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Abstract

Background: Molecular surveillance and outbreak investigation are important for elimination of hepatitis C virus
(HCV) infection in the United States. A web-based system, Global Hepatitis Outbreak and Surveillance Technology
(GHOST), has been developed using Illumina MiSeq-based amplicon sequence data derived from the HCV E1/E2-
junction genomic region to enable public health institutions to conduct cost-effective and accurate molecular
surveillance, outbreak detection and strain characterization. However, as there are many factors that could impact
input data quality to which the GHOST system is not completely immune, accuracy of epidemiological inferences
generated by GHOST may be affected. Here, we analyze the data submitted to the GHOST system during its pilot
phase to assess the nature of the data and to identify common quality concerns that can be detected and
corrected automatically.

Results: The GHOST quality control filters were individually examined, and quality failure rates were measured for
all samples, including negative controls. New filters were developed and introduced to detect primer dimers, loss of
specimen-specific product, or short products. The genotyping tool was adjusted to improve the accuracy of subtype
calls. The identification of “chordless” cycles in a transmission network from data generated with known laboratory-
based quality concerns allowed for further improvement of transmission detection by GHOST in surveillance settings.
Parameters derived to detect actionable common quality control anomalies were incorporated into the automatic
quality control module that rejects data depending on the magnitude of a quality problem, and warns and guides
users in performing correctional actions. The guiding responses generated by the system are tailored to the GHOST
laboratory protocol.

Conclusions: Several new quality control problems were identified in MiSeq data submitted to GHOST and used to
improve protection of the system from erroneous data and users from erroneous inferences. The GHOST system
was upgraded to include identification of causes of erroneous data and recommendation of corrective actions to
laboratory users.
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Background
Epidemiological surveillance has been a cornerstone of
all disease elimination programs [1–7] to measure inci-
dence, prevalence, and effectiveness of intervention.
Molecular surveillance is the collection of genomic in-
formation, from which usable public health information
can be inferred, and constitutes a powerful complement
to traditional epidemiological surveillance [8]. In out-
break settings, molecular surveillance provides key infor-
mation for initial identification, source attribution, and
accurate identification of the cases associated with a dis-
ease cluster.
Due to the recent development of effective treatment

options [9, 10], an elimination strategy for the hepatitis
C virus (HCV) has been developed in the United States
[7] and worldwide [11]. Molecular surveillance is recom-
mended by the National Academies of Science, Engin-
eering, and Medicine as a key tool in addressing the
dynamics and historical reconstruction of transmission
that will inevitably vary by population, location, and
behaviors [7].
The Global Hepatitis Outbreak and Surveillance Tech-

nology (GHOST) is a system that integrates amplicon-
based next-generation sequencing, bioinformatics and
information technologies for molecular surveillance and
outbreak investigation. It accepts Illumina MiSeq-
sequence data, and produces a network graph showing
which cases are linked by a common viral strain [12].
The GHOST distance method for transmission detection
was developed on End-Point Limited Dilution (EPLD)
data and validated on the 454 sequencing technology
[13]. A number of computational approaches were ex-
plored for scaling this method to larger datasets [14],
and some of these approaches were implemented into
the GHOST system as it was adapted to the Illumina
MiSeq sequencing technology [12].
Owing to significant complexity of sequence data gath-

ering and interpretation requiring specialized molecular
epidemiological and bioinformatics expertise, molecular
surveillance of infectious diseases is mainly a subject of
academic research and practiced generally by most tech-
nically advanced institutions, which hinder a broad ap-
plication of molecular surveillance to public health
interventions. GHOST is designed to reduce this com-
plexity and to enable users to conduct efficient and ac-
curate molecular surveillance and outbreak investigation
irrespective of the users’ level of expertise. An overriding
goal throughout system development was simplicity of
use and interpretation. The nature of bloodborne trans-
mission events, as well as distance methods used to de-
tect them are quite well suited to a simple and intuitive
network graph. However, behind the simplistic interface
is a complex computational and mathematical system
that can be influenced by irregular input and induced to

produce misleading results. Thus, control of quality of
the data and information generated is fundamentally
important for the system’s practical application in
public health.
Here, a common set of problem sources was identified

by observing submissions made to GHOST, solutions to
fielded support requests, and statistical examination of
the data. Analyses were used to improve and upgrade
the quality assurance module in GHOST to provide a
clear path of corrective action for GHOST users when
laboratory issues are encountered, and in so doing,
bridge the bioinformatics gap between laboratory se-
quencing production and actionable epidemiological
information.

