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Abstract

Background: The haplotype assembly problem for diploid is to find a pair of haplotypes from a given set of aligned
Single Nucleotide Polymorphism (SNP) fragments (reads). It has many applications in association studies, drug design,
and genetic research. Since this problem is computationally hard, both heuristic and exact algorithms have been
designed for it. Although exact algorithms are much slower, they are still of great interest because they usually output
significantly better solutions than heuristic algorithms in terms of popular measures such as the Minimum Error
Correction (MEC) score, the number of switch errors, and the QAN50 score. Exact algorithms are also valuable because
they can be used to witness how good a heuristic algorithm is. The best known exact algorithm is based on integer
linear programming (ILP) and it is known that ILP can also be used to improve the output quality of every heuristic
algorithm with a little decline in speed. Therefore, faster ILP models for the problem are highly demanded.

Results: As in previous studies, we consider not only the general case of the problem but also its all-heterozygous
case where we assume that if a column of the input read matrix contains at least one 0 and one 1, then it corresponds
to a heterozygous SNP site. For both cases, we design new ILP models for the haplotype assembly problem which aim
at minimizing the MEC score. The new models are theoretically better because they contain significantly fewer
constraints. More importantly, our experimental results show that for both simulated and real datasets, the new model
for the all-heterozygous (respectively, general) case can usually be solved via CPLEX (an ILP solver) at least 5 times
(respectively, twice) faster than the previous bests. Indeed, the running time can sometimes be 41 times better.

Conclusions: This paper proposes a new ILP model for the haplotype assembly problem and its all-heterozygous
case, respectively. Experiments with both real and simulated datasets show that the new models can be solved within
much shorter time by CPLEX than the previous bests. We believe that the models can be used to improve heuristic
algorithms as well.
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Background
Humans are diploid, i.e. their chromosomes except the
sexual male ones consist of two copies, one inherited from
the mother and the other inherited from the father. Most
positions of a pair of chromosomes are formed of the same
nucleotide. Based on International Hapmap Consortium
2007, the difference between two chromosomes of an indi-
vidual or population is one among 1000 nucleotides [1–4].
If this difference is statistically meaningful (at least it is
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different in 5 percent of people) the site is called single
nucleotide polymorphism (SNP). Most of SNPs are bi-
allelic, i.e. two of the four possible nucleotides appear in
almost all the population. The alleles with high frequency
are called major and coded into 0, and the alleles with low
frequency are called minor and coded into 1 [5]. There are
also sites whose nucleotides of the two copies of a chro-
mosome are identical among all population. Such sites are
ignored and SNPs are listed sequentially. The result is a
binary string and is called the haplotype.

Haplotypes have many applications in prediction of dis-
eases [6]; association studies [7–9], and drug design [10].
Unfortunately, the presence of sequencing errors makes
it difficult and expensive to experimentally examine a
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single chromosome. This has motivated researchers to
design algorithms for obtaining haplotypes from aligned
reads. To deal with errors when looking for the best
reconstruction of haplotypes, we have to fix an objective
function for evaluating candidate haplotypes and solve
an optimization problem (called the haplotype assembly
problem). Many different objective functions have been
proposed, including Minimum Fragment Removal (MFR),
Minimum SNP Removal (MSR), Longest Haplotype
Reconstruction (LHR), Minimum Implicit SNP Removal
(MISR), Minimum Implicit Fragment Removal (MIFR),
MEC [11, 12], and Maximum Fragments Cut (MFC) [13].
Of special interest among the proposed functions is MEC,
which aims at minimizing the total number of conflicts
(errors) between the reads and the constructed haplo-
types. MFC is another interesting function. However,
Chen et al. [14] found out that optimizing MEC leads to
better output haplotypes than MFC (in terms of popu-
lar measures such as the number of switch errors and the
QAN50 score).

As one can expect, the problem of minimizing MEC
is NP-hard even for gapless reads [12, 15]. This has
motivated researchers to design both heuristic and exact
algorithms for the problem. Wang et al. [16] designed
a branch-and-bound algorithm to solve the problem to
optimality. But due to the exponential complexity of
their algorithm, they proposed a genetic algorithm for
large scale problems. Using Sanger sequencing technol-
ogy, Levy et al. [17] introduced the first diploid genome
sequence of an individual human, referred as HuRef,
and proposed a greedy heuristic method for concatenat-
ing the reads with minimum conflicts. Although their
method is fast, it becomes inaccurate when errors are
present in reads. A heuristic method (called Fast Hare)
was proposed in [18]. He et al. [19] introduced a dynamic-
programming algorithm with the complexity of O(2kmn),
where k is the length of the longest read, m is the num-
ber of reads, and n is the total number of SNPs in the
haplotypes. Their algorithm works well when k ≤ 15.
However, when k is large, they have to model the prob-
lem as a MaxSAT problem, which should be solved by
a MaxSAT solver. In comparison to dynamic program-
ming, Fast Hare is much faster and more accurate. The
complexity of Fast Hare is O(n log n + mn), where n
and m are the number of fragments and SNPs, respec-
tively. Bansal et al. [20] introduced a software package
(named HapCUT), in which the algorithm tries to min-
imize the MEC score by iteratively computing max-cuts
in graphs derived from the sequenced fragments. Bansal
et al. [21] developed a Markov chain Monte Carlo algo-
rithm (called HASH). Both HASH and HapCut work
well in practice, but may not find optimal haplotypes.
Mousavi et al. [22] developed an improved maximum like-
lihood model which solves the problem approximately.

