Taguchi BMC Bioinformatics 2019, 19(Suppl 13):388
https://doi.org/10.1186/s12859-018-2395-8

BMC Bioinformatics

RESEARCH Open Access

Drug candidate identification based on
gene expression of treated cells using tensor

Check for
updates

decomposition-based unsupervised feature
extraction for large-scale data

Y-h. Taguchi

From 17th International Conference on Bioinformatics (InCoB 2018)

New Delhi, India. 26-28 September 2018

Abstract

known target genes of the compounds under study.

analysed in this in silico study.

Background: Although in silico drug discovery is necessary for drug development, two major strategies, a
structure-based and ligand-based approach, have not been completely successful. Currently, the third approach,
inference of drug candidates from gene expression profiles obtained from the cells treated with the compounds
under study requires the use of a training dataset. Here, the purpose was to develop a new approach that does not
require any pre-existing knowledge about the drug—protein interactions, but these interactions can be inferred by
means of an integrated approach using gene expression profiles obtained from the cells treated with the analysed
compounds and the existing data describing gene—gene interactions.

Results: In the present study, using tensor decomposition-based unsupervised feature extraction, which represents
an extension of the recently proposed principal-component analysis-based feature extraction, gene sets and
compounds with a significant dose-dependent activity were screened without any training datasets. Next, after these
results were combined with the data showing perturbations in single-gene expression profiles, genes targeted by the
analysed compounds were inferred. The set of target genes thus identified was shown to significantly overlap with

Conclusions: The method is specifically designed for large-scale datasets (including hundreds of treatments with
compounds), not for conventional small-scale datasets. The obtained results indicate that two compounds that have
not been extensively studied, WZ-3105 and CGP-60474, represent promising drug candidates targeting multiple
cancers, including melanoma, adenocarcinoma, liver carcinoma, and breast, colon, and prostate cancers, which were
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Background

Inference of compound—protein interactions is one of the
important tasks of drug discovery, but the experimental
approach is expensive. To slow the trend of rising drug
discovery costs, computational approaches have been
increasingly used. Two major in silico approaches exist:
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a structure-based method [1] and ligand-based one [2].
Although a lot of effort has been invested into the devel-
opment and improvement of these approaches, their suc-
cesses are limited, which is why alternatives are needed.
One of them is the inference of target genes based on
the analysis of alterations in a gene expression profile in
the cells treated with the compounds of interest. Even
though this approach appears to be relatively simple and
straightforward, two major obstacles must be considered.
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It is difficult to identify drug candidate doses necessary to
determine drug efficacy because there are tens of thou-
sands of genes, and the changes in their expression must
be strictly dose-dependent, otherwise any alterations are
considered accidental, due to multiple-comparison adjust-
ments. Additionally, the analysed compounds interact
with proteins, and not mRNAs. Accordingly, expression
of the target genes is not always affected, and therefore,
gene expression profiles alone cannot provide the com-
plete information about all the molecules targeted by the
compounds under study.

To overcome these difficulties, compound signature
profiling [3, 4] is often employed. In this approach, if the
alterations in gene expression profiles after application of
the analysed compound are similar to those observed after
application of an already known drug, the compound in
question is assumed to share the target genes with the pre-
viously investigated drug. With this approach — because
it does not require identification of dose dependence or
the target genes — the above difficulties do not apply. Nev-
ertheless, training (labelled or annotated) gene expression
datasets are required, and only previously known drug—
protein interactions can be inferred.

Some examples of tasks aimed at identifying new drug—
target interactions in gene expression data on the basis of
known interactions are as follows. Wang et al. [5] tried
to identify on- and off-target genes of drugs using simi-
larities in drug-induced in vitro gene expression changes.
Iwata et al. [6] explored potential target proteins with
cell-specific transcriptional similarity using a chemical
protein interactome. Lee et al. [7] tried drug reposition-
ing for cancer therapy based on large-scale drug-induced
transcriptional signatures. Although these are only a few
examples, these strategies require pre-knowledge about
drug—target interactions. Alternatively, instead of drug—
target interactions, drug—disease interactions are studied.
For instance, Cheng et al. [8] attempted to measure the
connectivity between disease gene expression signatures
and compound-induced gene expression profiles. Sirota
et al. [9] also integrated gene expression measurements
from 100 diseases and gene expression measurements for
164 drug candidates, thereby determining predicted ther-
apeutic potentials for these drugs. lorio et al. [10] studied
compound-targeted biological pathways based upon gene
expression similarities. They are unsupervised approaches
to some extent, but target genes cannot be exploited.

Here, the purpose was to develop a new approach
that does not require any pre-existing knowledge about
the drug—protein interactions, but these interactions
can be inferred by means of an integrated approach
using gene expression profiles obtained from the cells
treated with the analysed compounds and the existing
data describing gene—gene interactions. In contrast to
the studies listed above, this approach is unsupervised
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but can identify a drug’s target proteins. For this pur-
pose, the recently proposed principal component anal-
ysis (PCA)-based unsupervised feature extraction (FE)
[11-31] was extended through tensor decomposition
(TD), and designated as TD-based unsupervised FE. The
reader may wonder why decomposition was employed.
This is because TD can simplify extensive information
included in a massive dataset, and the derived simpli-
fied information can be used for drug—target interaction
identification as follows. Because it was designed to tar-
get large-scale datasets that are formatted as a tensor
and include hundreds of compounds used for treatment,
the proposed method cannot be expected to show good
performance when applied to a conventional small-scale
dataset that includes fewer (typically a few tens of) drugs
used for treatment and is formatted not as a tensor but
in the conventional matrix form. Such datasets are eas-
ily associated with a fully labelled dataset because of their
small size.

Before reporting the results, I would like to mention
some other studies aimed at drug target identification via
LINCS, which was used in this study as described later.
O'Reilly et al. [32] proposed QUADrATIC, which was
designed to identify a list of significant negative connec-
tions between LINCS and disease profiles. Although their
method is also in some sense unsupervised, it requires
additional external disease-related gene expression pro-
files, which are not necessary for drug target identification
by TD-based unsupervised FE. Ji et al. [33] proposed inte-
grated analysis involving LINCS and phospho-proteomics
data resulting from treatments with various compounds;
these data are not required by TD-based unsupervised
FE either. Hsieh et al. [34] integrated LINCS with two
additional databases that TD-based unsupervised FE does
not need, whereas Cheng et al. [35] proposed integra-
tion of LINCS with genetic perturbations that TD-based
unsupervised FE does not use either. Wolf et al. [36]
employed only LINCS to identify useful drugs without tar-
get protein identification that TD-based unsupervised FE
can achieve, whereas Duan et al. [37] employed LINCS
and Gene Expression Omnibus, which TD-based unsu-
pervised FE does not use. Aliper et al. [38] applied a
deep neural network to LINCS with learning of external
labelling that TD-based unsupervised FE does not require.