Methods
The data used in this quality control study were submit-
ted by participating public health institutions in the
GHOST projects initial pilot phases between 11/27/2016
and 8/22/2017 and contained sequences from 3181 sam-
ples originating from 173 GHOST quality control (QC)
tasks. Samples were deduplicated by computing the
CRC32 hashing algorithm for all sample files and dis-
carding samples for which the CRC32 values were
already found. The GHOST sequencing protocol speci-
fies the inclusion of at least one negative control sample
in each library sequenced. Negative control samples
were discriminated from the positives (non-negative
controls) using a pre-defined set of strings commonly
observed to search sample names.
Using a high performance distributed cluster, all sam-

ples were re-executed for standardization with the most
recent GHOST version. The version included a new fil-
ter to measure the existence of primer dimers or
non-specifc product. For each read pair, this filter in-
spects the forward read for the forward primer sequence
using the same search parameters as the filter dedicated
to primer verification and read orientation. Once found,
the reverse complement is searched for the reverse pri-
mer sequence. If the distance between the forward and
reverse primer sequences is found to be less than the
threshold set in the filter dedicated to read length
(185 bp), the pair is discarded. If both primer sequences
are not found, the process is repeated with the reverse
read. Descriptions of all other filters are detailed in
Longmire et al., 2017 and briefly described in Table 1.
The GHOST command line switch “failed_precious” was
used to signal continued processing of samples that
would normally cease processing if falling below any
predefined threshold set by default on some filters.
The GHOST QC task has two phases of filtering. The

first phase operates on all read pairs in a sample. The
second phase only operates on a subset of 20,000 read
pairs randomly selected from those that passed all filters
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in the first phase. In both phases, each filter operates in
succession using only read pairs passing the previous
filter, or the number of reads selected in the random
sample which is 20,000 (Fig. 1, Table 1) [12].With these
filter phases in mind, a Python script was created to

normalize each filter result to a percentage with respect
to the number of reads that entered the filter. Welch’s
t-test for difference of means with unequal variance was
used to calculate the difference in filter result means be-
tween sample groups using the Holm-Sidak method to

Table 1 GHOST QC filters listed in order of execution. All filters except for “Primer dimer” are discussed in detail in Longmire et al., [12]

Order Filter name Description Position relative to
N = 20,000 random
sampling

1 Ambiguity After standard demultiplexing, read pairs are filtered out if a read has more than three N’s. Before

2 Primer dimer Checks for the existence of primer dimers or non-specifc product. For each read
pair, this filter inspects the forward read for forward primer using the same search parameters as
the filter dedicated to primer verification and read orientation. Once found, the reverse complement
is searched for the reverse primer. If the distance between the forward and reverse primers is found
to be less than the threshold set in the filter dedicated to read length (185 bp), the pair is discarded.
If both primers are not found, the process is repeated with the reverse read.

Before

3 Short read Read pairs are filtered out if either read has a length less than 185 bp. Before

4 MID mismatch Each identifier on both forward and reverse reads are examined and the pair is discarded if either
identifier is found to not be an exact match to a given list of valid identifiers.

Before

5 Minority MID Pairs containing valid identifiers are discarded if they are not a constituent of the majority identifier
tuple. If 25% or more of the read pairs are found to contain valid identifiers that are not the majority
tuple, the entire sample is discarded from analysis without further processing.

Before

6 Primer verification Primer sequence patterns are searched for in the forward and reverse reads. Primer sequences are
located in each read using fuzzy matching and only allow substitutions ≤2, insertions (relative to
the reference) ≤ 1, deletions (relative to the reference) ≤ 1, and a combination of total errors ≤3.
Read pairs where either primers cannot be found are discarded. The primer locations are used to
orient the reads into the uniform orientation.