They also showed that the maximum likelihood model is
approximated by the MEC model when the minor allele
frequencies are ignored from the model and in this way
provides a theoretical support for the MEC model despite
some criticisms against it [13]. Bonizzoni et al. [23] pro-
vided new results on the fixed-parameter tractability and
approximability of MEC and showed that MEC is fixed-
parameter tractable (FPT) when parameterized by the
number of corrections; moreover, on “gapless” instances,
it is also FPT when parameterized by the length of the
fragments. Ahn et al. [24] developed a probabilistic frame-
work and a sequential Monte Carlo algorithm (called
ParticleHap), which employs a deterministic sequential
Monte Carlo algorithm that associates SNPs with haplo-
types by exhaustively exploring all possible extensions of
the partial haplotypes. Das et al. [25] formulated the prob-
lem as a semi-definite program and using the low rank
of the underlying solution, solved it fast and with high
accuracy. Rhee et al. [26] surveyed the development of
computational haplotype determination methods.

Chen et al. [27] introduced a novel approach via which
we can solve the problem to optimality. Their algorithm
proceeds as follows. First, we reduce the size of the input
read matrix and further partition the problem into a
number of independent smaller problems whose optimal
solutions can be combined into an optimal solution of the
original problem. To solve each smaller problem, they for-
mulate it as an ILP problem and use a fast ILP solver (such
as CPLEX and GUROBI) to solve it. With their approach,
they succeed in finding optimal haplotypes for the difficult
HuRef dataset on a single PC within 31 h in total.

When solving the haplotype assembly problem, we usu-
ally make the all-heterozygous assumption which assumes
that if a column of the input read matrix contains at least
one 0 and one 1, then it corresponds to a heterozygous
SNP site. It is well known that the all-heterozygous
assumption is correct for most columns in the read
matrix but it may be incorrect due to errors in reads. So,
it is natural to consider the general case of the problem,
where we do not make the assumption. The general case
is much harder than the all-heterozygous case, because
it allows many more candidate haplotypes. Nonetheless,
Chen et al. [27] show that their ILP-based approach to
the all-heterozygous case can be generalized to solve
the general case as well. In particular, they show that
even in the general case, we can solve the HuRef dataset
(except a single subproblem for the 15th chromosome)
on a single PC within a total of 12 days. For conve-
nience, we refer to their model for the all-heterozygous
(respectively, general) as OldModelA (respectively,
OldModelG).

To the best of our knowledge, Chen et al.’s approach
[27] leads to the previously fastest algorithm for opti-
mally solving the problem. However, their program can
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take hours or even days for difficult instances. Hence, it is
of great interest if we can design better ILP models that
lead to significant speed-up of Chen et al.’s approach. In
this paper, we come up with such models for both the
all-heterozygous and the general cases. The new models
are theoretically better because they contain significantly
fewer constraints. More importantly, our experimental
results show that for both simulated and real datasets,
the new model for the all-heterozygous (respectively, gen-
eral) case can usually be solved via CPLEX (a popular ILP
solver) at least 5 times (respectively, twice) faster than
the previously best models. Indeed, the running time can
sometimes be 41 times better. The real datasets we use
are HuRef [17] and MP1 [28], while the simulated dataset
is Geraci’s dataset [29] and Chen et al.’s Simu95_MP1 [14].

One may argue that exact algorithms are much slower
than heuristic algorithms for difficult instances. How-
ever, exact algorithms are still of great interest for the
following reasons. First, as found out in [14], exact algo-
rithms usually output significantly better solutions than
heuristic algorithms in terms of popular measures such
as the MEC score, the number of switch errors, and the
QAN50 score. Secondly, exact algorithms can be used
to witness how good a heuristic algorithm is. Thirdly,
as found out in [14], ILP models of the problem can
be used to improve the output quality of every heuris-
tic algorithm with a little decline in speed. Thus, better
ILP models also lead to faster improvement of heuristic
algorithms.

Methods
One method for obtaining haplotype information is to
collect genotype data from an individual. Genotype data
indicate information of the set of alleles at each locus,
but it is not known on which chromosome a particular
allele occurs [30–32]. Other methods are based on the
data of shotgun sequence assembly [12, 21, 33]. Given a
reference genome sequence and a set of reads contain-
ing sequences of both chromosomes, first of all we need
to align the reads to the reference genome. We keep only
those columns with multiple (different) values in the align-
ment. These columns are called the heterozygous sites and
correspond to alleles that differ between chromosomes.
For each heterozygous site, the major and minor alleles
are coded into 0 and 1, respectively. In this way, we obtain
aligned SNP fragments as the input data. Then, we need to
partition the aligned SNP fragments into two sets accord-
ing to certain objective function and further determine a
haplotype from each set via the majority rule. Formally,
the input data is a matrix A whose rows and columns cor-
respond to reads and SNP sites, respectively. Each entry
of A is a 0, 1, or ‘−’, where ‘−’ is called a gap and either
corresponds to missing data or serves as gaps to connect
disjoint parts of the read. The first (respectively, last) entry

of a read that is not a ‘−’ is called the start (respectively,
end) position of the read. Note that there may exist gaps
between the start and the end positions of a read. The
following is an example read matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1 0 0 − −
1 1 − 0 − −
0 1 − 1 0 1
− 0 1 − − −
1 − − 0 1 −
1 0 1 − − 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Each row of A can be viewed as a ternary string of length
m over {0, 1, −}, where m is the number of columns in A.
For two ternary strings s and t of the same length, we use
d(s, t) to denote the total number of positions at which
both characters of s and t belong to {0, 1} but they dif-
fer. Given A, the haplotype assembly problem requires the
computation of a pair (h, h′) of binary strings with length
m whose MEC score, i.e.,

∑
r min{d(h, r), d(h′, r)} is mini-

mized, where r ranges over all rows of A. For convenience,
we call (h, h′) an optimal pair of haplotypes, and say that
r is aligned to h (respectively, h′) if d(h, r) ≤ d(h′, r)
(respectively, d(h′, r) < d(h, r)).