Similarly, Wang et al. [39] integrated LINCS with chem-
ical compound structures, which are not needed for TD-
based unsupervised FE. Thus, TD-based unsupervised FE
appears to be the only method that can find effective drugs
with identification of target proteins without any exter-
nal clinical or additional expression profiles. TD-based
unsupervised FE requires a list of genes affected by single-
gene perturbation to identify target proteins. Because this
information does not have any relation with diseases or
clinical data and can be obtained by simple experimental
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procedures, it is the easiest information resource to get
access to among those required by the other methods
mentioned above.

Results

To maximize the performance of TD-based unsupervised
FE, a large-scale dataset, LINCS, which includes hundreds
of drugs used for treatment of each cell line, was selected
to test the performance of TD-based unsupervised FE.
Although LINCS contains expression profiles for only 978
genes, the proposed strategy was designed to overcome
this difficulty as well (see below).

Initially, the sets of genes (‘inferred genes’) showing
significant dose—response relations with the compounds
under study, as well as the compounds (‘inferred com-
pounds’) showing a dose-dependent activity, were iden-
tified by TD-based unsupervised FE (this process is
illustrated in Figs. 1-2, and the results are summarised
in Table 1). Here, a dose-dependent activity is defined as
a significant correlation observed between gene expres-
sion alterations and dose density of the compound being
analysed (It can be seen as a second dose-dependent
singular value vector, see Additional files 1 and 2).

After that, to determine the genes targeted by the iden-
tified compounds (‘predicted targets’), single-gene pertur-
bations coinciding with the alterations in gene expression
profiles were identified as a consequence of the cell treat-
ment with the analysed compounds (Fig. 3). To this end,
the genes identified by TD-based unsupervised FE were
uploaded to Enrichr [40] (which is the only database con-
taining comprehensive gene expression data associated
with gene knockouts [KOs]), and the genes targeted by
the drug candidates were determined; these genes were
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afterwards assumed to be associated with the compounds
targeting them.

To evaluate the predicted target genes (‘predicted tar-
get’), they were compared with two compound-target
datasets, drug2gene.com and DSigDB (Table 2; the full
list is presented in Additional file 3). Drug2gene.com
combines the compound/drug—gene/protein information
from 19 publicly available databases. DSigDB relates drugs
or compounds and their target genes, for gene set enrich-
ment analysis. As shown in the table, there is a significant
overlap between the identified compound-gene interac-
tions and the interactions present in at least one of the
datasets.

One may think that significance analysis is not enough
and other performance measures are beneficial, e.g.
sensitivity and restricting targets to top-ranked genes.
Nonetheless, this kind of analysis is not suitable for eval-
uation of the present results. For more details, see the
discussion below.

One hundred ninety-five genes were identified as the
common compound targets, associated with
dose-dependent compound activities in all the cell lines
Because 1595 unique genes are listed in Enrichr
(the full list is available in Additional file 4), in the
“Replacing ‘Single Gene Perturbation from GEO up’ with
‘PPI Hub Proteins™ section, the expected number of com-
monly selected predicted targets in all the 13 cell lines in

Table 1 is at most 1595 x (%)13 ~5x 1073 (i.e. essen-
tially zero), where 600 is the upper bound of the number
of predicted targets in Table 1. Nevertheless, as shown in
Additional file 4, this approach allowed for the selection

of 195 common genes for further analysis.

LINCS (gene expression profiles)

|

TD based unsupervised FE

v

i

Inferred compounds

Inferred genes

Y

Predicted targets |«

(this part is detailed in Fig. 3)

Enrichr
(Single gene perturbation)

Fig. 1 A schematic that illustrates how drug candidates and target genes are identified. Gene expression profiles retrieved from LINCS are processed
by TD-based unsupervised FE. Then, ‘inferred genes’ and ‘inferred compounds' are identified as being associated with dose dependence (this
approach is detailed in Fig. 2). Then, ‘inferred genes’ are compared with a single-gene perturbation in Enrichr. Next, ‘target proteins’ are identified
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Fig. 2 An overview of the analysis using TD-based unsupervised FE. Top left: Gene expression tensor xje of dose dependence mode (i), compound
mode (j), and gene mode (£). Top right: Using the TD, xj, was decomposed to the tensor product of core tensor Gy, k, 4, dose dependence matrix
Xk;,,» compound matrix xk, ;, and gene matrix xk; ¢. Bottom right: Because the second component of dose dependence mode shows linear dose
dependence (Additional file 2), and cumulative contribution of the core matrix up to the sixth components exceeds 95% of the total contribution,
core matrix Gy, =2k, <6x; <6 1S considered for FE. Bottom left: Outlier compounds (they correspond to ‘inferred compounds' in Table 1) and outlier

genes (they correspond to ‘inferred genes' in Table 1) are identified within the space restricted with xk, <g; and X, <6¢, respectively

One may argue that the assumption that 13 cell lines are
independent is unrealistic because there are only seven
tissues. In this case, if we assume that only seven of the 13
cell lines are independent, power should be lowered from
13 to 7. In particular, the expected number of commonly
identified targets increases to as many as two. Nonethe-
less, because this number is still much smaller than 195,
the conclusion that 195 genes should be kept for further
analyses is not likely to change.

One hundred ninety-five genes commonly identified as a
compound’s target genes show enrichment with various
biological terms

The information about these 195 commonly selected pre-
dicted targets was uploaded to g:Profiler [41], an addi-
tional enrichment analysis server, using 1595 genes as a
background dataset. Enrichr was not used in these anal-
yses because it cannot accept user-provided background
gene datasets, and employing all the identified genes
as the background is not appropriate for this method.

It was found that most of the enriched gene ontology
molecular function (GO MF) terms (the full list is avail-
able in Additional file 5) are related to protein—compound
binding-related interactions.