After

7 Casper mismatch Read pairs are unified into a single error-corrected sequence using the Casper error correction
method with a quality threshold of 15, k-mer length of 17, k-mer neighborhood of 8, and minimum
match threshold of 95%. Overlap fitness is evaluated by the classical Hamming Distance. The overlap
corresponding to the highest ratio of correct positions to overlap length is selected, with the longest
overlap being preferred in the event of there being more than one overlap with equal ratios.

After

8 Nonsense Merged sequences are discarded if a nonsense-free reading frame cannot be found. After

Fig. 1 Sankey diagram of read pair allocation for all samples after deduplication. Arrow thickness represents the proportion of read pairs removed
by the filter step. The “not sampled” step represents those reads not used after 20,000 read pair random sampling
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control for multiple testing as implemented in the
Python package Statsmodels [15].
The GHOST Laboratory Standard Operating Proced-

ure includes multiple intentionally negative samples as
controls. We use the characteristics of these samples to
produce a classifier to recognize negative samples. Users
occasionally introduce unintentional negative samples
through mislabeling or loss of amplification product.
Deduplicated samples were partitioned into 4 categories:
Passing Non-Negative (PNN), Failing Non-Negative
(FNN), Passing Negative (PN), and Failing Negative (FN)
and evaluated for Quality Control task filtering perform-
ance (Table 2). The 3 filters found to be most significant
to detection of negative characteristics were used to em-
ploy an exhaustive grid search from 0 to 100% for each
variable with 0.5% increments. The Gini impurity index
of the PNN set in comparison to the combined FN and
PN sets was evaluated for each variable combination,
and the index with the minimum index was determined
to be the best fit.
The current GHOST subtyping classification uses blast

algorithms to query a predetermined curated reference
set, and the best hit is selected. If the best match is of
poor quality (bit score-derived log probability > − 135), it
is disregarded and labeled with the “unmatched” subtype
along with sequences with no match [12]. Subtype
classification for all deduplicated samples was analyzed
to determine the distance between the first and
second-best hits. For those with 2 or more matches, the
ratio of best to the second-best hit was measured to
determine the precision of the call using the bit score-
derived log probabilities as the hit values.
Logistic regression analysis was applied multiplexing

level and flowcell type to determine any statistical rela-
tionship to QC task passage. Finally, all deduplicated
data from the collection time period were analyzed to-
gether for linkage to determine if any unexpected links
exist suggesting intra- or inter-run contamination. Due
to the computational load and durational requirements,
the linkage analysis was broken into four separate tasks,
and a python script was used to compile the outputs
into a single unified result. The Gephi v0.9.1 software
[16] was used to visualize linkage from all sample data
sets. This study is an effort to control quality though
system-level parameter optimization and protocol-specific

feedback. No personally identifiable information (PII) is
contained herein.

Results
Overview of production data
The 173 GHOST submissions containing sequence data
from 3181 samples were analyzed. Deduplication re-
duced the sequence data to 2087 originating samples.
312 (14.95%) failed the GHOST QC task, and 112
(5.37%) were identified as negative control samples;
22.32% (25/112) of negative control samples passed the
QC task.

Primer-dimer filter performance
Comparison of mean filter results for all samples with
that of mean filter levels before the primer dimer filter
was implemented revealed that most read pairs previ-
ously being discarded by the read length filter were
absorbed by the primer-dimer filter (Fig. 2). Distribution
of discarded pair sample percentages for the
primer-dimer filter were concentrated at levels close to
zero, however, sample percentages were evenly dispersed
at low level throughout the spectrum (Fig. 3). It was ob-
served that at ~ 80% and above, the primer-dimer filter
rate is associated with elevation in the rate of pairs dis-
carded by the read length, MID mismatch, and minority
MID filters (Fig. 4).

