (SLE),
Type 2 Diabetes (T2D) and Colon Cancer, which have
both gene expression and DNA methylation data (see
Additional file 2). The methylation (promoter and gene
body) data of all the diseases were measured by Illu-
mina Infinium HumanMethylation450 (450K) BeadChip.
The downloaded data have already been prepocessed and
normalized into probe level. To convert the data from
probe level to gene level, we map the probes to Entrez
GeneID following the annotation files of the microarray
platforms. Probes mapped to multiple genes are deleted.

For the gene expression data, the average of the values of
the probes corresponding to the same gene, is calculated
as the expression value for the gene. For the methyla-
tion data, we keep the probes which are mapped to the
promoter (TSS200) and gene body regions, and take the
average of methylation values of the probes correspond-
ing to the two regions respectively as the two methylation
features for each gene.

Construction of phylogenetic correlation models based on
expression and methylation of a gene family
We assume that the mean expression and methylation lev-
els (denoted by �X(t)) evolve on a phylogeny following a
multivariate k–dimensional Ornstein–Uhlenbeck process

�X(t) = −A
(�X(t) − �θ

)
dt + �d �W (t), (4)

where �W (t) is a multivariate standard Wiener process.
The process parameters are the matrices A (can be in par-
ticular 0 or have zero rows), � and the vector �θ . The
process is multivariate normal with mean and variance
equalling

E
[�X]

(t) = e−At �X(0) +
(

I − e−At
) �θ

Var
[�X]

(t) =
t∫

0

e−As��T e−AT sds.
(5)

If all the eigenvalues of A have positive real part, then
the process converges weakly to its stationary normal dis-
tribution with mean equalling �θ and covariance matrix
equalling

Fig. 2 The scheme of the phylogenetic steps. 1) Construct the phylogenetic tree of the gene family based on the protein sequences; 2) Estimate the
best evolutionary models between expression and methylation data based on the phylogenetic tree in control samples; 3) Generate the null
distributions of the expression and methylation data for the gene family following the best evolutionary model; 4) Calculate the empirical p-values
of the expression and methylation levels for each member of the gene family in patient samples and select the significant ones
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P
([

1
λi + λj

]

1≤i,j≤k
� P−1��T P−T

)
PT ,

where � is the Hadamard product, λis and P are respec-
tively the eigenvalues and eigenvectors of A.

The mvSLOUCH R package [37] is used to estimate
the parameters of the process for modelling expression,
methylation and the gene level evolution. We use the
mvSLOUCH package for our analysis because currently
it offers the widest choice of possible models for the
multivariate trait. Importantly for us it allows for some
of the traits to evolve as Brownian motion (i.e. neutrally)
while for the others to be under selective pressure to
track changes in the “Brownian ones”. This wider spec-
trum of tested models (the wrapper function running
the analysis tries out a whole collection of parametriza-
tions of the OU equation, this wrapper function has
been incorporated into the public interface of mvS-
LOUCH and its functionality may be exploited by calling
mvSLOUCH::estimate.evolutionary.model())
allows for better exploration of the parameter space but
moreover facilitates interpretation—how do the different
variables interact with each other. We compare (by AICc)
Brownian motion (A = 0), stationary and non–stationary
OU models, and specify that certain variables evolve
marginally as Brownian motion (equivalent to setting in
A rows corresponding to them to 0).

The parameters of the OU process have very sophis-
ticated interpretations in the evolutionary biology field
[41, 50]. In this work, it is assumed that in a constant
environment (e.g. healthy person), called selective regime
in evolutionary terminology, the expression and methyla-
tion levels should exhibit stationary oscillations around an
optimal state. This stasis situation can be modelled by an
(multivariate) OU process. If a gene property is associated
with a disease, then its levels will be significantly out of the
band predicted by the stationary oscillations.

The values associated with each gene are the means and
variances of the expression and methylation for the pop-
ulations (case or control individuals) under study. There
is always a natural variation inside a population, and the
expression and methylation patterns are very variable.
Ignoring this variation could lead to spurious conclusions
and therefore it should be taken into account. The varia-
tion is expected to be dominated by the specific conditions
which the individual lived in and hence not to exhibit
an evolutionary history. The estimate of this variation
is the sample variance for the expression or methylation
of the gene. This is a standard procedure in phyloge-
netic comparative methods and the variation appears in
any downstream analysis as uncorrelated measurement
error [37, 51, 52] and it is added to the diagonal of the
between–gene family member–between–traits variance–
covariance matrix.