Multiple compounds bind to several proteins

Alvocidib, AT7519, BMS-387032, and dinaciclib, known
cyclin-dependent kinase (CDK) inhibitors, showed a sig-
nificant dose-dependent activity against the cells used in
this study (Table 2). In Table 3, CDK-related proteins
that are encoded by target genes presented in Table 1
are shown. Although not all CDK proteins were included
in the Enrichr category, ‘Single Gene Perturbations from
GEO up; several genes encoding CDK-related proteins
were identified as the targets of the compounds with the
observed dose-dependent activities in all the cell lines.
Recently, BRD4 was shown to bind to CDK inhibitors [42].
BRD4 and dinaciclib or alvocidib (flavopiridol) binding
structures can be found in the Protein Data Bank (PDB) as
PDB ID 4071 and 4070. In Table 3, all the cell lines where
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Table 1 The number of the inferred compounds and inferred genes associated with significant dose-dependent activity

Cell lines BT20 HS578T MCF10A MCF7 MDAMB231 SKBR3
Tumour Breast

Inferred genes 41 57 42 55 41 46
Inferred compounds 4 3 2 6 5 6

All compounds 110 106 106 108 108 106
Predicted targets 418 576 476 480 560 423
Cell lines A549 HCC515 HATE HEPG2 HT29 PC3
Tumour Lung Kidney Liver Colon Prostate
Inferred genes 45 46 48 54 50 63
Inferred compounds 8 5 7 2 2 9

All compounds 265 270 262 269 270 270
Predicted targets 428 352 423 396 358 439
Celllines A375

Tumour Melanoma

Inferred genes 43

Inferred compounds 6

All compounds 269

Predicted targets 421

The target genes predicted by means of the comparison with the data showing upregulation of the expression of individual genes (‘predicted targets’) are also shown. The
full list of inferred genes and predicted targets is available in Additional file 7. Inferred compounds are presented in Table 2. All compounds’ rows represent the total number
of compounds used for the treatment of each cell line

Single gene perturbation

TD based
unsupervised FE Gene A O

AuEEEEEEEEEs,
H
H
H

: : X
FaEEEEmEsEEEy o@

Fig. 3 How to infer target proteins. By means of TD-based unsupervised FE, a set of genes with the expression level alterations following the activity
of specific compounds can be inferred (‘inferred compounds’ and ‘inferred genes’ in Table 1), but a compound's target genes (blue rectangle,
‘predicted targets’ in Table 1) cannot. Nonetheless, a list of inferred gene sets can be compared with that of the single-gene perturbations taken
from Enrichr’s ‘Single Gene Perturbations category from GEO up’, enabling identification of the compound'’s target genes

spunoduwod
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Table 2 Compound-gene interactions presented in Table 1 that
significantly overlap with interactions described in two datasets
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Table 3 Genes identified as being targeted by compounds
shown to have a dose-dependent activity

Compounds (1) (2) 3) @ (5 (© ) @ (9 10) (1) (12) (13)

Genes (1) 2 B3 @ &) © @) @ (9 (001 (12) (13)

Dabrafenib

Dinaciclib

O O
x O OO
OO0 O0OO0O0OO0OO0O0

CGP-60474 0O 0

x O

x O O O
O

x O O O
O

X
X

LDN-193189 O

O
OTSSP167 - - - -

OO0 x O
\

©)
@)
©)
@)
©)

WZ-3105 - - - -

AT-7519

O OO
O O O

O
CONONONONONONGC)

BMS-387032

OO O0OO0O0
OO OO0

JNK-9L

Alvocidb O O O O O O

GSK-2126458 - -

NVP-BEZ235 O O

X
X

Torin-2

X
X

NVP-BGT226 - - - -

QL-XII-47 -

Celastrol O

A443654 ®) O

NVP-AUY922 x O

Radicicol O

For each compound in the table, the upper row: the drug2gene.com dataset was
used for comparisons [69], the lower row: the DSigDB dataset was used for
comparisons [70]. Columns represent cell lines used in the analysis: (1) BT20, (2)
HS578T, (3) MCF10A, (4) MCF7, (5) MDAMB231, (6) SKBR3, (7) A549, (8) HCC515, (9)
HATE, (10) HEPG2, (11) HT29, (12) PC3, (13) A375. O: a significant overlap between
the datasets (P < 0.05); x: no significant overlap between the datasets; —: no data;
blank: no significant dose-response relation was identified. The confusion matrix
and a full list of commonly selected genes are available in Additional file 3

CDK5RAPT O O O O
CDK9 O O
CDK4 OO O0O0O0O0O0O0O0O0O0O0OO0OO0OO0oOOo
CDKN1IB O O O O O
Ky O O O O O O O O O o O
CDKN1A O O O O O
CDK8 OO O0O0O0O0O0OO0O0OO0OO0OOoOOo
BRD4 O O O O O O O O O O
HSP9OOB1 O

Labels (1) to (13) represent the cell lines described in Table 2

BRD4 was found to represent a target gene (according to
the results shown in Table 1) are listed. Ten out of 13 cell
lines express BRD4; this result supports the finding that
BRD4 binds to CDK inhibitors.

To show that the obtained results — showing a
good correlation between protein-binding affinity of the
compounds and their activity against the cells used in
this study — are not due to my preferential consideration
of proteins that can bind to many compounds, radicicol
was additionally analysed, a compound known to have a
significant dose-dependent activity towards only one cell
line, SKBR3 (Table 2). HSP90B1 was shown to bind to
radicicol (binding structure: PDB ID 1U0Z), and although
its dose-dependent alterations have not been observed in
SKBR3 cells, they were identified in another cell line: PC3
(Table 3).

Replacing ‘Single Gene Perturbation from GEO up’ with
‘PPl Hub Proteins’

The ‘Single Gene Perturbations from GEO up’ category
can be replaced with some other criteria for further anal-
ysis. To demonstrate this strategy, the ‘Single Gene Per-
turbations from GEO up’ category was replaced with the
‘PPI Hub Proteins’ category in Enrichr, which shows a dif-
ferent interaction between genes as well. Compounds that
bind to a hub protein may affect the expression of pro-
teins that bind to that hub protein [43]. Because protein—
protein interactions (PPIs) are not directly related to gene
expression alterations, and the number of genes included
in this category is ~200, which is approximately 10-fold
lower than the number of genes included in the ‘Single
Gene Perturbations from GEO up’ category, the num-
ber of significant associations between dose-dependent
activity and alterations in gene expression and com-
pound activity obtained here was much lower (Table 4).
Moreover, by means of ‘PPI Hub Proteins, the interac-
tion between HSP90AA1 and radicicol in SKBR3 cells
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Table 4 A significant overlap demonstrated between
compound-target interactions presented in Table 1 and
drug2gene.com.