Filter performance
The primer dimer and MID mismatch filters displayed
significantly higher means of PN over PNN (Fig. 5).
After values were normalized with respect to the num-
ber of read pairs entering the filter, the primer dimer,
MID mismatch, and Casper mismatch filters all show
significant elevation in PN with respect to PNN (Fig. 6).
Welch’s t-test on filter results and sequence statistics

between the PNN and FNN sets showed no statistically
significant evidence for rejection of the null hypothesis.
Comparison between PN and PNN showed statistically
significant differences in means for maximum read
length, and all filters, particularly the primer dimer, best
MID mismatch, and minority MID filters with p-values
of 2.919E-67, 1.447E-66, and 1.667E-58 respectively
(Table 3). When applied to the PN and FN, only the mi-
nority MID and best MID mismatch filters showed stat-
istical significance with p-values of 1.590E-24 and
1.447E-4 respectively (Table 3).

Discrimination of negatives
At the minimal Gini impurity index of 0.0089, the re-
sultant thresholds were 0.785, 0.865, 0.155 for the pri-
mer dimer, MID mismatch, and minority MID filters,
respectively, with an accuracy of 0.9910, f1-score of
0.9289, an excluded proportion of 0.0516, TP = 98

Table 2 Deduplicated data partitioned into 4 categories

Failing non-negative 225

Passing non-negative 1750

Failing negative 87

Passing negative 25

Total 2087
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(0.9899) and TN = 1554 (0.9911). This threshold com-
bination identifies 5.9% of the combined PNN, PN,
and FN as putative negatives or samples with loss of
product (Fig. 7). Application of the 3-threshold com-
bination to the FNN set categorizes 69.0% (290/420)
as negative or loss of product. Applying any 2 of the
3 filters used in the 3-threshold combination resulted
in missed negative calls in all cases; however, when

applying only the primer dimer and minority MID fil-
ters, the missed negative calls were minimal (Fig. 8).
Application of these two thresholds only to the FNN
resulted in 66.4% categorized as a negative or loss of
product (279/420). Calculation of the minimal Gini
impurity index using only the primer dimer and mi-
nority MID filters yielded thresholds of 0.785 and
0.11 respectively with an accuracy of 0.9850, f1-score

Fig. 2 Performance of primer dimer filter. a) Mean values of filters before the introduction of the primer dimer filter. b) Mean value of filters after
introduction of the primer dimer filter

Fig. 3 Histogram of primer dimer filter normalized values. Normalization is calculated with respect to the number of read pairs entering into
the filter
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of 0.8804, an excluded proportion of 0.0330, TP = 92
(0.94850) and TN = 1550 (0.98730).

Genotyping
For subtype classification, out of the 11,538,371 unique
sequences evaluated from the 2087 samples, 323,862
(2.81%) had no subtype match, majority (n = 10,093,688;
87.58%) had only one subtype match, 1,111,483 (9.63%)

had 2 subtype matches, and 9338 had 3 subtype
matches. None had 4 or more subtype matches. For
those with ≥2 matches, a majority of log probability ra-
tios of the best match divided by the second-best match
were found to have values between 8 and 18 (Fig. 9).
1,118,938 (9.70%) sequences had a corresponding ratio
less than 2, of which 1,118,754 (99.98% of those with ra-
tio < 2) exclusively involved subtypes of genotype 1, 179

Fig. 4 Scatter plots of the primer dimer filter compared against 3 other filters

Fig. 5 Mean values (before normalization) of all GHOST QC task filters with respect to the 4 mutually exclusive sample sets
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exclusively involved subtypes of genotype 2, and 5 in-
volved hits between 3a and either 1a or 1b. (Table 4).
Sequences unable to be genotyped were tallied from

all samples submitted to GHOST; 828 of the 2087
(39.7%) samples had a total frequency of > 0. For 65
samples, unmatched was the dominant genotype cat-
egory, with dominance for a genotype category within a
sample being defined as having the highest total fre-
quency of sequences.
Of all 2320 subtype classifications made in all samples,

406 (17.5%) were non-dominant, and 1914 (82.5%) were
dominant. The relative prevalence (prevalence ratio) of
the subtype was calculated by the ratio of total frequency
of the subtype divided by the total frequency of the
dominant subtype (Fig. 10). The prevalence ratios had a
mean of 0.113264 and a median of 0.008815.