Detection of disease-associated members of a gene family
Genes, whose expression levels in disease samples sig-
nificantly deviate from the optimal evolutionary model
(gene expression vs. promoter/body methylation) esti-
mated based on the healthy samples, are defined as dys-
regulated expressed genes (DEGs). Similarly, genes, whose
promoter/body methylation levels in disease samples sig-
nificantly deviate from the corresponding optimal evo-
lutionary model, are defined as dysregulated methylated
genes (DMGs).

The identification of DEGs and DMGs requires the esti-
mation of the parameters of the stochastic process gener-
ating by the control levels. On the basis of the phylogeny,
we simulate 200,000 independent evolutions of expression
and methylation levels under the law of this process with
the estimated parameters, which gives us the null distribu-
tion for the levels that includes the ancestral dependencies
between the different genes. Then, the empirical p-values
are calculated to assess if a case measurement for a gene is
significantly different from its control counterpart. After
simulating the process for each tip we take the difference
between the simulated control values and true control
values. Then, the p-value is calculated by comparing the
observed difference between cases and controls to the null
distribution of the difference between simulated and true
control values.

The genes with significant p-values (e.g., p<0.05) are
selected as DEGs and DMGs which are considered signif-
icantly associated with a disease. Although this approach
alone does not really guard us against multiple testing
issues as we look at individual p-values [53], our aim is
to build an overall network by building up on all the
evidences from the families. Therefore, a gene family
member with a marginal p-value (e.g., around 0.05) could
be considered interesting or suggestive if it has pathway
connections with other genes with significant p-values
belonging to other families. The significance of a gene sug-
gests the strong association with the genesis of the disease.
Because of the high correlation between the members of
the family induced by the shared ancestry and phyloge-
netic inertia, a too stringent approach at single gene family
could vanish the opportunity of evaluating the evidence
synthesis across the overall gene family network through
Gene Ontology.

Construction of functional associations between diseases
If a gene is associated with two different diseases, it is
likely that the two diseases share the similar functional
mechanisms involving this common gene at molecular
level. Consequently, the functional consistence between
two diseases can be evaluated based on the overlapping of
the corresponding associated genes. The genes involved
in the same biological process usually exhibit high consis-
tence in function. Here we use the Gene Ontology (GO)
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semantic similarity measure proposed by [54] to evaluate
the functional similarities of the associated genes for two
diseases.

The semantic similarity measure is an information con-
tent which takes into account the hierarchical structure of
GO. It is calculated by the frequencies of two GO terms
and that of their closest common ancestor term in the
directed acyclic graph (DAG) of GO. The information
content of a GO term is calculated by the negative log
probability of the genes occurring in the GO term and all
of its children terms against the total genes annotated in
GO. The frequency of a GO term t is computed as:

p(t) = nt′

N
, t′ ∈ {t, children of t}, (6)

where nt′ is the number of genes annotated in term t and
all of its children terms, and N is the number of total genes
annotated in GO. The information content (IC) of GO
term t is defined as:

IC(t) = − log(p(t)). (7)

Because a GO term could have multiple parents in the
DAG, two terms can share parents by multiple paths. The
similarity between two GO terms is calculated based on
the information content of their closest common ancestor
term which is also called the most informative com-
mon ancestor (MICA). As proposed by [54], the semantic
similarity between GO terms t1 and t2 with the most infor
mative common ancestor term MICA is computed as:

sim(t1, t2) = 2IC(MICA)(1 − p(MICA))

IC(t1) + IC(t2)
. (8)

The functional similarity between two genes is calcu-
lated based on their corresponding annotated GO terms.
Given two GO terms sets GO1 = {go11, go12, ..., go1n} and
GO2 = {go21, go22, ..., go2n} annotated by gene g1 and g2
respectively, the similarities matrix between GO1 terms
and GO2 terms is computed following Eq. (9). The sim-
ilarity score between the two genes is calculated as the
average of all maximum similarities on each row and
column of the GO terms similarity matrix:

sim(g1, g2)=

m∑
i=1

max
1≤j≤n

sim(go1i, go2j)+
n∑

j=1
max

1≤i≤m
sim(go1i, go2j)

m + n
.

