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Abstract

Background: Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes,
and their identification is thus of great importance. Although computational prediction of which amino acids take
part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect.

Results: We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built
from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes
corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each
node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels
amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood
appears as interface or non-interface in the knowledge base. We evaluated INSPiRE’s behavior with respect to
different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different
features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with
respect to Matthews correlation coefficient.

Conclusion: In this paper we introduce a new knowledge-based method for identification of protein-protein
interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein
Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show
that INSPiRE significantly surpasses existing PPI approaches.
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Background
Protein interactions are crucial in a wide range of bio-
logical processes such as signal transduction or oxygen
binding. Understanding interactions is thus important for
revealing protein function. The knowledge of interactions
can also be used in drug design as they play a key role in
virtually all diseases.

Since experimental methods for protein-protein inter-
action (PPI) sites determination are time consuming and
financially demanding, a great effort has been devoted to
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the development of computational methods of PPI identi-
fication. The purpose of these methods is, given a protein
structure, to label surface amino acids that have the poten-
tial to be part of an interaction site with another protein.
The obtained information can be subsequently used in
the construction of PPI networks or simulated docking.
Esmaielbeiki et al. [1] provided an overview of more than
sixty methods for PPI prediction.

The existing methods can be grouped into three
classes: evolutionary-based, template-based, and machine
learning-based methods.

Evolutionary-based methods gain from the fact that
evolutionary related proteins usually interact in the same
manner and thus interaction sites have a higher degree
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of conservation to preserve their function. Further-
more, interacting pairs often co-evolve because changes
in one interaction site are compensated by changes in
the opposite interaction site in order to preserve their
functionality [2].

Template-based methods require another protein (tem-
plate) with known interaction sites. Since similar proteins
interact in a similar way, the known interaction sites can
be transferred to the new protein [3, 4]. The drawback
of these methods is that they require a template protein
which might not be always available.

Since the information required by evolutionary and
template-based predictors is often not available, machine
learning methods are commonly utilized. Machine learn-
ing methods pick appropriate characteristics to describe
specific regions of a protein surface, which usually corre-
spond to individual amino acids or their neighborhoods.
A model is then trained on a set of positive and nega-
tive examples to recognize the values of characteristics
and patterns commonly exhibited by PPIs. The trained
model is subsequently used when an unknown protein
needs to be characterized. A number of descriptors have
been utilized for the purpose of PPI identification, such as
hydrophobicity [5], energy of solvatation [6], propensity
[5] or RASA (Relative Solvent Accessible Surface Area)
[3–6], with RASA being especially popular [7]. As for
machine learning approaches, the best performing meth-
ods utilize Support Vector Machines (SVM) [3, 5], Neural
networks [8], Decision trees [6] or Conditional Random
Fields (CRF) [9, 10].

CRF was one of the most recent machine learning methods
applied for PPI prediction. It is a discriminative proba-
bilistic undirected graphical model that can be considered
as a Markov Random Field extended by a set of hidden
(predicted) variables. The goal is to find the most proba-
ble labeling of hidden variables according to observations.
Our approach was inspired by the CRF-based method pre-
sented by Dong et al. [9] and Wierschin et al. [10] where
a protein is represented in a graph. In that representa-
tion, every amino acid corresponds to a node, and two
nodes are connected by an edge if their corresponding
amino acids are sufficiently close to each other. Amino
acid descriptors (RASA in [9]) serve as observations in the
CRF model, information about whether amino acids are
parts of an interface or not translates into hidden vari-
ables, and transition probabilities need to be set in the
training phase.