Influences on depth
Multiplexing level and flowcell type are the primary fac-
tors in defining sequencing depth. All libraries used for
sequencing were paired-end using the Illumina MiSeq
Reagent Kits v2 (500 cycles), v2 nano (500 cycles), and
v3 (600 cycles) with the multiplexing level ranging from
8 to 96 samples per run. Applying logistic regression to
either kit type or multiplex level to determine the effect
on QC task passage yielded no statistical support to-
wards a correlation.

Linkage network of all samples
All samples passing QC tasks to-date were evaluated to-
gether in linkage analysis to check for cross-site linkage
or any other type of anomaly (Fig. 11). Non-linking
nodes were removed for clarity as well as all samples
that originate from libraries created artificially using
stock sera (Fig. 12). The network was visually dominated

by a large irregular and asymmetric cluster. It was found
that this cluster represented a project with multiple
quality impairing issues including sample collection,
handling, and known mistakes in library preparation. A
type of particularly unusual feature was observed in this
cluster – a set of nodes comprising a closed linkage
cycle such that all edges between nodes in the cycle are
a part of the cycle, and no other edges exist between
nodes in the cycle that are not part of the cycle itself.
This type of cycle is called a “chordless cycle”. Owing to
the aforementioned problems, the sample set containing
these cycles was removed to observe the linkage
remaining (Fig. 13).

Discussion
Beyond a molecular surveillance system
The properties of the GHOST system allow one to de-
tect and monitor HCV outbreaks and guide intervention
using molecular techniques. Therefore, this system can
be categorized as a variation of a cyber-molecular sur-
veillance system for the detection of HCV transmission
events. With many systems, there is an implied inde-
pendent relationship between the validity of the testing
techniques and the quality of the input and correspond-
ing output, which is typically the responsibility of the in-
vestigator performing the test. This partition of
responsibility gives rise to the so-called Garbage-In-
Garbage-Out model and presents an unacceptable sce-
nario for the GHOST system because it allows for the
potential introduction of false results, misspent effort,
and faulty downstream analyses and surveillance activ-
ities. It is for these reasons that we have endeavored to
add multiple layers of automatic quality control to the
GHOST system. These layers include: i) automatic cur-
ation, ii) identification and elimination of erroneous

Fig. 6 Boxplots of filter distributions after normalization for all deduplicated samples