In the all-heterozygous case of the problem, it is
required that h and h′ are complementary, i.e., each letter
of h differs from the letter of h′ at the same position, while
in the general case, a letter of h can equal the letter of h′
at the same position. The general case is more difficult
to solve than the all-heterozygous case because it allows
many more candidate haplotypes. To make the general
case less difficult, Chen et al. [27] prove a lemma which
can be used to find intrinsically heterozygous columns, i.e.,
those columns in A at which the letters of h and h′ can be
assumed to differ without altering the optimal MEC score.
Of course, if a column in A is not known to be intrinsi-
cally heterozygous, then the column may be heterozygous
or homozygous, i.e., the letters of h and h′ at the column
may differ or equal.

Reductions
Suppose that A is the given read matrix. Clearly, we can
assume that each row of A contains at least one 0 or 1
because otherwise the row can be deleted without chang-
ing the problem. We want to reduce the problem for A
to smaller problems whose optimal solutions can be com-
bined into an optimal solution of the original problem.
The following three reductions are obvious and have been
used before [27]. The first reduction removes all monotone
columns, i.e., those columns in which at least one of 0 and
1 does not appear. Note that if one does not want such a
column to be deleted by our program because the column
is known to be heterozygous, then he/she should simply
add a new read which starts and ends at the column so that
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both 0 and 1 appear in the column. The second reduction
is called Singleton-Removal; it removes all rows in which
only one column is not a ‘−’ and the column is known to
be (intrinsically) heterozygous. Let m be the number of
columns in A. The third reduction first finds the set S of
all i ∈ {1, . . . , m − 1} such that for each read r in A, either
the end position of r is in the j-th column for some j ≤ i
or the start position of r is in the k-th column for some
k ≥ i+1; and then partition A into |S|+1 (smaller) matri-
ces by cutting A vertically at the border between the i-th
and the (i+1)st columns for each i ∈ S. Each of the |S|+1
matrices is called a block.

Consider a block B of A. Let m̂ be the number of
columns in B. Chen et al. [27] suggests a less obvious
reduction which can be used to reduce the problem for B
to even smaller problems whose optimal solutions can be
combined into an optimal solution of the problem for B.
More specifically, the reduction first finds the set T of all
i ∈ {2, . . . , m̂ − 1} such that (1) the i-th column of B is
known to be (intrinsically) heterozygous and (2) for each
read r in B, either the end position of r is in the j-th column
with j ≤ i or the start position of r is in the k-th column
with k ≥ i. The reduction then modifies B by making a
copy of the i-th column and putting it immediately after
the original i-th column for all i ∈ T . In this way, the mod-
ified B has |T | more columns than the original B. Finally,
the reduction splits the modified B into |T | + 1 (smaller)
matrices by cutting the modified B vertically at the bor-
der between the original i-th column and its duplicate for
each i ∈ T . Each of the |T |+1 matrices is called a reduced
block. If T �= ∅, then the Singleton-Removal reduction
can be applied to each reduced block B̃ because at least
one read in B̃ starts and ends at the same (intrinsically)
heterozygous column which is the first or the last column
of B̃.

Solving reduced blocks via ILP
Let B̃ be a reduced block. We want to formulate the hap-
lotype assembly problem for B̃ as an ILP problem in both
the general and the all-heterozygous cases. Towards this
end, we first need a definition. Two columns c and c′ of
B̃ are complementary if c can be obtained from c′ by flip-
ping each 0 (respectively, 1) in c′ to a 1 (respectively, 0).
The point is that if c and c′ are complementary, then there
must exist an optimal pair (h, h′) of haplotypes for B̃ such
that the letters of h (respectively, h′) at c and c′ are com-
plementary and hence it suffices to compute the letter
of h (respectively, h′) at c instead of computing the let-
ters of h (respectively, h′) at both c and c′. Clearly, similar
observations hold for identical rows and columns in B̃.
Based on these observations, we first partition the rows
(respectively, columns) of B̃ into disjoint sets so that the
rows (respectively, columns) in the same set are identi-
cal (respectively, identical or complementary) but no two

rows (respectively, columns) in different sets are, and then
for each set S in the partition, modify B̃ by merging the
rows (respectively, columns) in S into a single row (respec-
tively, column) to which we assign the multiplicity |S|.

Suppose that we have modified B̃ as above. Let p
(respectively, q) be the number of rows (respectively,
columns) in B̃. For each i ∈ {1, . . . , p}, let wi be the multi-
plicity of the i-th row of B̃. Similarly, for each j ∈ {1, . . . , q},
let cj be the multiplicity of the j-th column of B̃.