The idea behind CRF is to use transition probabilities to
not allow situations where an amino acid would be labeled
as interface but surrounded by non-interface amino acids
only, i.e. a mislabeled amino acid; and vice versa. However,
should an amino acid be surrounded by many mislabeled
amino acids, CRF would not be able to repair it. In other
words, CRF can be viewed as a kind of post-processing,

smoothing the initial prediction. Therefore, the amino
acids interface initial probabilities play a great role in
CRF’s performance. Dong at al. [9] precomputed the initial
probabilities of nodes for every RASA value according to
a training dataset. In the prediction, initial probability for
each node was set according to the RASA value of the cor-
responding amino acid. The drawback of such a method
is that if two amino acids share the same RASA value they
also have the same initial probabilities regardless of their
neighborhood. But the neighborhood of an amino acid
can have a significant influence on the interface state of
that amino acid. Therefore, in [11] we outlined a possible
approach which assigns initial probabilities based on the
local neighborhood of an amino acid. It had many draw-
backs and basically did not lead to an increased prediction
ability and was meant rather as an illustration of the abil-
ity of graph databases to retrieve small graphs by means of
subgraph isomorphism.

Here we introduce INSPiRE (INteraction Sites
PREdictor) - a knowledge-based PPI prediction method
that takes into account information about structural
neighborhood of every amino acid and uses the idea of
molecular fingerprints to efficiently store and query the
knowledge base [12]. Although INSPiRE was originally
inspired by [9], the current version outperforms existing
approaches even without using CRF.

Methods
The following list outlines the basic workflow of INSPiRE
and the next sections detail the individual steps.

1. Retrieve protein-protein complexes from the Protein
Data Bank [13].

2. Extract patterns representing local structural
neighborhoods and interface/non-interface
information for all the amino acids obtained in the
previous step.

3. Convert the patterns into suitable data format for
efficient storage and retrieval.

4. Label amino acids of unknown proteins as interface
or non-interface based on how often their structural
neighborhood appears as interface or non-interface
in the knowledge base.

Data retrieval
To build the knowledge base, we retrieved known com-
plexes contained in Protein Data Bank (PDB) [13]. We
used only complexes that consisted solely of proteins
(no DNA or RNA fragments). PDB contains (as of
November 2015) 60,743 such protein complexes. Next,
we filtered out chains with less than five amino acids
and subsequently filtered out complexes with less than
two remaining chains. This resulted in 60,716 complexes
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having 220,555 chains with 54,204,183 amino acids. This
data formed the basis for our knowledge base.

Knowledge base construction
Protein structures in INPiRE are represented as labeled
graphs the same way it was proposed in [9]. Amino acids
correspond to nodes, and two nodes are connected by an
edge if alpha-carbons of the corresponding amino acids
are at most 6Å apart. Converting the data from the pre-
vious section into such graphs resulted in 292,938,242
edges, i.e. an amino acid had on average 5.4 neighbors.

An amino acid is labeled by INSPiRE as an interface
amino acid if the van der Waals surface of at least one of
its atoms is at most 0.5Å away from the van der Waals
surface of any atom of another chain. According to this
definition, 7,995,185 amino acids were labeled as interface
and 46,208,998 amino acids were labeled as non-interface.
Moreover, each node was labeled by a set of features which
are later utilized in the prediction. Currently, INSPiRE
uses two types of features:

• The type of amino acid (alanine, arginine etc.)
• RASA value, i.e. the fraction of a protein’s amino

acids surface that is exposed to a solvent. This value
was further binned into 10 unequal-sized bins. The
size of bins was chosen so that each bin contained
approximately 10% of amino acids in our knowledge
base.

As mentioned above, INSPiRE uses patterns represent-
ing structure of amino acids’ local neighborhoods to
discern interface and non-interface residues. Therefore,
in the next step we extracted one subgraph for each
node of every whole-protein graph. We call these sub-
graphs/patterns structural elements and we use two types
of such elements:

• di: Structural element consists of a central amino acid
and all neighbors up to i edges from the central
amino acid. In this case, the structural element is
always a connected graph.

• ck : Structural element consists of a central amino acid
and its k -nearest neighbors in 3D space. In this case,
it can happen that the structural element is not a
connected graph.