(9)

Results
Genome-wide analysis of gene expression in human
inflammatory diseases reveals several interested signalling
gene families
Following the Step 1 analysis procedure that introduced
in the section of Methods, a number of significantly dif-
ferentially expressed genes are identified in the selected
inflammatory diseases (see Additional file 3). The signifi-
cant differential expression of these genes in the patients
compared with the healthy samples suggests strong asso-
ciations between the genes and the inflammatory diseases.
The genes are involved in several important signalling
gene families related with inflammation such as the
chemokine receptor family, the tumor necrosis factor
(TNF) receptor family, the transforming growth factor
beta (TGF–β) family and the interleukin 17 (IL–17) fam-
ily. The comparative analysis of the selected inflamma-
tory diseases shows that the TNF receptor family and
the TGF–β gene family are more differentially expressed
between healthy and disease samples. There are more
members in these two gene families exhibiting signifi-
cant p-values than the chemokine receptor family. The
signalling molecules of IL–17 family are represented by
Rel A, B, TRAF, NFkB1 and NFkB2 related gene mem-
bers. Their enrichment presence in the pool of disrupted
genes in all diseases highlights the crosstalk with the NF–
kappaB signaling pathway. The TGF–β family is involved
in most of the considered diseases, e.g., TGFB1 in Osteo-
porosis, TGFB3 in Rheumatoid arthritis, Osteoarthritis
and Multiple myeloma, TGFBR2 in HIV, Osteomyelitis
and Measles, BMP in Breast cancer and Osteosarcoma,
and BMP3 in Periodontitis. The TNF receptor family is
involved in many of the selected inflammatory diseases,
e.g., TNFRSF10B in Osteoporosis, Osteomyelitis and peri-
odontitis, TNFRSF11B and TNFSF13B in Osteopetrosis
and Periodontitis, and TNFIP6/8 in Osteomyelitis.

Phylogenetic–based multi–omic analysis suggests
potential disease associated genes of four signalling gene
families: the chemokine receptor family, the TNF receptor
family, the TGF–β family and the IL–17 family
Case study of the chemokine receptor family
Chemokine receptors belong to the large G–coupled pro-
tein receptors family and are abundantly expressed in
a variety of immune cells, playing a crucial role in the
immune system by binding with chemokines [36]. Accu-
mulating evidence has provided insight into the impor-
tance of chemokine and chemokine receptors in various
diseases including cancers, HIV and inflammatory dis-
eases [55]. For example, the chemokine receptors CXCR4
and CCR7 have been found to be involved in breast can-
cer metastasis [56], and both CXCR4 and CCR5 have been
successfully used as drug targets for haematopoietic stem
cell mobilization and HIV inhibition [57]. Despite the
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Table 1 Optimal evolutionary models of DNA methylation and gene expression for the four gene families in controls (promoter
methylation vs. gene expression | gene body methylation vs. gene expression)

Disease Chemokine receptor TNF receptor TGF–β IL17

Allergy OUOU | OUOU OUOU | OUOU OUOU | OUOU OUOU | OUOU

Asthma OUOU | OUOU OUOU | OUOU OUOU | OUOU OUOU | OUOU

CFS OUOU | OUOU OUOU | OUOU OUOU | OUOU OUOU | OUOU

Colitis BM | BM OUOU | OUOU OUOU | OUOU OUOU | OUOU

Colon Cancer OUOU | OUOU OUOU | BM OUOU | OUOU OUOU | OUOU

Crohn OUOU | OUOU BM | OUOU OUOU | OUOU OUOU | OUOU

RA OUBM | OUOU OUOU | OUOU OUOU | OUOU BM | OUOU

SLE OUOU | OUOU OUOU | OUOU OUOU | OUOU OUOU | OUOU

T2D OUOU | OUOU OUOU | OUOU OUOU | OUOU BM | BM

OUOU: bivariate OU model, both methylation and expression follow OU model; BM: Brownian Motion model, both methylation and expression follow BM model; OUBM:
methylation and expression follow different models