Compounds (1) (2) 3) 4 ) ©) ) B8 (9 (10) (11) (12) (13)

Dinaciclib O
CGP-60474 O O O O O O
LDN-193189 0

AT-7519 ®)
BMS-387032 O
Alvocidib O O O
NVP-BEZ235 O
Celastrol O

A443654 e @)

NVP-AUY922 O O

Radicicol O

O O
O O

©)

In this case, the ‘PPl Hub Proteins’ category in Enrichr was used. Labels (1) to (13)
represent the same cell lines as described in Table 2. The full list of confusion
matrices and commonly selected genes is available in Additional file 3

was identified, which has not been observed previously
because HSP90AA1 was absent in the ‘Single Gene Per-
turbations from GEO up’ category.

Discussion

Identification of 195 commonly selected genes is unlikely
accidental

A strong overlap that was observed between a compound’s
sets of target genes identified in different cell lines sup-
ports the suitability of the proposed method. Because as
many as 195 target genes (Additional file 4) were com-
monly identified in 13 cell lines, even though a total
number of 300—600 target genes was predicted in each cell
line, this result indicates that the method being tested is
useful for these types of analyses.

To rule out the possibility that these overlaps were
caused by non-biological factors, 50 randomly selected
genes (this is a typical number of ‘inferred genes’ in
Table 1) were also uploaded to Enrichr 100 times (Table 5).
Considering the 100 repeats, adjusted P-values less than
10~% were listed because 10™* corresponds to 1072 after
adjustment for 102 repetitions. At first, categories associ-
ated with adjusted P-vales less than 10~% were detected
only 20 times among 100 trials. In addition, only a lim-
ited number of categories was identified. Four times
among the 20 belong to a LINCS chemical perturba-
tion, LINCS_L1000_Chem_Pert_up/down; this outcome
is in some sense inevitable because 50 randomly selected
genes taken from 978 genes were tested in LINCS. Thus,
identification of these categories does not have to be
taken too seriously. The most frequently selected cate-
gory, KEA, is kinase enrichment analysis [44]. This result
is also inevitable, because 978 genes include a greater
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Table 5 Categories associated with adjusted P-values less than
10~* among 100 trials

Enrichr Categories Adjusted P-values

KEA_2013 156x107°,142x107°,138x 1072,
212 x 1072
KEA_2015 142 x 107,138 x 107>

946 x 105,137 x 107>
349 x 1077,328 x 1077
480 x 107

331 % 107°,130 x 107°

LINCS_L1000_Chem_Pert_down
LINCS_L1000_Chem_Pert_up
WikiPathways_2013
WikiPathways_2015

WikiPathways_2016 130 x 107>
GO_Biological_Process_2013 168 x 107°
GO_Biological_Process_2017 535 x 1077/
GO_Biological_Process_2017b 589 x 1070
GeneSigDB 1.16 x 107
BioCarta_2015 936 x 1076
BioCarta_2016 936 x 1076

‘Enrichr Libraries Most Popular Genes’ were selected when 50 genes randomly
selected from the total of 978 genes analysed in LINCS were uploaded to Enrichr

proportion of kinases than other genes. In any case, cat-
egories used to infer target proteins, ‘Single Gene Per-
turbations from GEO up’ or ‘PPI Hub Proteins, were not
included in Table 5. This result suggests that these over-
laps are unlikely to be caused by non-biological factors
that inevitably invalidate biological significance and pre-
vent us from obtaining genes associated with significant
adjusted P-values.

The identified compounds are biologically reliable
Compounds associated with a significant dose-dependent
cellular response represent promising drug candidates.
Such compounds are listed in Table 2, and most of the
analysed compounds show an activity toward more than
one type of cells. Considering that only 10 compounds or
fewer per cell line were identified as active, among hun-
dreds of tested compounds, this selection must be highly
cell line-independent, and these results are unlikely to
be obtained by chance; this observation corroborates the
usefulness of the proposed analysis.

Detailed assessment of individual compounds identi-
fied in the present analyses further supports the useful-
ness of the proposed approach. The results obtained for
two well-known drugs, dinaciclib and alvocidib (Table 2)
were then evaluated. Dinaciclib is a well-known cyclin-
dependent kinase (CDK) inhibitor, developed as a promis-
ing second-generation CDK inhibitor [45]. Alvocidib, also
known by its trade name Flavopiridol, represents another
CDK inhibitor and was the first such inhibitor studied in
human clinical trials [46] although it is less effective than
dinaciclib [45]. Alvocidib was shown to significantly affect
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the proliferation of primarily breast tumor cells (BT20,
HST578Tm, MCF10A, MCF7, MDAMB231, and SKBR3
cell lines); this finding is somewhat expected because alvo-
cidib was first identified as a breast cancer drug [47].
Dose-response relations were observed after application
of these two drugs to seven out of 13 cell lines stud-
ied here, indicating suitability of the present analysis. On
the other hand, dabrafenib was shown to have a dose-
dependent activity only towards A375 cells, but, because
this drug primarily targets melanoma associated with a
mutation in the BRAF gene [48], and A375 was the only
melanoma cell line included in the study, the obtained
results indicate the precision of the present analyses.