Structural elements representation and storage
Since the knowledge base had to incorporate close to 55
millions structural elements, we needed an efficient way
to store and retrieve the elements. Specifically, in the pre-
diction phase we need for each structural element of the
query protein to find out how many similar or identical
structural elements are in the knowledge base. The prob-
lem of finding matching or similar elements translates
into subgraph isomorphism which is NP-complete and is

time demanding even for small graphs, which is our case.
Obviously, querying a knowledge base consisting of mil-
lions graphs is a challenging task. We considered three
possibilities for patterns encoding, storage and retrieval:
graph data storage, relational data storage and molecular
fingerprints stored in binary format.

Graph database allows one to natively store protein
graphs and search for induced subgraphs defined by
the query structural elements. We tried to adopt this
approach in [11] where we used Neo4j graph database.
Unfortunately, we found that this method is viable for
structural elements only up to about 12 edges, but in our
knowledge base approximately 45% of d1 structural ele-
ments have more than 12 edges and thus even for d1 the
graph database is not an option.

Another possibility is to store the knowledge base in
a relational DB. The natural representation would be to
have one table for nodes and another table for edges.
However, such representation leads to a lot of slow joins
during every search for a given subgraph. A better way
is to keep one table with nodes and precompute required
information about its neighborhood, i.e. which features
are present and how they are structured. Such informa-
tion can then be stored in a string column and indexed
using traditional indexing techniques. However, this is
efficiently possible only for certain structural neighbor-
hoods types. Specifically, we were able to implement so
called radial pattern, where only the center and edges
going from the center were taken into account. But adding
also edges among the neighbors makes the problem much
more challenging because several nodes can share a label,
and more possibilities thus need be evaluated. From the
retrieved records false positives need to be further filtered
out using a specialized graph library. The filtration ratio
of the database query is strongly dependent on the dis-
tribution of the employed feature types and often turned
out to be quite weak. This poses a problem since the
lower the filtration ratio the more time-consuming graph
comparisons need to be done.

Although the combination of a relational DB and a
specialized graph library can be applicable and provide
reasonable results, its behavior is very dependent and
sensitive to the distribution of the features. Therefore
we took inspiration in molecular fingerprints tradition-
ally used in virtual screening of small molecule libraries,
an established component of drug discovery pipelines.
Molecular fingerprints are a type of (lossy) representa-
tion of molecules as bit strings. The basic principle is
to capture structural features of a molecular graph and
encode them in a bit string which can be used later when
assessing similarity to a pair of compounds. The advan-
tage is that such representation is highly storage-efficient,
and the time-consuming operation of comparison of
two molecular graphs reduces to a highly time-efficient
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operation of bitstring comparison. There exists a wide
variety of molecular fingerprinting methods which mainly
differ in the type of topologies and physico-chemical fea-
tures they encode [14–17]. Usually the entire molecule
is not encoded all at once, instead it is fragmented into
small parts called fragments (not necessarily disjunctive),
and these fragments are encoded one by one. The most
common types of fingerprints include encoding linear
fragments (connected paths), dendritic fragments (trees),
radial fragments (centered subgraphs), pairwise informa-
tion (pairs of atoms that do not need to be neighbors),
triplets, etc. [18]. Examples of fragment types are shown
in Fig. 1.

To encode our structural elements, we decided to
employ the Atom-Pairs fingerprint (AP) [14] which shows
reasonable performance [17], and the main idea is rela-
tively easy to implement. The outline of AP fingerprint
construction follows:

1. Extract all atom pairs fragments
2. Encode fragments into integers (indexes)
3. Create a bitstring of length n
4. Hash the indexes into a space of the bitstring
5. For each hashed index turn on the corresponding bit,

i.e. bits corresponding to atom pairs present in the
molecule are turned on, the remaining bits are
turned off

Besides this process, AP fingerprints also specify how
fragments should be encoded into indexes. The idea is
to consider the properties (in case of molecular finger-
prints these are the number of bonds, atom type, etc.)
and retrieve their values for each atom of a given frag-
ment. These are then encoded into a limited number
of bits (e.g. three bits are sufficient for bonds number)

Fig. 1 Examples of fragment types. 1) Linear fragment: paths of fixed
length; 2) atom pair fragment: pairs of heavy atoms (adjacent or
distant) along with the shortest path between them; 3) radial
fragment: neighborhood within fixed number of bonds from the
central atom

and assembled (via concatenation) to get the bit rep-
resentation of the fragment index. The overall process
outlines Fig. 2.