Sims et al. BMC Bioinformatics 2018, 19(Suppl 11):358 Page 7 of 67



Table 3 Welch’s test for mean comparison of means

Comparison Filter t p-value Corrected p-value Reject

P vs F Primer dimer 2.485304 3.220E-02 7.210E-01 FALSE

P vs F Ambiguity −2.64516 8.258E-03 2.999E-01 FALSE

P vs F Short read 1.227051 2.478E-01 9.995E-01 FALSE

P vs F MID mismatch 1.721249 1.159E-01 9.828E-01 FALSE

P vs F Minority MID 1.491232 1.666E-01 9.949E-01 FALSE

P vs F Primer verification 0.318833 7.561E-01 1.000E + 00 FALSE

P vs F Casper mismatch 2.09018 6.284E-02 9.033E-01 FALSE

P vs F Nonsense 0.600825 5.611E-01 1.000E + 00 FALSE

P vs F raw pairs passed −1.65813 1.279E-01 9.875E-01 FALSE

P vs F r1_maxlength 0.027582 9.785E-01 1.000E + 00 FALSE

P vs F r2_maxlength 0.027582 9.785E-01 1.000E + 00 FALSE

P vs F r1_numseqs 0.496099 6.303E-01 1.000E + 00 FALSE

P vs F r2_numseqs 0.496099 6.303E-01 1.000E + 00 FALSE

P vs F r1_minlength −2.61235 2.243E-02 6.055E-01 FALSE

P vs F r2_minlength −1.40858 1.889E-01 9.972E-01 FALSE

P vs F r1_gc 0.9154 3.810E-01 1.000E + 00 FALSE

P vs F r2_gc 1.115745 2.897E-01 9.999E-01 FALSE

P vs F r1_qual −0.7403 4.759E-01 1.000E + 00 FALSE

P vs F r2_qual −0.22578 8.259E-01 1.000E + 00 FALSE

PN vs PNN Primer dimer −20.708 2.919E-67 0.000E + 00 TRUE

PN vs PNN Ambiguity −3.81125 1.589E-04 7.125E-03 TRUE

PN vs PNN Short read −9.98183 3.000E-21 0.000E + 00 TRUE

PN vs PNN MID mismatch −20.5454 1.447E-66 0.000E + 00 TRUE

PN vs PNN Minority MID −18.9948 1.667E-58 0.000E + 00 TRUE

PN vs PNN Primer verification −6.14462 1.853E-09 9.082E-08 TRUE

PN vs PNN Casper mismatch −14.2144 3.668E-39 0.000E + 00 TRUE

PN vs PNN Nonsense −6.44656 3.119E-10 1.559E-08 TRUE

PN vs PNN raw pairs passed 15.95968 1.747E-47 0.000E + 00 TRUE

PN vs PNN r1_maxlength 3.883107 1.138E-04 5.446E-03 TRUE

PN vs PNN r2_maxlength 3.883107 1.138E-04 5.446E-03 TRUE

PN vs PNN r1_numseqs 2.021773 4.358E-02 8.161E-01 FALSE

PN vs PNN r2_numseqs 2.021773 4.358E-02 8.161E-01 FALSE

PN vs PNN r1_minlength 0.927906 3.538E-01 1.000E + 00 FALSE

PN vs PNN r2_minlength −0.5458 5.854E-01 1.000E + 00 FALSE

PN vs PNN r1_gc −0.26695 7.896E-01 1.000E + 00 FALSE

PN vs PNN r2_gc −0.90928 3.635E-01 1.000E + 00 FALSE

PN vs PNN r1_qual 0.559492 5.760E-01 1.000E + 00 FALSE

PN vs PNN r2_qual 3.245425 1.234E-03 5.290E-02 FALSE

PN vs FN Primer dimer −1.03201 3.207E-01 9.999E-01 FALSE

PN vs FN Ambiguity −1.51352 1.333E-01 9.881E-01 FALSE

PN vs FN Short read −1.47375 1.586E-01 9.944E-01 FALSE

PN vs FN MID mismatch −5.29945 1.447E-04 6.634E-03 TRUE

PN vs FN Minority MID −13.2917 1.590E-24 0.000E + 00 TRUE

PN vs FN Primer verification −2.51412 1.338E-02 4.321E-01 FALSE
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data, iii) error diagnostics, iv) automatic reporting of ab-
normalities, v) identification of the error causes, and vi)
suggested course of action for abnormality mitigation.

Filter observations
Elevations in read pairs discarded by the Casper mis-
match and primer dimer filters reflect two very common
issues affecting samples or entire runs – poor PHRED
qualities and inadequate purification or loss of product

in the library preparation, respectively. Both issues exist
on a spectrum that permeate a significant proportion of
data submitted and should not warrant rejection when
levels are in moderation because the GHOST system is
adept in filtering the affected data. However, it would be
beneficial to warn the user when either of these filter
percentages rise to a moderate level, so that the labora-
torian may take corrective action in subsequent testing.
Therefore, a warning is displayed for samples with pri-

mer dimer filter percentages that have surpassed 0.3681

Table 3 Welch’s test for mean comparison of means (Continued)