The all-heterozygous case
For each integer i with 1 ≤ i ≤ p, let Ji,0 (respectively, Ji,1)
be the set of integers j ∈ {1, 2, . . . , q} such that the i-th
entry in the j-th column of B̃ is a 0 (respectively, 1). Since
we want to compute an optimal pair (h, h′) of complemen-
tary haplotypes for B̃, we introduce a binary variable xj for
the j-th column whose value is supposed to be 1 if and only
if the j-th bit of h is a 1 (and hence the j-th bit of h′ is a 0).
Moreover, we introduce a binary variable zi for the i-th
row of B̃ whose value is supposed to be 1 if and only if the
i-th row of B̃ is aligned to h. Furthermore, we introduce a
binary variable ti,j for the i-th row and the j-th column of B̃
whose value is supposed to be 1 if and only if the i-th row
of B̃ is aligned to h but its j-th entry is different from that
of h. Then, we claim that the problem of finding an opti-
mal pair (h, h′) of complementary haplotypes for B̃ has the
following ILP formulation (denoted by NewModelA):

Minimize
p∑

i=1
wi

∑
j∈Ji,0

cj
(
1 − xj − zi + 2ti,j

)

+
p∑

i=1
wi

∑
j∈Ji,1

cj
(
xj − zi + 2ti,j

)

Subject to
∀1≤i≤p ∀j∈Ji,0 xj + zi − 1 ≤ ti,j

∀1≤i≤p ∀j∈Ji,1 zi − xj ≤ ti,j

all the variables xj, zi, ti,j : binary

To prove the above claim, we first show that for each
i ∈ {1, . . . , p} and each j ∈ Ji,0,

(
1 − xj − zi + 2ti,j

) = 1
if and only if either zi = 1 and xj = 1, or zi = 0 and
xj = 0. Note that zi = 1 and xj = 1 together mean that
the i-th row is aligned to h but its j-th entry is different
from that of h, while zi = 0 and xj = 0 together mean
that the i-th row is aligned to h′ but its j-th entry is dif-
ferent from that of h′. In Table 1, we enumerate the four
possible values of (xj, zi). As can be seen from the table, ti,j
also happens to be the minimum binary variable to bound
xj + zi − 1 from above. Now, since the coefficient of ti,j in
the objective function is positive, minimizing the objective
function leads to minimizing ti,j and hence the condition
xj + zi − 1 ≤ ti,j (together with the fact that ti,j is binary)
guarantees that ti,j is indeed as defined.
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Table 1 The value of
(
1 − xj − zi + 2ti,j

)
for j ∈ Ji,0

xj zi xj + zi − 1 ti,j
(
1 − xj − zi + 2ti,j

)

0 0 − 1 0 1

0 1 0 0 0

1 0 0 0 0

1 1 1 1 1

To finish the proof of the claim, it suffices to show that
for each i ∈ {1, . . . , p} and each j ∈ Ji,1,

(
xj − zi + 2ti,j

) = 1
if and only if either zi = 1 and xj = 0, or zi = 0 and xj = 1.
The proof is similar to the case where j ∈ Ji,0; the main
difference is to use Table 2.

We next compare NewModelA against Chen et al.’s Old-
ModelA [27] in terms of the numbers of variables and
constraints. OldModelA is as follows:

Minimize
p∑

i=1
wi

∑
j∈Ji,0

cj
(
1 − xj − zi + 2ti,j

)

+
p∑

i=1
wi

∑
j∈Ji,1

cj
(
zi + xj − 2ti,j

)

Subject to
∀1≤i≤p ∀j∈Ji,0∪Ji,1 ti,j ≤ zi

∀1≤i≤p ∀j∈Ji,0∪Ji,1 ti,j ≤ xj

∀1≤i≤p ∀j∈Ji,0∪Ji,1 ti,j ≥ zi + xj − 1
all the variables xj, zi, ti,j : binary

The number of variables in NewModelA is p+q+pq and
so is that in OldModelA. On the other hand, the number
of constraints in NewModelA is

∑p
i=1(|Ji,0| + |Ji,1|), while

that in OldModelA is 3
∑p

i=1(|Ji,0| + |Ji,1|). So, NewMod-
elA has significantly fewer constraints. Thus, it looks very
promising that NewModelA can almost always be solved
in much shorter time. In a later section, we will see that
this is actually the case.

The general case
For each integer i with 1 ≤ i ≤ p, let Ji,0 (respectively,
Ji,1) be the set of integers j ∈ {1, 2, . . . , q} such that the

Table 2 The value of
(

xj − zi + 2ti,j
)

for j ∈ Ji,1

xj zi zi − xj ti,j
(

xj − zi + 2ti,j
)