The AP construction process modified to our needs of
encoding protein structural elements is as follows:

1. Construct fingerprint as a bit array F of length l and
set all bits to 0

2. Iterate over all of amino acid pairs (A; B) in the
structural element

(a) Translate features of amino acids A and B in
their codes gA

i and gB
i (for amino acid type, it

is an order of its single letter code in a Latin
alphabet; for RASA value, it is an index of the
corresponding bin)

(b) Determine the graph distance d of A and B
(c) Concatenate gA

1 , ..., gA
n , d, gB

1 , ..., gB
n (each

represented as a binary number of a fixed
length) into one number i

(d) Set the (i mod l)-th element of F to 1

The resulting fingerprints, i.e. the encoded structural
elements, can not be used directly to identify exact
matches due to the employed hashing and because more
amino acids can share a feature value and thus their
stored images are ambiguous. Therefore, if an exact match
was required, matched fingerprints would still need to be
scanned for false positives. On the other hand, using fin-
gerprints allows us to efficiently mine similar structural
elements that are not exact matches. This is due to the
fact that similarity of fingerprints and structural elements
similarity correlate.

With an available reasonably efficient method for
encoding structural neighborhoods, we took all the

Fig. 2 Construction of atom pair fingerprint. When creating an atom
pair fingerprint, following steps are performed for each pair of heavy
atoms: 1) extraction of given pair of atoms and the shortest path
between them; 2) encoding of descriptors (atom type and the
number of bonds for both atoms and their topological distance); 3)
conversion into bit strings; 4) concatenation of bit strings into one
number; 5) hashing the number into the index space; 6) setting the
corresponding position in the fingerprint to 1
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proteins, encoded structural neighborhood of each amino
acid with the interface information and stored it in a
binary file which formed the knowledge base to be used
by INSPiRE in the prediction phase.

PPI prediction
Once we have a knowledge base built we can use it to
determine the probability whether a given amino acid of
a given protein is part of an interface or not. The process
consists of the following steps:

1. Create a graph for a given protein and label it with
selected features (RASA value, amino acid type).

2. For each amino acid A:

(a) Extract structural element E centered in A.
(b) Pick out a subset KA containing each element

from the knowledge base, whose central
residue has the same value of selected features
as A.

(c) Search KA for n structural elements S most
similar to E, where similarity is defined as the
number of different bits in of the
corresponding fingerprints.

(d) Divide the retrieved structural elements into
sets I and N based on whether their central
amino acid is labeled as interface (set I ), or
non-interface (set N).

(e) Use |I|/|S| as the probability of A being part
of an interface.

Results
In this section, we first evaluate the behavior of INSPiRE
with respect to different parameters settings and then
we compare it to the state-of-the-art methods. We used
four datasets for evaluation; one dataset, called KL-subset
[9], was used for training, while the other three datasets,
PlaneDimers [5], TransComp1 [5] and DS188 [3], were
used for testing. All experiments were carried out on a two
Intel Xeon Processor X5660 (6 cores + hyper-threading)
machine with 20 GB RAM. Since our knowledge base
contained all the information from PDB, when searching
for similar structural elements to a query all the query’s
protein structural elements in the knowledge base were
disregarded.

Parameters tuning
To tune parameters of our method, we used the KL-subset
defined by Dong et al. [9] which is a subset of a dataset

published by Keskin et al. [19]. The dataset consists of
60 two-chain complexes, i.e. 120 proteins from which we
excluded 2 complexes because they were protein-DNA
complexes. The modified dataset thus consisted of 116
proteins.

To evaluate the quality of the model we used Matthews
correlation coefficient (MCC) [20] which is the most
commonly used measure to evaluate the quality of
protein-protein interaction site predictors [7]. MCC is
defined as

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

where TP denotes the number of correctly labeled inter-
face residues, FN denotes the number of incorrectly
labeled interface residues, FP denotes the number of
incorrectly labeled non-interface residues and TN denotes
the number of correctly labeled non-interface residues.
The range of MCC is from -1 to 1, where 0 represents a
random prediction, 1 is an absolutely correct prediction
and -1 is the opposite of the correct prediction.