growing effort in developing drugs targeting chemokine
receptors, there has been limited success in clinical tri-
als concerning inflammatory diseases. The effects of
biased signalling mechanisms at receptor level for the
fine–tuning of the immune system [36] have not been
clearly understood yet. Growing evidence of the biased
signalling of the chemokine gene family implies that dif-
ferent chemokines activate specific signalling pathways
via binding to the corresponding receptors in different
inflammatory diseases. Studying this dynamic regulation
mechanisms will help understanding the genesis of the
diseases and improving drug discovery. Here, we apply
the proposed phylogenetic–based multi–omic method on
the chemokine receptor family to detect the members of
this family which are significantly associated with differ-
ent inflammatory diseases.

Using the multivariate OU framework, the optimal
correlation models between gene expression and pro-
moter/body methylation data taking account of phylogeny
information for chemokine receptors are estimated in

controls, which are shown in Table 1. The optimal correla-
tion models for gene expression vs. promoter methylation
are almost the same with the ones for gene expression
vs. body methylation, which mainly follow a bivariate OU
model (OUOU) in eight disease except Colitis in which
the best correlation model is a BM model. The disease–
associated chemokine receptors with significant dysregu-
lation in expression or methylation are shown in Table 2.
The expression levels or the methylation levels in the gene
body regions of the significant chemokine receptors in
the patients of Allergy, Asthma and Colitis do not fol-
low the estimated correlation models in the correspond-
ing control samples, which suggests that these significant
chemokine receptors may be involved in the epigenetic
regulation mechanisms during the genesis of the diseases.
There is a preponderance of the gene expression effects
over the gene body and promoter methylation and a pre-
ponderance of gene body over promoter methylation. The
phylogenetic correlation between the multi–omic infor-
mation, diseases and genes is shown in Fig. 3a.

Table 2 Significant disease associated genes in the chemokine receptor family

Disease Up–regulated DEG Down–regulated DEG Up–regulated DMG Down–regulated DMG

Allergy CCR6, CCR7 — — CXCR4

Asthma CXCR7 — — —

CFS CXCR4, CX3CR1 — — —

Colitis CXCR4 XCR1, CCRL1 CCR4 CCR7,CMKLR1

Colon Cancer — — — —

Crohn — — — —

RA CXCR1, CXCR2, CXCR4 — — —

SLE CCR5, CMKLR1, CXCR2, CXCR4, CX3CR1, CCR1 XCR1 — —

T2D CXCR4 — — CXCR4

DEG stands for dysregulated expressed genes and DMG stands for dysregulated methylated genes. Genes in bold represent significant dysregulations according to both
promoter methylation model and gene body methylation model; Genes in italic represent significant dysregulations according to promoter methylation model; Genes in
normal fonts represent significant dysregulations according to gene body methylation model
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a b

c d

Fig. 3 Phylogenetic correlation analysis for gene families: a the chemokine receptor family; b the TNF receptor family; c the TGF–β family; d the
IL–17 family. In each figure, the phylogenetic tree for the protein sequences of the gene family constructed using neighbour–joining is shown on
the left side. The sequences EBV (human EBV-induced G protein-coupled receptor), angio (human type-1 angiotensin II receptor isoform) and somas
(human somatostatin receptor) are considered as outgroups. The scale bar refers to the branch lengths, measured in expected numbers of amino
acid replacements per site. The significant association between diseases and genes of the gene family is shown on the right side. Large black circles
represent up–regulated expression; small black circles represent down–regulated expression; large white circles represent up–regulated (gene
body AND promoter) methylation; small white circles represent down–regulated methylation