Drug candidates with a target in cancer

The usefulness of the proposed approach for identifica-
tion of novel drugs was demonstrated as well, and not
only for confirmation of the results obtained for previ-
ously analysed drugs. For example, the results of this study
revealed that NVP-BEZ235 is active against two cell lines
(Table 2). It has been shown to be a new promising drug
candidate [49], and these results were obtained on H1975
cells, a non—small cell lung cancer (NSCLC) cell line. In
the present study, the cells shown to be affected by NVP-
BEZ235 are the A549 cell line, which is an NSCLC cell
line as well, confirming the previously obtained results.
AT-7519 [50], LDN193189 [51], and OTSSP167 [52] are
thought to be potential new anti-cancer drug candi-
dates. BMS-387032 has been identified as a promising
drug candidate [53] as well, although its efficacy was
not established in subsequent studies [54]. Because these
compounds were recognized as promising in the present
study as well, this observation confirms that the proposed
methodology is applicable to the identification of promis-
ing drug candidates that have not been fully studied yet.
Taken together, these results show that this approach can
be used for confirmation of the efficacy of already studied
drugs and for the identification of novel drug candidates.
Based on the present analysis, CGP-60474 and WZ-3105
should be examined further as possible novel anti-cancer
therapeutics. Although they were shown to significantly
affect 8 cell lines here, a literature search revealed that
they have not been extensively tested. Only three stud-
ies have addressed CGP-60474 [55—57], while there are no
available reports about WZ-3105 efficacy.

One may wonder why these two compounds were
not considered seriously. One possible reason is that
they were not effective enough to treat patients as
monotherapy. Actually, Wildey et al. [57] suggested that
CGP-60474 should be tested with combinatorial drug
therapies. Although there are no studies on WZ-3105,
because our methodology fits the proposals regarding
a group of compounds, these directions, i.e., combina-
torial drug therapies, might be a promising strategy to
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make use of the drug candidates identified in the present
study.

Compounds with a significant dose-dependent activ-
ity against cancer cells have considerable protein-binding
affinity. Among the compounds listed in Table 2, alvo-
cidib, AT7519, BMS-387032, and dinaciclib were analysed
here as representative CDK inhibitors, and their protein-
binding affinity data have been further examined [54]
(see also Table 3). BRD4 was identified as a possible
compound-binding protein, while HSP90B1 was shown to
be able to bind to radicicol (Table 3). Therefore, it was
demonstrated here that the proposed analysis can iden-
tify not only frequent compound—protein binding-related
interactions but also rare interactions although perhaps
not in the same cells in which the activity of the com-
pounds was detected. Although the binding structures of
many proteins and radicicol can be found in PDB (PDB ID
2Q8I: PDK3, DLAT; 2WER: HSP82; 4EGK: HSP90AA1;
27ZBK: top6A/B; 3CGY:phoQ), because they have not been
included in the list of 1595 genes in the ‘Single Gene Per-
turbations from GEO up’ category (Additional file 4), they
were not analysed further.

Taken together, the obtained findings indicate that the
approach presented in this study can be used for identi-
fication of novel anti-cancer drug candidates, and for the
inference of possible protein—compound binding-related
interactions. One hundred and forty-six potential target
genes associated with a significant dose-dependent activ-
ity in all the analysed cell lines with no known binding-
related interactions with compounds were predicted here
and are listed in Table 2, based on the searches per-
formed either on drug2gene.com or in DSigDB (the full
list is available in Additional file 4). Therefore, it may be
worthwhile to evaluate the potential interactions between
these 146 proteins and the compounds analysed in this
study.

Superiority of TD-based unsupervised FE to conventional
methods

TD-based unsupervised FE is superior to conventional
approaches for various reasons. Although the strategy
illustrated in Fig. 2 may seem simple and efficient, to use
it effectively, a researcher needs to overcome an obsta-
cle resolved only by TD-based unsupervised FE. Namely,
the set of compounds and genes associated with a signifi-
cant dose-dependent activity must be identified. Because
only six doses of a compound were applied, while there
are millions of samples, and because there are many
observed correlations between hundreds of compounds
and ~1000 genes, the obtained results showing the com-
pound activity and the alterations of gene expression
must be strictly dose-dependent. For Pearson’s correlation
coefficient (PCC) calculations to be applied to determi-
nation of the significance of dose-dependent alterations,
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the obtained P-values must be as small as 1 x 107/
for the results to remain significant even after we take
into account multiple-comparison criteria. Nonetheless,
this criterion corresponds to obtaining PCC as large as
0.9996, which is almost impossible. In contrast, because
TD-based unsupervised FE evaluates the significance of
dose-dependent activities for compounds and genes sepa-
rately, the criteria for its application are not that strict and
a considerable number of compounds and genes can be
analysed simultaneously.

It was also shown here that different protein—compound
binding-related interactions can be identified in the
same cell types by applying distinct gene interaction
information in combination with TD-based unsuper-
vised FE (Tables 2 and 4). Thus, it was demonstrated
that TD-based unsupervised FE can successfully identify
gene—compound sets associated with significant dose-
dependent activity of the compound; this task is difficult
to accomplish by the existing methods.

Overlaps between the present results and previous
knowledge are significant but not very large

On the other hand, inconsistency in the prediction of
compound—protein interactions between this and other
studies was observed here. The results presented in the
confusion matrices in Additional file 3 reveal that the con-
sistency between previously reported compound—protein
interactions and those shown in this study is not high
although it is significant as shown in the above subsec-
tions. It is possible that the compound—protein inter-
actions detected here (but not present in the analysed
databases) have not been experimentally verified yet.
Because there are millions of potentially active com-
pounds, it is unlikely that the effects of all the compounds
used in the present analyses of the expression of 978 genes
have already been elucidated. Conversely, those interac-
tions that are found in the datasets, but have not been
detected in this study, are simply absent in either the
‘Single Gene Perturbations from GEO up’ or ‘PPI Hub
Proteins’ category of Enrichr. Therefore, because addi-
tional data may be included in these categories in the
future, these interactions may get validated. Hence, it is
likely that a small number of common compound—protein
interactions between this study and the existing data does
not indicate that the proposed approach cannot be use-
ful. To increase the consistency between these two sets
of results, either the currently missing compound—protein
interactions should be experimentally verified, or further
information on single-gene perturbations or PPIs should
be added into the databases.

This fact is also related to the reason why other perfor-
mance measures like sensitivity and limiting to top-ranked
genes are not suitable. Because genes not in Enrichr can-
not be identified as a ‘predicted target’ in Table 1, even if
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all possible candidates are considered, sensitivity cannot
be 1.0. In other words, sensitivity cannot be a useful
measure for comparison of the performance of the other
methods with the proposed method, which makes use of
Enrichr. In addition, ranking is not straightforward in this
study because gene KO experiments included in Enrichr
have been conducted on multiple cell lines. Consequently,
genes are selected if there is at least a cell line where the
‘predicted target’ is associated with an adjusted P-value
less than 0.01. The adjusted P-value attributed to genes in
other cell lines may be worse. This observation suggests
that the adjusted P-value can be used to select ‘predicted
targets’ but not to rank them.