We measured the quality of prediction with respect to:

• Length of fingerprints
• Type of structural neighborhood and its size
• Considered features of amino acids in the structural

elements (used for construction of fingerprints)
• Considered features of the central amino acid (used

for prefiltering of the knowledge base)
• The number of most similar elements used for a

prediction (if more elements were in the same
distance, they were all considered)

Structural neighborhood
Although the di neighborhood (amino acids in given dis-
tance) seems to make more sense as chemical bonds
have a delimited range and all structural elements cover
approximately the same area in the di neighborhood, the
ck neighborhood (k nearest amino acids) shows better
results in our tests (see Table 1). We ascribe it to the fact
that the ck neighborhood provides a more focused search
because the probability of a structural element being in
the knowledge base is dependent on the number of amino
acids in the neighborhood. This can fluctuate significantly
with the di type of neighborhood but not with the ck
neighborhood. A high fluctuation in the probability of an
element being in the knowledge base leads to the situation
where a knowledge base might not contain enough simi-
lar elements in a large part of queries, and simultaneously

Table 1 Comparison of different structural neighborhoods in terms of MCC

Surroundings c2 c4 c6 c8 c12 c16 c20 d1 d2

MCC 0.090 0.475 0.643 0.670 0.685 0.682 0.674 0.548 0.555

(Fingerprints length: 1023 bits; features type: amino acid type only; one most similar element)
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there might not be just one most similar element but a lot
of equally similar elements in another set of queries.

Another advantage of the ck neighborhood is that it
has higher granularity of steps than di. When we focus
on the number of nearest neighbors in the ck neighbor-
hood, we see an increase in prediction quality with a
growing number of neighbors for k less than 12. It means
that this increase adds a new piece of information that
is useful for distinguishing between interacting and non-
interacting amino acids. Although we expected a higher
number of neighbors to decrease the prediction qual-
ity, as too remote and thus irrelevant residues are taken
into account, we did not observe a significant decrease in
the prediction quality even for c20 neighborhood, which
covers 9% of an average protein.

Features types
When we focused on the features used to label the nodes,
we saw a significant difference between the performance
of the method when using an amino acid type and/or
RASA value (see Table 2). Please note that we allow for
a different feature type of the central node (which needs
to match the query exactly) and the structural neighbor-
hood. Surprisingly, using the RASA value only, gives the
worst performance and also the combination of the RASA
value with the amino acid type leads to worse results than
using the amino acid type alone. This behavior has prob-
ably three reasons. First, more features result in a bigger
index space leading to higher probability of collisions dur-
ing hashing. A collision in a fingerprint means that two
structural elements share the same position in the finger-
print and thus the most similar fingerprint might actually
represent a different structural element. The second rea-
son is related to the curse of dimensionality: more features
result in higher probability that two similar structural ele-
ments have some different features and also that two non
similar elements have some similar features. This leads
to the decrease of the distance difference between similar
and non-similar elements. Third, there is a strong correla-
tion (− 0.83 according to Pearson’s correlation coefficient)
between the RASA value and the number of edges leading
from the residue (see Fig. 3), thus using the RASA value
does not add sufficient amount of new information, and

Table 2 Comparison of different features in terms of MCC

Central amino acid

aa aa & rasa rasa

Fingerprint aa 0.643 0.641 0.620

aa & rasa 0.518 0.567 0.535

rasa 0.364 0.381 0.337

(Neighborhood: c6; fingerprints length: 1023 bits; one most similar element)

Fig. 3 The relationship between RASA value and the number of edges.
The figure shows the dependence of average RASA value of amino
acids on the number of edges going from the corresponding nodes

on the contrary, similar RASA values can be binned into
different bins due to rounding.