Comparison Filter t p-value Corrected p-value Reject

PN vs FN Casper mismatch −1.91524 7.643E-02 9.381E-01 FALSE

PN vs FN Nonsense −0.52093 6.037E-01 1.000E + 00 FALSE

PN vs FN raw pairs passed 2.537808 2.448E-02 6.290E-01 FALSE

PN vs FN r1_maxlength 0.388275 7.045E-01 1.000E + 00 FALSE

PN vs FN r2_maxlength 0.388275 7.045E-01 1.000E + 00 FALSE

PN vs FN r1_numseqs 0.79751 4.400E-01 1.000E + 00 FALSE

PN vs FN r2_numseqs 0.79751 4.400E-01 1.000E + 00 FALSE

PN vs FN r1_minlength −1.71001 9.675E-02 9.686E-01 FALSE

PN vs FN r2_minlength −0.98698 3.430E-01 1.000E + 00 FALSE

PN vs FN r1_gc 0.433694 6.711E-01 1.000E + 00 FALSE

PN vs FN r2_gc 0.353036 7.286E-01 1.000E + 00 FALSE

PN vs FN r1_qual −0.67196 5.144E-01 1.000E + 00 FALSE

PN vs FN r2_qual 0.15547 8.790E-01 1.000E + 00 FALSE

P pass, F fail, PN passing negative, PNN passing non-negative, FN failing negative

Fig. 7 Scatter plot showing samples in categories PNN, FN, and PN. Box shows the application of the three threshold combination using
minimization of Gini impurity index
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demarcating 95% of PNN data in the percentage of read
pairs discarded (Table 5). Fig. 4 shows that as percentage
surpasses approximately 80%, other filters also begin to
show elevations in the percentage discarded, indicating a
problem that may transcend purification issues. It was
also observed that the primer dimer, MID mismatch,

and minority MID filters all showed a significant differ-
ence in means in the comparison of PN and PNN. We
found that primer dimer and minority MID filters alone
with thresholds of 0.785 and 0.11, respectively, per-
formed nearly as well in discrimination of negative sam-
ples from passing samples with only a 0.006 difference
in accuracy from the 3 thresholds derived from all three
filters. Given that there is a known occurrence of some
negative controls that were either mislabeled or contam-
inated, it’s not known which set of thresholds actually
performs better at discriminating true negatives or losses
of product from standard samples. Furthermore, it can
be reasoned that because the Illumina sequencing

Fig. 8 Breakdown of data categorizations using parameters from the three filter threshold combination. Top row shows histograms of each of
the three filters. Bottom row shows results of using any two of the filters alone

Fig. 9 Histogram of the ratio of bit score-derived log probabilities of
best to second-best subtype matches of the sequences in all
deduplicated samples submitted to GHOST. Solid line indicates the
cutoff ratio of 2, with the area under the curve to the left of the
cutoff representing unique sequences that are classified only at the
genotype level

Table 4 Sequence counts for unique sequences found to have
a ratio of first to second-best hit scores under 2

major minor count proportion

1a 1c 704,704 0.057086

1b 1c 407,112 0.032979

1a 1b 3548 0.000287

1b 1a 3390 0.000275

2a 2c 172 1.39E-05

2c 2a 7 5.67E-07

3a 1a 3 2.43E-07

1b 3a 2 1.62E-07

Sims et al. BMC Bioinformatics 2018, 19(Suppl 11):358 Page 10 of 67



technology is such a powerful tool with respect to se-
quencing depth and sensitivity, in the absence of product
one might see either an amplification of trace cross-
contamination indicated by the elevated rates in the mi-
nority MID filter, or an amplification of trace amounts
of short products not intended to be amplified, indicated
by elevated rates in primer-dimer filter, or both. The role
of the MID mismatch filter is not immediately clear.
Therefore, the 2-threshold test using the primer dimer
and minority MID filters is employed to label a sample
as either a negative or product loss and exclude it from

analysis results. The user is notified of the sample classi-
fication (Table 5).
Lastly, we observed that in some cases, after ran-

dom sampling, read pairs were significantly reduced
due to excessive read removal by either a particular
filter or combination of filters for reasons that are
not readily apparent. We previously determined that
that linkage results can be reliably recovered when
subsampling at a level of 10,000 read pairs [12]. We

Fig. 10 Histogram of prevalence ratios for all non-dominant subtypes where prevalence ratio is defined as the total frequency of the subtype
divided by the total frequency of the dominant type

Fig. 11 All deduplicated samples submitted to GHOST, including
artificially created panel verification samples and non-linking
samples. Node and link colors were arbitrarily assigned to clusters

Fig. 12 All links found in GHOST. Nodes representing samples
artificially created for panel verifications by state pilot participants
were removed, along with non-linking samples. Box encloses a
chordless cycle. Node and link colors were arbitrarily assigned
to clusters
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introduce a final check that rejects samples contain-
ing < 10,000 residual reads after all other filters have
completed (Table 5). This filter would reject 17.9%
(313/1750) of the PNN samples and 27.3% (3/11) of
the PN samples.