0 0 0 0 0

0 1 1 1 1

1 0 − 1 0 1

1 1 0 0 0

j-th column of B̃ is known to be intrinsically heterozy-
gous and the i-th entry in the j-th column of B̃ is a 0
(respectively, 1). Further let Ji,0 (respectively, Ji,1) be the
set of integers j ∈ {1, 2, . . . , q} such that the j-th col-
umn of B̃ is not known to be intrinsically heterozygous
and the i-th entry in the j-th column of B̃ is a 0 (respec-
tively, 1). As in the all-heterozygous case, we introduce a
binary variable zi for the i-th row of B̃ whose value is sup-
posed to be 1 if and only if the i-th row of B̃ is aligned
to h. For each j ∈ {1, . . . , q} such that the j-th column
of B̃ is known to be intrinsically heterozygous, we intro-
duce a binary variable xj whose value is supposed to be 1
if and only if the j-th bit of h is a 1 (and hence the j-th
bit of h′ is a 0). Moreover, for each j ∈ {1, . . . , q} such
that the j-th column of B̃ is not known to be intrinsically
heterozygous, we introduce two binary variables xj and yj,
where the value of xj (respectively, yj) is supposed to be 1
if and only if the j-th bit of h (respectively, h′) is a 1. Fur-
thermore, we introduce a binary variable ti,j for the i-th
row and the j-th column of B̃ whose value is supposed
to be 1 if and only if the i-th row of B̃ is aligned to h
but its j-th entry is different from that of h. In addition,
if the j-th column of B̃ is not known to be intrinsically
heterozygous, we further introduce a binary variable ui,j
whose value is supposed to be 1 if and only if the i-th row
of B̃ is aligned to h′ but its j-th entry is different from
that of h′.

Then, we claim that the problem of finding an opti-
mal pair (h, h′) of haplotypes for B̃ has the following ILP
formulation (denoted by NewModelG):

Minimize
p∑

i=1
wi

∑
j∈Ji,0

cj
(
1 − xj − zi + 2ti,j

)

+
p∑

i=1
wi

∑
j∈Ji,1

cj
(
xj − zi + 2ti,j

)

+
p∑

i=1
wi ·

∑

j∈Ji,0∪Ji,1

cj
(
ti,j + ui,j

)

Subject to
∀1≤i≤p ∀j∈Ji,0∪Ji,0

xj + zi − 1 ≤ ti,j

∀1≤i≤p ∀j∈Ji,1∪Ji,1
zi − xj ≤ ti,j

∀1≤i≤p ∀j∈Ji,0
yj − zi ≤ ui,j

∀1≤i≤p ∀j∈Ji,1
1 − yj − zi ≤ ui,j

all the variables xj, yj, zi, ti,j, ui,j : binary

To prove the above claim, we first show that for each
i ∈ {1, . . . , p} and each j ∈ Ji,0, ti,j = 1 if and only if zi = 1
and xj = 1, while ui,j = 1 if and only if zi = 0 and yj = 1.
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Note that zi = 1 and xj = 1 together mean that the i-
th row is aligned to h but its j-th entry is different from
that of h, while zi = 0 and yj = 1 together mean that
the i-th row is aligned to h′ but its j-th entry is differ-
ent from that of h′. In Table 3, we enumerate the eight
possible values of (xj, yj, zi). As can be seen from the
table, ti,j (respectively, ui,j) also happens to be the mini-
mum binary variable to bound xj + zi − 1 (respectively,
yj − zi) from above. Now, since the coefficients of ti,j and
ui,j in the objective function are positive, minimizing the
objective function leads to minimizing ti,j and ui,j and
hence the condition xj + zi − 1 ≤ ti,j (respectively, yj −
zi ≤ ui,j) together with the fact that ti,j (respectively, ui,j)
is binary guarantees that ti,j (respectively, ui,j) is indeed
as defined.

Continuing the proof of the claim, we next show that
for each i ∈ {1, . . . , p} and each j ∈ Ji,1, ti,j = 1 if
and only if zi = 1 and xj = 0, while ui,j = 1 if and
only if zi = 0 and yj = 0. The proof is similar to
the case where j ∈ Ji,0; the main difference is to use
Table 4.

Now, by the analysis in the all-heterozygous case, the
claim holds.

We next compare NewModelG against Chen et al.’s Old-
ModelG [27] in terms of the numbers of variables and
constraints. OldModelG is as follows:

Minimize
p∑

i=1
wi

∑
j∈Ji,0

cj
(
1 − xj − zi + 2ti,j

)

+
p∑

i=1
wi

∑
j∈Ji,1

cj
(
zi + xj − 2ti,j

)

+
p∑

i=1
wi ·

∑

j∈Ji,0

cj
(
yj + ti,j − ui,j

)

+
p∑

i=1
wi ·

∑

j∈Ji,1

cj
(
1 − yj − ti,j + ui,j

)

Table 3 The value of
(

ti,j + ui,j
)

for j ∈ Ji,0

xj yj zi xj + zi − 1 yj − zi ti,j ui,j
(

ti,j + ui,j
)

0 0 0 − 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 − 1 1 0 1 1

1 1 0 0 1 0 1 1

0 0 1 0 − 1 0 0 0

0 1 1 0 0 0 0 0

1 0 1 1 − 1 1 0 1

1 1 1 1 0 1 0 1

Table 4 The value of
(

ti,j + ui,j
)

for j ∈ Ji,1

xj yj zi zi − xj 1 − yj − zi ti,j ui,j
(

ti,j + ui,j
)