Case study of the TNF receptor family
The TNF gene family includes 29 receptors which are
trimeric cytokine receptors that bind tumor necrosis fac-
tors (TNFs). These receptors are important in determin-
ing the response outcome (e.g. apoptosis, inflammation),
which suggests their potential roles associated with dis-
eases. The phylogenetic correlation between the multi–
omic information, diseases and genes is shown in Fig. 3b.
The correlation between promoter/body methylation and
expression of the TNF receptor family follows the bivari-
ate OU model in most diseases except Colon Cancer

and Crohn. As shown in Table 1, the optimal model for
gene expression vs. body methylation in Colon Cancer
follows the BM model and the optimal model for gene
expression vs. promoter methylation in Crohn follows
the BM model. The TNF receptors which are associated
with the diseases are shown in Table 3. Many members
in TNF receptor family show significant dysregulation in
expression or methylation in CFS, Colitis, Colon Cancer,
RA and T2D. The disruption at the level of promoters
seems more important than the disruption at gene body
level.
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Table 3 Significant disease associated genes in the TNF receptor family

Disease Up–regulated DEG Down–regulated DEG Up–regulated DMG Down–regulated DMG

Allergy — — TNFRSF4 —

Asthma TNFRSF21 — — —

CFS TNFRSF1A, CD27, TNFRSF1B TNFRSF11B TNFRSF4 —

Colitis TNFRSF14, CD27, TNFRSF1B — — —

Colon Cancer — — RELT, TNFRSF4, TNFRSF13B TNFRSF12A

Crohn TNFRSF14, TNFSRF1B — — —

RA — — RELT, TNFSRF4, TNFRSF17, TNFRSF13B, EDA2R, EDAR —

SLE TNFRSF1B — TNFRSF4, EDA2R —

T2D TNFRSF21, TNFRSF12A TNFRSF17 — —

DEG stands for dysregulated expressed genes and DMG stands for dysregulated methylated genes. Genes in bold represent significant dysregulations according to both
promoter methylation model and gene body methylation model; Genes in italic represent significant dysregulations according to promoter methylation model; Genes in
normal fonts represent significant dysregulations according to gene body methylation model

Case study of the TGF–β family
The transforming growth factor beta (TGF–β) family
plays key roles in cell proliferation and differentiation,
and other important biological processes [31]. Members
of the TGF–β family are synthesized as prepropeptide
precursors that are processed into mature, biologically
active homodimers or heterodimers, which activate ser-
ine/threonine kinase receptors. Scientific evidence shows
that the TGF–β proteins are involved in the genesis of sev-
eral diseases such as immunity, cancer, bronchial asthma,
lung fibrosis, heart disease, diabetes, Parkinson’s disease,
and AIDS [58]. The phylogenetic correlation between the
multi–omic information, diseases and 36 genes of TGF–β

family is shown in Fig. 3c. As shown in Table 1, the correla-
tions between promoter/body methylation and expression
of the TGF–β family follow a bivariate OU model in

all situations. The significant genes in the TGF–β fam-
ily which are associated with the diseases are shown in
Table 4. There are several members in TGF–β family that
are dysregulated significantly in expression (in particu-
lar) or methylation in most diseases, but in CFS there is
none and in Colon Cancer there is only one gene signifi-
cantly up–regulated in gene body methylation. There is a
good agreement (bold in Table 4) between gene body and
promoter methylation relationship with respect to gene
expression.

Case study of the IL–17 family
The interleukin 17 (IL–17) family plays a crucial
role in host defence against microbial organisms and
in the genesis of proinflammatory diseases. IL–17 is
commonly associated with allergic responses. IL–17

Table 4 Significant disease associated genes in the TGF–β family

Disease Up–regulated DEG Down–regulated DEG Up–regulated DMG Down–regulated DMG

Allergy GDF11, LEFTY2, TGFB3 — — GDF3, GDF15

Asthma GDF2, GDF15, MSTN,
INHBA, INHBB, INHBC

BMP4 GDF2, GDF9, BMP15, MSTN, PSPN —

CFS — — — —

Colitis TGFB1, TGFB3, BMP15,
INHBC, GDF9

— — GDF15

Colon Cancer — — PSPN —

Crohn TGFB1, TGFB3, BMP15,
INHBC

— — GDF15

RA GDF11, GDF15, INHBA,
BMP6

GDF10, TGFB2, GDF3,
ARTN, BMP4, GDF7, BMP5,
INHBC, INHA

LEFTY2, TGFB3 GDF1

SLE BMP15, GDF9 — — GDF3, GDF15

T2D GDF15, INHBA MSTN PSPN ARTN, INHBE

DEG stands for dysregulated expressed genes and DMG stands for dysregulated methylated genes. Genes in bold represent significant dysregulations according to both
promoter methylation model and gene body methylation model; Genes in italic represent significant dysregulations according to promoter methylation model; Genes in
normal fonts represent significant dysregulations according to gene body methylation model
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Table 5 Significant disease associated genes in the IL–17 family