Some performance comparisons with other methods
Readers may wonder whether the performance of TD-
based unsupervised FE can be compared with that of other
studies if they are applied to the LINCS dataset because
apparently there are many similar studies [58—60]. They
may be applicable to the LINCS dataset and may over-
come the above-mentioned drawback of the proposed
method. Nevertheless, there are substantial differences
that prevent us from directly applying these methods to
the LINCS dataset. As for Noh and Gunawan’s recent
study [58], using their methodology to detect a gene
expression alteration caused by drug treatment, Noh and
Gunawan tried to infer a transcription factor (TF) affected
by drugs, by means of Enrichr, which provides the list
of genes targeted by a TFE. In the sense that they tried
to infer a drug’s target genes by considering the coin-
cidence between a gene expression alteration caused by
drug treatment and that caused by a TF, the strategy of
the above authors has some similarities with the proposed
one. In contrast, because their methods require train-
ing sets that are missing for the LINCS dataset, direct
application of their methodology to LINCS is impossi-
ble. Although Woo et al. [59] predict target genes by
means of gene expression, they need gene-regulatory net-
works (GRNs) that correspond to a cell line in question.
Given that there are no GRNs available for the cell lines
in LINCS, Woo et al’s methodology is not directly appli-
cable to the LINCS dataset. Although Clark et al. [60]
also predict target genes on the basis of gene expres-
sion, they need Chip data, which are absent in the LINCS
dataset.

In spite of these difficulties, a question may arise
whether Woo et al’s method, DeMAND, is suitable for
the LINCS dataset because they also provided as least
a context-free-GRN, which can be used for any kinds of
datasets, although the performance deteriorates a little
if compared with a cell line-specific GRN in their study.
Nonetheless, DeMAND turned out to pose additional dif-
ficulties with application to the LINCS dataset for the
following reasons.
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1. Although DeMAND needs multiple DMSO-treated
samples that served as controls, at least triplicates
and ideally six replicates, DMSO-treated cell lines
included in LINCS have less than three (typically
only two) DMSO-treated cell lines;

2. DeMAND cannot identify genes without gene
expression profiles. This is because LINCS contains
expression profiles of only 978 genes, among which
genes encoding drug target proteins are rarely
included;

3. DeMAND cannot specify a limited number of drugs
among hundreds of drugs included in LINCS.

The methodology proposed in the present paper does
not have any of these shortcomings. As for point 1, the
proposed methodology does not require DMSO-treated
cell lines because it attempts to identify effective drugs
if there is an association with dose dependence, not via
the comparison with controls. Regarding point 2, given
that the proposed methodology attempts to identify drug
target proteins among the genes included in Enrichr,
even if they are not among the 978 genes associated
with the quantified gene expression profiles in LINCS,
these proteins can be identified. A possible objection is
that both the proposed methodology and DeMAND were
restricted because target proteins can be identified any-
way by means of a prepared list (For DeMAND, 978
genes in LINCS; for the proposed methodology, genes in
Enrichr). Although DeMAND requires more observations
for each gene expression profile, the proposed methodol-
ogy requires simple gene KO experiments that are not spe-
cific to each cell line in which gene expression profiles are
analysed. As for point 3, although we can apply DeMAND
only to drugs screened by the proposed methodology
(i.e. ‘inferred compounds’ in Table 1), because of point 1,
DeMAND cannot be applied to LINCS as is. If we use the
same DMSO-treated samples as three to six replicates for
DeMAND, because of point 2, this approach may iden-
tify a negligible number of target proteins (often none). In
this sense, in terms of application to LINCS, the proposed
methodology has obvious advantages over the existing
strategies.

Because it was found that none of the existing meth-
ods can be applied to LINCS as is, it was decided to test
TD-based unsupervised FE on their dataset instead of
the other methods’ being applied to the LINCS dataset.
Nonetheless, the proposed method, TD-based unsuper-
vised FE, is suitable only for large-scale data where more
than a hundred compounds have been tested. For the
existing methods to be compared with TD-based unsu-
pervised FE (as described below) those method will deal
with a much smaller number of drugs. Thus, good perfor-
mance of TD-based unsupervised FE is not expected. As
for Noh and Gunawan’s study, in spite of some similarities
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with the present study mentioned above, there are some
major differences too.

¢ Because Noh and Gunawan examined a connectivity
map [61] (CMAP), which typically provides one dose
density for each drug, tensor representation cannot
be implemented.

e Given that Noh and Gunawan’s methodology cannot
screen drugs, drugs of interest are pre-selected with
external information (in their case, drugs whose
targeted TFs are included in the database that they
used, STITCH [62], were selected).

Thus, direct application of the present methodology,
TD-based unsupervised FE, to their problem is not pos-
sible, but TD-based unsupervised FE was modified a
little bit so that it is suitable to their problem. First of
all, because the matrix can be regarded as a two-mode
tensor, the TD-based unsupervised FE can be applica-
ble to a CMAP dataset formally. Secondly, drug selection
processes must be omitted because the drugs were pre-
selected. Figure 4 shows a comparison of performance
between TD-based unsupervised FE after the modifica-
tion and Noh and Gunawan’s method. In brief, what they
were aiming at is the following. Firstly, they tried to rank
genes according to the magnitude of gene expression alter-
ation caused by drug treatment. Then, after they uploaded
top-ranked 100 genes to Enrichr, TFs were also ranked
on the basis of a position weight matrix from Enrichr.
Finally, the median rank of TFs that STITCH reported
as targets of drugs was computed. Their procedure was
repeated here using the modified proposed approach, and
the outcomes were compared with theirs. As shown in
Fig. 4, TD-based unsupervised FE, when applied to their
problem, showed that the performance was at least com-
parable with that of the three methods tested by Noh
and Gunawan, although superiority to the sparse simul-
taneous equation model (SSEM) and Z-score improved
relative to DeltaNet. This is possibly because TD-based
unsupervised FE was not fully adapted to the dataset
analysed by Noh and Gunawan (see Additional file 6).