0 0 0 0 1 0 1 1

1 0 0 − 1 1 0 1 1

0 1 0 0 0 0 0 0

1 1 0 − 1 0 0 0 0

0 0 1 1 0 1 0 1

0 1 1 1 − 1 1 0 1

1 0 1 0 0 0 0 0

1 1 1 0 − 1 0 0 0

Subject to
∀1≤i≤p ∀j∈Ji,0∪Ji,1∪Ji,0∪Ji,1

ti,j ≤ zi

∀1≤i≤p ∀j∈Ji,0∪Ji,1∪Ji,0∪Ji,1
ti,j ≤ xj

∀1≤i≤p ∀j∈Ji,0∪Ji,1∪Ji,0∪Ji,1
ti,j ≥ xj + zi − 1

∀1≤i≤p ∀j∈Ji,0∪Ji,1
ui,j ≤ zi

∀1≤i≤p ∀j∈Ji,0∪Ji,1
ui,j ≤ yj

∀1≤i≤p ∀j∈Ji,0∪Ji,1
ui,j ≥ yj + zi − 1

all the variables xj, yj, zi, ti,j, ui,j : binary

Let I be the set of all j ∈ {1, . . . , q} such that the j-
th column of B̃ is known to be intrinsically heterozygous.
The number of variables in NewModelG is p + 2q − |I| +∑p

i=1
(|Ji,0| + |Ji,1| + 2|Ji,0| + 2|Ji,1|

)
and so is that in Old-

ModelG. Moreover, the number of constraints in New-
ModelG is

∑p
i=1

(|Ji,0| + |Ji,1| + 2|Ji,0| + 2|Ji,1|
)
, while that

in OldModelG is
∑p

i=1
(
3|Ji,0| + 3|Ji,1| + 6|Ji,0| + 6|Ji,1|

)
.

So, NewModelG has significantly fewer constraints. Thus,
it looks very promising that NewModelG can almost
always be solved in much shorter time. In a later section,
we will see that this is actually the case.

Results and discussion
To evaluate the efficiency of our new models and com-
pare them against the previous bests, we have imple-
mented both our models and Chen et al.’s models [27]
with CPLEX-v12.6.3 (an ILP solver by IBM). In our exper-
iments, we use both real datasets and simulated datasets
among which some include hard instances, because we
expect that the new and the old models show significant
difference in performance for hard instances. Since solv-
ing hard instances takes long time and we want to speed
up our experiments, we use two Linux (x64) desktop PCs
in our experiments. One PC has Intel Xeon E5-2687W v4
CPU (3.00 GHz, 48 threads) and 252 GB RAM, while the
other has Intel i7-3960X CPU (3.30 GHz, 12 threads) and
32 GB RAM. The former is used to solve real datasets,
while the latter is used to solve simulated datasets. To
guarantee that we can finish the experiments within a rea-
sonable amount of time, we put a time limit of 1 day on
the running time of CPLEX for each reduced block.
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CPLEX is always fast enough to find a solution within
the time limit, albeit it is not necessarily optimal. However,
in general, there is no guarantee on the MEC score of the
solution when CPLEX fails to optimally solve within the
time limit. Nonetheless, for the datasets used in our exper-
iments, we will explicitly state (in tables) the (total) MEC
scores of solutions found by CPLEX even when CPLEX
fails to optimally solve one or more reduced blocks within
the time limit. As will be seen from the tables, the MEC
scores are quite close to the optimal when CPLEX fails.

Results for real datasets
The real datasets used in our experiments are HuRef [17]
and MP1 [28]. Both of them have been extensively used
in previous studies to compare previous methods against
each other [14, 17, 19–21, 27].

The HuRef dataset
This dataset is known to contain very hard instances.
Indeed, He et al.’s program [19] fails to completely solve
the all-heterozygous case of the problem for HuRef after
taking 15 h on a PC cluster. Chen et al.’s program [27]
based on ILP was the first to completely solve the all-
heterozygous case of the problem for HuRef on a desk-
top PC. It turns out that our new models lead to much
shorter time than Chen et al.’s models [27]. More specif-
ically, Table 5 compares the performance of CPLEX on
our new ILP models against that on Chen et al.’s old ILP
models [27].

We first focus on the all-heterozygous case. As can be
seen from Table 5, CPLEX can solve NewModelA 9 times
faster than OldModelA on average. Indeed, CPLEX failed
to optimally solve OldModelA for one reduced block of
Chromosome 15 within the time limit. If we exclude Chro-
mosome 15, then CPLEX can solve NewModelA 12 times
faster on average. In particular, for Chromosome 22,
CPLEX can solve NewModelA 41 times faster.

We next focus on the general case. As can be seen from
Table 5, CPLEX can solve NewModelG twice faster on
average. Indeed, CPLEX failed to optimally solve New-
ModelG for one reduced block of Chromosome 15 within
the time limit, while CPLEX failed to optimally solve
OldModelG for a total of two reduced blocks of Chromo-
somes 15 and 22 within the time limit. If we exclude the
two chromosomes, then CPLEX can solve NewModelG 8
times faster on average. In particular, for Chromosome 1,
CPLEX can solve NewModelG 11 times faster.

The MP1 dataset
MP1 is the most complete haplotype-resolved genome
generated by fosmid pool-based next generation sequenc-
ing. The completeness of its phasing allows the deter-
mination of the molecular haplotype pairs for 81% of
all autosomal protein-coding genes and provides the

Table 5 Comparing the performance of CPLEX on our new ILP
models against that on Chen et al.’s models [27] for HuRef