Disease Up–regulated DEG Down–regulated DEG Up–regulated DMG Down–regulated DMG

Allergy — — — —

Asthma — — — —

CFS — IL17A — —

Colitis — — — —

Colon Cancer — — — —

Crohn IL17E — — —

RA — — — —

SLE IL17E — — —

T2D — — IL17F, IL17A IL17B IL17E IL17C

DEG stands for dysregulated expressed genes and DMG stands for dysregulated methylated genes. Genes in bold represent significant dysregulations according to both
promoter methylation model and gene body methylation model; Genes in italic represent significant dysregulations according to promoter methylation model; Genes in
normal fonts represent significant dysregulations according to gene body methylation model

induces the production of many other cytokines (such
as IL–6, G–CSF, GM–CSF, IL–1β , TGF–β , TNF–α),
chemokines (including IL–8, GRO–α, and MCP–1), and
prostaglandins (e.g., PGE2) from many cell types (fibrob-
lasts, endothelial cells, epithelial cells, keratinocytes, and
macrophages). TGF–β and chemokines (IL–6) drive the
production IL–17 cytokines in immunity and inflamma-
tion [59–61]. The phylogenetic correlation between the
multi–omic information, diseases and genes of the IL–
17 family is shown in Fig. 3d. Here, we also applied the
proposed methods to the IL–17 gene family. The correla-
tion between promoter/body methylation and expression
of the IL–17 family follows the bivariate OU model in
most diseases except T2D and RA in which the best
correlation models follow the BM model (Table 1). The
significant genes in the IL–17 family which are associ-
ated with the diseases are shown in Table 5. There are
only significantly dysregulated genes in CFS, Crohn, SLE
and T2D.

Curated evidence for the identified disease associated genes
We find a selection of evidences from biomedical lit-
erature, which prove the involvement of many identi-
fied genes in the genesis of the corresponding diseases
(Table 6). Although no clear evidence has been reported
for the other identified genes, there are some interest-
ing clues. For example, ARTN has not been proved to
be associated with T2D yet, but it is associated with
Hirschsprung’s disease 1 and Parkinson disease, late–
onset. It plays an important role in pathways related to
developmental biology and Interleukin receptor SHC sig-
naling, and strong attractant of gut hematopoietic cells
thus promotes the formation Peyers patch–like structures
[62]. Although there are no report on the involvement of
the GDF1 in RA, it is associated to transposition of great
arteries, dextro-looped 3 and right atrial isomerism [63].
There are no report on the involvement of GDF9 in Crohn,

but mutations in GDF9 can result in sterility and lower
ovulation rate [64].

Phylogenetic–based multi–omic analysis of signalling gene
families reveals functional associations between
inflammation related diseases
Disease gene association networks
The gene–disease association network (Fig. 4) are con-
structed from the significant genes of the four gene
families which are identified by the proposed multi–omic
analysis. As shown in the network, the four signalling
related gene families are prone to be associated with
different diseases. For example, the chemokine receptor
family may play important roles in Allergy, CFS, Colitis,
RA, SLE and T2D, while the IL–17 gene family is probably
related with T2D, CFS, Crohn and SLE. But the TGF–β

Table 6 Literature evidence for the identified disease associated
genes in the four signalling gene families

Disease Disease genes with evidence

Allergy CCR7 [70]; TNFRSF4 [71]; CCR6 [72]

Asthma CXCR7 [73]

CFS TNFRSF4 [74]; TNFRSF1A [75]

Colitis TGFB1 [76]; TGFB3 [77]; XCR1 [78]; CCR4 [79];
CKMLR1 [80]; CXCR2 [81]; CXCR4 [82]; CD27
[83]; CCR7 [83]; TNFRSF1B [84]

Crohn GDF15 [85]; TNFRSF1B [86]; INHBC [87];
TGFB3 [77]; IL17E [88]; TGFB1 [76]