Applying TD-based unsupervised FE to the data of Woo
et al. [59] is much simpler because their CP14 dataset is
formulated as a tensor. For this trial, selection of com-
pounds was not performed either, because Woo et al. [59]
considered all 14 compounds, for which they identified
154 target genes. The results are disappointing. Although
application of TD-based unsupervised FE to the CP14
dataset yielded two compounds, geldanamycin and H-7
dihydrochloride, none of the 154 target genes included in
Enrichr are targeted by either of these compounds. This
finding suggests that TD-based unsupervised FE is not
applicable to the CP14 dataset associated with 154 tar-
get genes that Woo et al. identified. (For a more detailed
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Fig. 4 A boxplot of ranks of TFs inferred by Enrichr. The numbers are median ranks. TD: TD-based unsupervised FE, DeltaNet: Noh and Gunawan,
SSEM: sparse simultaneous equation model, Z-score: Z-score-based ranking. The full list is available in Additional file 6

description of how TD-based unsupervised FE was per-
formed on their CP14 dataset, see Additional file 1).

These two examples where TD-based unsupervised FE
was applied to a small-scale dataset — on which the exist-
ing methods have been tested — definitely show that the
proposed methodology is useful only for a large-scale
dataset where more than a hundred compounds have been
analysed and screening of compounds is required. Thus,
the existing methods pose multiple difficulties with appli-
cation to LINCS as is, whereas the proposed methodology,
TD-based unsupervised FE, shows some difficulties with
small-scale datasets (to which the existing methods have
been applied). Therefore, direct comparisons between
the proposed methodology and the existing approaches
proved to be problematic. It is best to regard all these
methods as suitable for distinct situations; the existing
approaches are suited to a small-scale dataset, whereas
the proposed methodology is fine-tuned to large-scale
datasets that include much greater numbers of candi-
date compounds. In addition, the proposed methodology
does not require either control samples or comprehensive
gene expression profiles, which are not available in LINCS
associated with expression profiles of only 978 genes. In
conclusion, in spite of the unsupervised nature, TD-based
unsupervised FE is aimed at exploring a next-generation
large-scale dataset like LINCS, not a classical small-scale
dataset previously analysed.

Uselessness of other more popular drug target databases
for validation of targets

Readers may ask why I did not use more major drug
target databases, e.g., DrugBank [63] or BindingDB [64].
The reason is simply the smaller number of target pro-
teins included in these databases in comparison with
drug2gene.com or DSigDB. Table 6 shows the list of num-
bers of target proteins for the compounds considered
in this study. It is obvious that DrugBank and Bind-
ingDB include substantially smaller numbers of target
proteins for individual drug candidates than do databases
drug2gene.com and DSigDB. Because Fisher’s exact test
cannot avoid yielding larger P-values (associated with
lower statistical significance) for smaller sample sizes,
there were no reasons to employ DrugBank or BindingDB
instead of databases drug2gene.com and DSigDB.

Conclusions

The proposed method is specifically designed for large-
scale datasets (including hundreds of treatments with
compounds), not for conventional small-scale datasets.
The obtained results indicate that two compounds that
have not been extensively studied, WZ-3105 and CGP-
60474, represent promising drug candidates targeting
multiple cancers, including melanoma, adenocarcinoma,
liver carcinoma, and breast, colon, and prostate cancers,
which were analysed in this in silico study.
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Table 6 The numbers of target proteins of individual
compounds included in four databases

Compounds DrugBank  BindingDB  drug2gene.com  DSigDB
Dabrafenib 5 4 15 125
Dinaciclib — 5 67 40
CGP-60474 — 8 49 16
LDN-193189 — 17 12 19
OTSSP167 — — — 237
WZz-3105 — — — 36
AT-7519 2 8 388 30
BMS-387032 — 3 392 37
JNK-9L — 3 16 64
Alvocidib 12 31 495 —
GSK-2126458  — 5 — —
NVP-BEZ235 — 7 76 6
Torin-2 — 10 15 15
NVP-BGT226 — — — —
NVP-BGT226  — — — —
Celastrol — 6 — 89
A443654 — 3 177 104
NVP-AUY922  — 3 5 —
Radicicol 5 9 — 136

Materials and Methods

Gene expression profiles

All the gene expression profiles analysed in this study were
downloaded from Gene Expression Omnibus (GEO) [65]
(ID GSE70138). This super-series is composed of multiple
sub-series across which a single cell line is often dis-
tributed. GSEXXXXX_series_matrix.txt.gz files included
in the Series Matrix File(s) of each sub-series were down-
loaded; XXXXX stands for the GEO ID of each sub-series.
Briefly, cell lines in which significant effects were observed
24 h after the treatment with six different doses of the
investigated compounds were selected, and the maximum
of 13 cell lines could be used. Gene expression levels,
determined in one type of cells, after application of the
same doses of compounds were averaged. If the applied-
dose data were partially unavailable, these analyses were
removed because TD does not permit any missing values.
The numbers of compounds tested on each cell line are
listed in Table 1, in the ‘all compounds’ category. Detailed
information about the sub-series and cell lines used in the
study is available in Additional file 1.

TD-based unsupervised FE

In Fig. 2, an overview of the analysis is shown, and the
procedure is described step-by-step in the following sub-
sections.
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Gene expression profiles obtained for each cell line were
treated as a three-mode tensor with dose-dependence
mode, compound mode, and gene mode. x;;¢ is the £th
expression of a gene after the treatment with the jth
compound at the concentration of i. The number of dif-
ferent doses applied (i = 1,...,6) and the analysed genes
(¢ = 1,...,978) are fixed regardless of the cell line.
The number of compounds used for the cell treatments
varies among the cell lines, from 100 to 300 (‘all com-
pounds’ category in Table 1). Higher-order singular value
decomposition (HOSVD) was independently applied to
the gene expression tensor in each cell line, and core
tensors, Gp, iksski = 1,...,6,kp = 1,...,],k3 =
1,...,978, were obtained, where J is the number of com-
pounds tested on each cell line, as well as three singular-
value matrices corresponding to dose dependence xg, ;,
compounds xx,;, and genes x, ¢, which satisfy x;;; =
D kikoks Gk ko,ksXky i%ky %ks,0- FOr more details, see Addi-
tional file 1.