Chordless cycles
In the contaminated linked cluster referenced in
Fig. 11, multiple subsets of the cluster contain a
chordless cycle. This type of occurrence would not
likely be a naturally occurring transmission event ex-
cept in the cases of i) multiple infections, ii) a
multitude of unsampled individuals comprising a
much more complex underlying network, or iii) con-
vergent evolution. The detection of convergence is,
however, highly implausible for the sample size ana-
lyzed in this study.
Given that it is known that there were issues in the

collection, storage, and handling of the material sources
for these samples, and a known contamination event in
library preparation using these material sources, we be-
lieve these instances to be an artifact of false linkage
caused by laboratory contamination. To flag future simi-
lar events, an automatic check for chordless cycles is
conducted within GHOST graphical outputs, and those
found are reported as an anomaly to be further investi-
gated (Table 5).

Genotyping caveats
Sequences in samples that cannot be classified as a sub-
type could be an indication of multiple issues. One sce-
nario would be the emergence of a new strain that is not
in our reference database. In high risk populations, it is
possible that a chimeric strain could arise signaling un-
usual transmission rates or patterns. Other causes could
be technical in nature, owing to the cleaning and linking
algorithms, or to an unusual event in the library prepar-
ation. In each of these cases, we would want to be aware
of this occurrence, and we have classified the existence
of sequences of an undetermined subtype as an anomaly
to be recorded in the QC task report (Table 5).
Because of the uncertainty of distinguishing some

HCV strains that belong to different subtypes of the
same genotype using the HCV genomic region encoding
E1/E2 junction applied in GHOST [12, 13], the genoty-
per was adjusted to only classify at the genotype level if
the ratio of the log probabilities between the best and
second-best log matches is less than 2. This threshold is
somewhat arbitrary, however, we feel it provides a mod-
erate level of confidence at the price of a relatively mod-
est level of exclusivity as illustrated in Fig. 9.
Non-dominant subtypes with low frequencies relative

to the dominant subtype were found to be common, and
likely arise mostly from minor contamination. A filter in
the Analysis task already exists that restricts linkage be-
tween sequences of samples when the maximum fre-
quency is below a threshold (currently 10).

Future directions
The utmost data quality is difficult to achieve because of
unclear criteria for such a task. In GHOST, the major
criterion for QC is accuracy of public health information
generated by the system. In its current version, the
GHOST QC module controls data errors affecting the
identification of transmission links among HCV strains.
However, addition of new analytical models for other
pathogens or for the detection of other parameters of
HCV infection important for public health, such as re-
cent infection, sensitivity to drugs, disease severity, etc.,
may significantly change QC requirements and opens
new directions for research. With the continuing appli-
cation of GHOST in different epidemiological settings
by many users, we expect accumulation of sufficient
data to improve further QC using automatically up-
datable models specifically calibrated for each MiSeq
run and user.

Conclusions
GHOST, a novel technology, can also face unique chal-
lenges as it is being routinely used. Initially, many of
these challenges can be difficult to approach due to
many unknown factors of HCV infection and multitude

Fig. 13 All links found in GHOST with removal of nodes
representing samples artificially created for panel verifications by
state pilot participants and nodes representing samples associated
with a project with known quality control issues. Non-linking
samples removed. Node and link colors were arbitrarily assigned
to clusters
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of potential experimental artefacts; however, piloting of
the technology enabled the identification of several new
QC problems affecting the GHOST performance and ac-
curacy. New QC models developed here improved pro-
tection of the system and users from erroneous data and
inaccurate inferences. GHOST was upgraded to include
new functions for the identification of causes of errone-
ous data and recommendation of corrective actions to
laboratory users to facilitate evolution of the entire sys-
tem towards becoming an autonomous expert system
for guiding public health interventions.
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