RA GDF15 [89]; GDF1 [90]; GDF11 [91]; EDAR
[92]; CXCR1 [93]; Relt [94]; TNFRSF13b [95];
TGFB2 [96]; TGFB3 [97]; CXCR2 [98]; BMP4
[99]; BMP5 [99]; BMP6 [100]; INHBA [101]

SLE TNFRSF4 [102]; CX3CR1 [103]

T2D GDF15 [104]; IL17A [105, 106]; IL17F [107];
ARTN [62]; INHBA [108]; CXCR4 [109, 110];
TNFSR17 [111]; TNFSR14 [112]; MSTN [113];
BMP4 [114]; TNFRSF21 [115]; TNFRSF12A
[116]
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Fig. 4 Gene–disease associations between the diseases and significant genes of the four families based on gene expression and methylation. Circle
nodes represent genes and square nodes represent diseases. The abbreviations of the diseases are show in Additional file 2. Nodes represent genes
and diseases. Edges between two nodes represent the associations between genes and diseases: solid lines for the associations in expression and
dashed line for the associations in methylation

and TNF receptor families are more likely to be involved
in all the nine inflammation related diseases. The genes
which link to multiple diseases in the network suggest the
common molecular mechanisms for the diseases, which
also provide clues for exploring the functional associa-
tions for disease comorbidities.

To explore the functional consistence among the nine
diseases on each gene family, we calculate the Gene Ontol-
ogy semantic similarity between the genes which are
significantly associated with the diseases. The functional
similarity among the diseases on the four gene families are
shown in Fig. 5. The strong similarity between two dis-
eases suggests that the diseases are probably induced by
the same disrupted biological pathways. For instance, the
high functional consistency between RA, SLE and T2D
in chemokine receptor family suggests that these diseases
are more likely to involve similar functional mechanisms
of the epigenetic regulations on the pathways related with
chemokine receptors.

Inflammation map
Central to inflammation pathology studies is the molecu-
lar analysis of inflammatory comorbidities and the comor-
bidity map which addresses the occurrence of different

medical conditions or diseases, usually complex and often
chronic ones, in the same patient. A meaningful way to
summarise the relationship between diseases and multi–
omic information is to compute the principal component
analysis of the matrix that contains diseases and the num-
bers of changes in the methylation and gene expression
in each of the four families. Figure 6 shows the first
two principal components of the disease–methylation
and disease–gene expression associations, in which the
up-dysregulation and down-dysregulation in gene expres-
sion and promoter/body methylation are combined
together.

Discussion
The proposed method provides a tool to study the
involvement of gene families in human disease by inte-
grating gene expression, DNA methylation and gene
sequences through a phylogenetic approach. The different
models of adaptation (OU and BM) can be evalu-
ated and compared based on the evolutionary rela-
tionship of the gene family by using gene expression
and methylation data. The members of a gene family
whose expression or methylation levels that do not fol-
low the corresponding optimal evolutionary models are
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Fig. 5 Functional consistence of diseases based on the significant genes of each gene family

considered as the genes significantly associated with the
diseases, which suggests the involvement of such genes
in the epigenetic regulation mechanisms related to the
genesis of diseases.

We believe that our proposed methodology provides
a meaningful approach to compare the contribution of
different omic data (DNA methylation and gene expres-
sion) and different genes within a family/group to a
disease condition. The proposed methodology could be
extended by integrating other omic data in the future. Cur-
rently, the methodology is primarily limited by the amount
of multi–omic data (traits) that phylogenetic comparative
methods can handle. Previously it was up to five or six
traits, depending on the size of the phylogeny, or methods

that calculated the whole between–species–between–
traits variance–covariance matrix. However, right now
there is tremendous progress in speeding up likeli-
hood calculations for OU–based evolutionary models
[65–68]. These new methods are based on either the
three-point structure [67] or Felsenstein’s pruning algo-
rithm [69], which allow for the likelihood to be evalu-
ated in linear (in the number of tips) time and hence
should make phylogenetic approaches a key multi-omic
integration step, instead of a computational bottleneck.
Thus, the new methods hold promise that it should
be possible to analyse scores of traits for thousands of
species in the nearby future. In addition, the proposed
method for phylogenetic–based multi–omic analysis is