Selection of the dose dependence mode for FE

The components coinciding with dose-dependent alter-
ations had to be determined, to specify the dose depen-
dence component used for FE. Here, it was observed that,
regardless of the cell line analysed, the second compo-
nent of the dose dependence mode always represents an
almost linear dose dependence (Additional file 2). There-
fore, it was decided to employ core tensors Go, ks, as
those applied to the selection of components used for FE.
To identify Gy, i, used for FE, Gox,x, associated with
exceptionally large absolute values had to be determined.
To identify these Gy, t,s, independent normal distribu-
tions of Gy, k, were assumed. Afterwards, P-values were
attributed to all Gy, x, values using a x? distribution:

2
P(ka, k3) = Py |:> (ngkié@) ] , where o is the standard

deviation of Gy, k;» and P,[> x] is cumulative proba-
bility that the argument is greater than x assuming a x>
distribution with one degree of freedom. P-values were
then adjusted using the Benjamini—-Hochberg (BH) cri-
terion [66], which was successfully applied to P-values
obtained by PCA-based unsupervised FE [11-31] and
(ka, k3) associated with the adjusted P-values lower than
0.01 was selected. This approach typically resulted in
~1,000 (ko,k3)s (the section ‘Cell lines and GEO files’
in Additional file 1). Because this number is too large
to be used for FE, and the cumulativze contribution of

2k <6k <6k <6(Gk1,k2,k3)
1220222782 2/, exceeds 0.95 for

Gk1§6:k2§6,k3§6 =
2 ky ko ks (Gk1 ks
almost all cell lines, it was decided to employ (k1 = 2,k <
6, k3 < 6) components for FE. Nonetheless, in the case of

PC3 cells, (ki = 2,ky < 8,ks < 8) as an exception was
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applied to FE because the eighth component was found to
have non-negligible contributions in this cell line.

FE

To identify the genes and compounds associated with
a significant dose-dependent activity, it was assumed
that xx,<e; and xg,<¢¢ follow independent normal dis-
tributions and P-values were attributed to the jth
compound and the fth gene using a yx? distribution,

er i\ 2 e 0\ 2

P; =P, |:> Zk2§6<?22") i|andP@ =P, |:> Zk3§6 (%) :|
where oy, and oy, are standard deviations of x, ; and xy, s,
respectively. For PC3 cells, ko < 8 and k3 < 8 were used
in the above equation. P, [ > x] is the cumulative proba-
bility that the argument is greater than x assuming a x>
distribution with eight degrees of freedom for PC3 cell
lines and with six degrees of freedom for other cell lines.
P; and P; were adjusted by means of the BH criterion,
and compounds and genes associated with the adjusted
P-value lower than 0.01 were selected as those associated
with a significant dose-dependent cellular response. The
obtained results are listed as ‘inferred genes’ and ‘inferred
compounds’ in Table 1.

Conversion of prob IDs to the gene symbols

Because genes are identified using prob ID in a gene
expression profile, whereas Enrichr accepts only gene
symbols, prob IDs were converted to gene symbols
using a gene ID conversion tool in DAVID [67, 68].
The conversion table is presented in Additional file 7.

The analysis of genes obtained using TD-based
unsupervised FE

As illustrated in Fig. 3, in addition to the list of genes
obtained by TD-based unsupervised FE, a list of genes
for identification of the association between genes show-
ing dose-dependent alterations in the expression (‘inferred
genes’) and genes targeted by the compounds shown to
have a dose-dependent activity (‘predicted targets’) was
required as well. Therefore, genes selected by TD-based
unsupervised FE were uploaded to Enrichr, and down-
loaded the list of genes found in the ‘Single Gene Per-
turbations from GEO up’ category. The genes showing
adjusted P-values lower than 0.01 were identified as the
target genes of the analysed compounds (Table 1; ‘pre-
dicted targets’). The ‘Single Gene Perturbations from GEO
up’ category was replaced with the ‘PPI Hub Proteins’ cat-
egory to obtain the results presented in Table 4, by means
of the same protocols.

Previously identified compound-protein interactions

Two resources were selected: drug2gene.com [69] and
DSigDB [70]. On the drug2gene.com website, if no anal-
ysed compounds could be found, then InChiKey [71]
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was used. Genes for which a ‘no binding’ response was
obtained were excluded. Often, more than one data source
came up when DSigDB was used. In these cases, data
taken from LINCS [72] were generally used. For AT-7519
and BMS-387032, KINOMEscan data were employed
because DSigDB does not include data from LINCS for
these compounds. Only D2 (kinase inhibitors) were used.

Evaluation of the significance of coincidence

To evaluate statistical significance of the coincidence
of the interactions identified here and those previously
reported, Fisher’s exact test was carried out. The num-
ber of background genes is required, but ‘Single Gene
Perturbations from GEO up’ and ‘PPI Hub Proteins’ do
not include all genes, and not all genes are reported
in other studies. Nonetheless, it was assumed that the
number of background genes was 20,000, which is consid-
ered an approximate number of human genes [73]. Data
with P-values less than 0.05 were considered significant.
Contingency tables are available in Additional file 3.

Retrieving adjusted P-values attributed to ‘predicted
targets’ by Enrichr

A set of ‘inferred genes’ as gene symbols was uploaded to
Enrichr. Then, ‘Single Gene Perturbations category from
GEO up’ or ‘PPI Hub Proteins’ were referenced, and the
resulting table is downloaded. Then, genes associated with
adjusted P-values less than 0.01 in at least one of included
cell lines were identified as ‘predicted targets:.

Statistical analysis

All the calculations were performed in the R software
(version 3.3.0) [74]. Gene expression profiles downloaded
from GEO were loaded into R using the read.table
function. HOSVD analyses were conducted by means of
the hosvd function in the R package rTensor. P-values
were computed using the pchisqg function and adjusted
by the p.adjust function with the ‘BH’ option. Fisher’s
test was carried out by means of the fisher.test
function.

Additional files

Additional file 1: Supporting Information with the Fig. S1 legend. (PDF
184 kb)

Additional file 2: Fig. S1 Second dose-dependent singular value vectors.
(PDF 19 kb)

Additional file 3: The detailed full list of the data in Table 2. (XLSX 22 kb)
Additional file 4: 1595 unique genes are listed in Enrichr. (XLSX 31 kb)
Additional file 5: Details of the GO term enrichment list. (XLSX 132 kb)

Additional file 6: A comparison with the dataset analysed by Noh and
Gunawan. (XLSX 9 kb)

Additional file 7: Conversion of prob IDs to gene symbols. (XLSX 45 kb)
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