All-heterozygous Case General Case

Opt Old New Old New

MEC Time Time MEC Time MEC Time

19665 7301 818 16853 80665 16853 7280

14647 1418 218 12618 1532 12618 374

10688 1221 156 9296 1236 9296 276

11537 1421 202 9958 1481 9958 351

10558 1550 211 9195 1770 9195 358

9884 1344 150 8637 1389 8637 270

11246 1362 182 9782 1504 9782 345

9800 2104 280 8480 3042 8480 848

9264 882 107 8051 956 8051 229

9815 1568 237 8550 1772 8550 431

8179 1156 169 7027 1193 7027 269

8213 921 135 7136 891 7136 235

5811 741 114 5090 788 5090 163

5844 545 70 5086 571 5086 145

9310 87425 11006 8130 89135 8093 87551

8235 1487 209 7176 1883 7176 445

6535 681 96 5739 756 5739 159

5019 789 94 4403 946 4403 168

5311 606 96 4628 629 4628 155

3741 371 55 3243 453 3243 93

3896 658 105 3360 1081 3360 370

4507 24327 592 3915 86746 3908 39866

Note: The i-th row shows the result for the i-th chromosome in HuRef, Old
(respectively, New) means that the result is obtained with the old (respectively, new)
model, MEC means the MEC score, MEC scores in bold mean non-optimal MEC
scores, Time means the running time (in seconds) taken by CPLEX, and running time
in bold means that CPLEX failed to optimally solve at least one reduced block of the
chromosome within the time limit

haploid DNA segments significantly larger than other
standard shotgun sequencing technologies [34]. Solving
the instances in MP1 optimally is much more difficult
than solving those in HuRef optimally, because a num-
ber of chromosomes in MP1 contain very large reduced
blocks with very large MEC scores. Previously, only Chen
et al. [14] tried to optimally solve the all-heterozygous case
for MP1. To the best of our knowledge, nobody has tried
to optimally solve the general case for MP1.

As in [14], we focus on the all-heterozygous case for
MP1. Chen et al. [14] assume that all columns of the input
matrices in MP1 are heterozygous even if some of them
are monotone. In contrary, we assume that monotone
columns are homozygous and hence remove them from
the input matrices when applying reductions to them. The
removal of monotone columns makes the problem smaller
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and allow us to finish the experiments faster. In other
words, the difference is only technical rather than essen-
tial. So, the MEC scores obtained in this paper will be
smaller than those obtained in [14].

With NewModelA, we have tried to use CPLEX to opti-
mally solve the all-heterozygous case for MP1. It turns
out that NewModelA leads to much shorter time than
OldModelA. More specifically, Table 6 compares the per-
formance of CPLEX on NewModelA against that on
OldModelA.

As can be seen from Table 6, CPLEX can solve New-
ModelA almost twice faster than OldModelA on average.
Indeed, CPLEX failed to optimally solve NewModelA
for a total of 12 reduced blocks of 11 chromosomes
within the time limit, while CPLEX failed to optimally
solve OldModelA for a total of 22 reduced blocks of 17
chromosomes within the time limit. If we exclude the
17 chromosomes for which CPLEX failed to optimally
solve OldModelA, then CPLEX can solve NewModelA 6.5
times faster on average.

Table 6 Comparing the performance of CPLEX on NewModelA
against that on OldModelA for MP1

Old New

MEC Time #Failed MEC Time #Failed

110459 399777 3 110178 228176 0

105275 213509 2 104358 178884 2

96354 216205 1 93994 130262 1

94458 212936 2 92127 115174 1

75125 180227 1 75125 93795 0

89263 127016 1 87150 91412 1

78726 265535 2 78507 107233 0

63725 49251 0 63725 8342 0

55411 115714 1 55377 40680 0

67710 184078 1 67710 57863 0

68493 127354 1 67171 94397 1

56142 108465 1 55899 83974 0

39754 16250 0 39754 2130 0

39160 26624 0 39160 4197 0

41608 114950 1 41329 91593 1

58609 311474 1 58502 161319 1

43165 198344 1 43523 105746 1

33462 14725 0 33462 1944 0

33254 129098 1 32989 130484 1

35699 184073 1 35536 105899 1

34842 93111 1 34504 87497 1

16891 14775 0 16891 2067 0

Note: The i-th row shows the result for the i-th chromosome in MP1, #Failed means
the number of reduced blocks not optimally solved by CPLEX within the time limit,
and each other column means the same as in Table 5

We note that the solutions found by CPLEX with Old-
ModelA for the 5th and the 10th chromosomes happen
to be optimal although CPLEX fails to finish within the
time limit for some blocks of the two chromosomes; their
optimality is witnessed by the results found by CPLEX
with NewModelA. So, we suspect that with OldModelA,
it takes too much time for CPLEX to verify the optimality
of the solutions of some blocks of the two chromosomes.

Simulated datasets
The simulated datasets used in our experiments are
Geraci’s dataset [29] and Chen et al.’s Sim95_MP1 [14].

Geraci’s dataset
The dataset was generated from 3 parameters: the hap-
lotype length � ∈ {100, 350, 700}, the coverage c ∈
{3, 5, 8, 10}, and the error rate e ∈ {0, 0.1, 0.2, 0.3}. For each
triple (�, c, e), 100 matrices were generated. Intuitively
speaking, the larger c (respectively, e) is, the more reads we
have in the matrix (respectively, the larger optimal MEC
score we have for the matrix).

As Chen et al. [27] did, we only use the matrices gener-
ated from (�, c, e) with � ∈ {100, 350}, c ∈ {3, 5, 8, 10}, and
e = 0.1, because these matrices contain both easy and dif-
ficult instances. It turns out that our new models lead to
much shorter time than Chen et al.’s models [27]. More
specifically, Table 7 compares the performance of CPLEX
on our new ILP models against that on Chen et al.’s old
ILP models [27].