Xiao et al. BMC Bioinformatics 2018, 19(Suppl 15):439 Page 14 of 143

Fig. 6 Principal component analysis (the first two principal components) of the matrix of disease–methylation and disease–expression associations.
The figure shows relationships between diseases and dysregulation of gene expression and DNA methylation in the four signalling gene families

limited to a single gene family because the hypothe-
sis of the model assumes that the correlation between
gene expression and DNA methylation of genes from
a family is constrained by the evolutionary relation-
ship of the gene family. But in practice, the roles of
DNA methylation for gene expression regulation are
complex and involve not only genes within the same
family but possibly also genes from other functionally
related gene families. In the future, the methodology
could be extended to multiple gene families by taking
into account the functional crosstalks between different
families.

Conclusions
We have performed a comparative study to explore the
influence of signalling gene families in several inflamma-
tion related diseases. Firstly, we analyse gene expression
in a collection of inflammatory diseases, which high-
lights the importance of gene families involved in extra-
cellular signalling. In particular we have identified four
families significantly associated with the inflammatory
diseases, which includes the chemokine receptors fam-
ily, the TNF receptor family, the TGF–β family and the
IL–17 family. Then, in order to understand the roles
these gene families in some specific inflammation related
diseases, we propose a phylogenetic–based multi–omic
method to study the correlations between gene expres-
sion and DNA methylation of the members of each
gene family taking into account of their evolutionary
relationships.

Applying the proposed method to four signalling gene
families in nine inflammation related diseases, we iden-
tify a number of significant disease associated genes
whose expression or methylation levels in the patients
significantly deviate from the evolutionary models esti-
mated from the control samples. Our results suggest that
these families involve in different specific diseases. The
chemokine receptor family may play important roles in
Allergy, Asthma and Colitis, while the TNF receptor fam-
ily may play key roles in CFS, Colitis, Colon Cancer and
T2D. But the TGF–β family would be involved in all
the nine diseases. Besides the larger gene families such
as the aforementioned three gene families, the proposed
method also works on small gene family such as the IL–17
gene family which contains only six members. The rela-
tionship between gene expression and DNA methylation
(promoter region or gene body region) mainly follows a
bivariate OU model. The genes exhibiting significant dys-
regulation in promoter methylation and gene expressions
are different with respect to the gene body methylation.
In the TNF receptor family, most of the genes show sig-
nificant alterations in promoter region than the gene body
region, which is opposite in the TGF–β family. For the
chemokine receptor family, the diseases Allergy, Asthma,
CFS and Colitis involve both the gene body methyla-
tion and the promoter methylation of the family, but the
diseases RA, SLE and T2D show differences in promoter
methylation.

From biomedical literatures, we observe that the impact
of methylation levels on diseases seems to be of the
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same magnitude as that of gene expression levels. Based
on the identified disease associated genes for each gene
family, the functional associations among the diseases
based on the gene families are constructed, revealing
the functional consistency and difference between dis-
eases in terms of a signalling gene family. The mem-
bers of the gene families exhibit different involvement
in the inflammatory diseases. For example, viewing from
the diseases gene network constructed based on the
identified disease associated genes, the connectivities of
the genes are different. For example, GDF15 is involved
in seven diseases, while TGFB3, INHBC,A, TNFRSF1B
and IL17E are associated with four diseases. Most of the
other genes have two or three links to the diseases. We
obtain multiple confirmatory results and a number of
novel gene–disease associations that require experimental
verification.

Additional files

Additional file 1: Gene expression datasets of inflammatory diseases in
Step 1. The table in the pdf file shows the public datasets of gene
expression of the inflammatory diseases used in Step 1 of the analysis.
(PDF 30 kb)

Additional file 2: DNA methylation and gene expression datasets of
inflammation related diseases in Step 2. The table in the pdf file shows the
public datasets of DNA methylation and gene expression of the
inflammation related diseases used in Step 2 of the analysis. (PDF 42 kb)

Additional file 3: Significant genes for the inflammatory diseases
analysed in Step 1. Tables in the Excel file show genes with significant
p-values for different inflammatory diseases. Genes are sorted
alphabetically in order to identify the gene families. (XLS 58 kb)
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