We first focus on the general case. As can be seen from
Table 7, CPLEX can solve NewModelG 10 times faster
than OldModelG on average for hard instances (namely,
those generated with (�, c) = (350, 10)). Indeed, CPLEX
failed to optimally solve OldModelG for a total number of
2 reduced blocks of two instances generated with (�, c) =
(350, 10) within the time limit. Even for the other (easier)
instances, CPLEX can solve NewModelG at least 4 times
faster than OldModelG on average. We note that the solu-
tions found by CPLEX with OldModelG for the two failed
reduced blocks happen to be optimal, as witnessed by the
results found by CPLEX with NewModelG. So, we suspect
that with OldModelG, it takes too much time for CPLEX
to verify the optimality of the solutions.

For the all-heterozygous case, the results in Table 7 show
that CPLEX can solve our new model about twice faster
on average.

Chen et al.’s Sim95_MP1
The matrices in MP1 are hard to solve to optimality. The
main reason for this seems to be that the optimal MEC
scores for the matrices are too large (i.e., the quality of
the reads is bad). Since we believe that reads will be of
higher quality in the future, we want to generate a simu-
lated dataset from MP1 so that the reads cover the same
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Table 7 Comparing the performance of CPLEX on our new ILP
models against that on Chen et al.’s models [27] for Geraci’s
dataset

Old New

(�, c) MEC Time MEC Time

General Case

(100, 3) 66.58 1.31 66.58 0.06

(100, 5) 132.9 14.42 132.9 3.4

(100, 8) 249.39 78.95 249.39 19.61

(100, 10) 327.23 177.98 327.23 39.16

(350, 3) 233.46 46.69 233.46 10.35

(350, 5) 477.2 409.91 477.2 97.3

(350, 8) 878.63 3415.17 878.63 599.42

(350, 10) 1152.31 16875.2 1152.31 1674.45

All-heterozygous Case

(100, 3) 53.31 0.23 53.31 0.03

(100, 5) 95.38 7.62 95.38 3.4

(100, 8) 157.34 30.82 157.34 17.75

(100, 10) 195.83 52.54 195.83 26.51

(350, 3) 186.22 35.67 186.22 15.24

(350, 5) 338.4 216.23 338.4 74.12

(350, 8) 547.06 817.12 547.06 337.4

(350, 10) 682.09 1465.04 682.09 777.08

Note: MEC means the average MEC score (over 100 matrices), Time means the
average running time of CPLEX (over 100 matrices), and Old and New mean the
same as in Table 6

SNP sites as in MP1 but have better quality. More specif-
ically, Chen et al. [14] generated Sim95_MP1 from MP1
as follows. Initially, Sim95_MP1 is a copy of MP1. Then,
we randomly partition the reads of Sim95_MP1 into two
sets R and R̄. For each read r ∈ R, we change each 1 in r
to 0. On the other hand, for each read r ∈ R̄, we change
each 0 to 1. Now, the true solution for each matrix is sim-
ply a pair of complementary strings one of which consists
of 0’s only. Finally, for each read r in R (respectively, R̄) and
each 0 (respectively, 1) of r, we flip the bit with a probabil-
ity 1 − t, where t is chosen by first generating it in normal
distribution with mean 0.95 and standard deviation 0.05
and further resetting t = 1 (respectively, t = 0.6) if t > 1
(respectively, t < 0.6). Intuitively speaking, t is the quality
of the bit and hence we want it to be around 0.95 and not
smaller than 0.6.

With NewModelA, we have tried to use CPLEX to opti-
mally solve the all-heterozygous case for Sim95_MP1. It
turns out that NewModelA leads to much shorter time
than OldModelA. More specifically, Table 8 compares the
performance of CPLEX on NewModelA against that on
OldModelA.

Table 8 Comparing the performance of CPLEX on NewModelA
against that on OldModelA for Sim95_MP1

Old New

MEC Time #Failed MEC Time

84119 31622 0 84119 4003

88177 42667 0 88177 5000

75408 33375 0 75408 4114

77554 100474 1 74857 16470

65056 20386 0 65056 2783

70831 110238 1 70810 14465

64202 36747 0 64202 3481

56851 19366 0 56851 2397

47127 11598 0 47127 1745

56282 20768 0 56282 2728

56466 57839 0 56466 5229

49580 21330 0 49580 2423

35297 6258 0 35297 1044

35178 8522 0 35178 1233

33842 8136 0 33842 1173

40819 70744 0 40819 5019

30520 18319 0 30520 1862

30259 5973 0 30259 885

23422 31578 0 23422 2660

27374 13029 0 27374 1686

22920 89096 1 19205 10932

15014 3748 0 15014 540

Note: The i-th row shows the result for the i-th chromosome in Simu95_MP1 and
each other column means the same as in Table 6

As can be seen from Table 8, CPLEX can solve New-
ModelA 8.3 times faster than OldModelA on average.
Indeed, CPLEX never failed to optimally solve NewMod-
elA within the time limit, while CPLEX failed to optimally
solve OldModelA for a total of 3 reduced blocks within the
time limit.

Conclusion
As aforementioned, solving the haplotype assembly prob-
lem to optimality is of great interest but very time-
consuming. In order to speed up the computation of
optimal solutions, we have designed better ILP models
for both the all-heterozygous and the general cases of the
problem. Our experimental results for both real and sim-
ulated datasets confirm that the new models can be solved
within significantly shorter time than the previous bests.
In this paper, we focused on finding optimal solutions.
As future work, we plan to find out how much speed-up
we can obtain when applying the models to speeding up
heuristic algorithms.
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