Number of most similar elements
Next parameter we tested was the number of the most
similar elements retrieved from the knowledge base based
on which the interface probability of the query’s cen-
tral node is computed. Generally, the less elements are
taken, the more is the prediction affected by chance.
On the other hand, taking too many neighbors can lead
to bias since irrelevant elements are taken into account.
Figure 4 shows that in case of predicting PPIs, decreas-
ing the number of used similar elements leads to better
results.

Fig. 4 The relationship between prediction quality, threshold and
number of most similar elements. The dependence of the prediction
quality based on the number of most similar elements used for the
prediction (individual lines) and on the threshold (X-axis). The
threshold specifies the minimum portion of retrieved elements to be
labeled as interface in order to denote the evaluated amino acid as an
interface one. (Neighborhood: c12; fingerprints length: 1023 bits;
features type: fingerprints with amino acid type and both amino acid
type and RASA value on the central residue)
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Fingerprints length
The longer the fingerprints are, the more time it takes to
compare them. On the other hand, shorter fingerprints
translate to a higher probability of hashing collisions and
thus a higher probability of false positive matches. Specif-
ically, when we increased the length from 63 to 255 bits,
the time increased 3.9 times and MCC increased from
0.576 to 0.676. The change from 63 to 1023 bits lead to
8.6 time increase and MCC further increased to 0.685. In
these experiments we used an amino acid type, the neigh-
borhood was fixed to c12 and one most similar element
was used for making prediction.

Comparison with existing methods
After we tuned INSPiRE’s parameters, we compared it
to the state-of-the-art methods used for prediction of
protein-protein interaction sites.

As we mentioned in the introduction, there exists a
multitude of methods for PPI prediction, but not all of
them are available and tested on publicly available date-
sets. Therefore we chose six most often cited methods
tested on public datasets.

In this section, the INSPiRE parameters were set as fol-
lows: c12 neighborhood, fingerprints length 1023 bits, the
considered feature was amino acid only, one most similar
element was used for prediction, and the threshold was
0.5175. The knowledge base was stored in a binary file tak-
ing up 6.66 GB. In a single-thread mode, the prediction
took about 5 minutes per protein.

For comparison, we used PlaneDimers (127 proteins)
and TransComp1 (100 proteins) datasets compiled by
Zellner et al. [5] and DS188 dataset (188 proteins)
compiled by Zhang et al. [3]. In PlaneDimers, protein
complex with PDB ID 1O0Y became obsolete and we
therefore replaced it with its actual version. From DS188
we excluded one chain (PDB ID 2HMI.A) because it
comes from a protein-DNA complex. Moreover, DS188
contained three chains that were in the training dataset
as well. For the PlaneDimers and TransComp1 datasets,
surface residues were defined as those with RASA ≥ 0.05
while for DS188 the rule was RASA > 0.

Results showing the comparison of INSPiRE with SPPI-
DER [21], PresCont [5] and MetaPPISP [22] in terms of
MCC on the PlaneDimers and TransComp1 datasets are

Table 3 Comparison on PlaneDimers & TransComp1 datasets in
terms of MCC

PlaneDimers TransComp1

INSPiRE 0.681 0.529

SPPIDER [21] 0.330 0.150

PresCont [5] 0.330 0.170

MetaPPISP [22] 0.040 0.311

The best achieved value on each dataset is highlighted by boldface

in Table 3. The MCC values of the other methods are
taken from [5]. The comparison with PredUs [4], PrISE
[23], RAD-T [6] and MetaPPISP [22] are summarized
in Table 4. Performance of those methods, which also
includes precision, recall, accuracy and F1 measure, are
borrowed from [3, 6, 23]. Both tables show that INSPiRE
outperforms all of the state-of-the-art methods accord-
ing to the MCC measure. Furthermore, INSPiRE is also
better in the accuracy, F1 measure and precision on the
DS188 dataset. PredUs and RAD-T have better recall, but
they have worse precision which is understandable since
precision and recall are intertwined values.

Discussion
What is surprising with regard to INSPiRE is that it works
best with an amino acid type feature only and that this
feature is not commonly employed, especially with regard
to the simplicity of this feature. In contrast, the results
of the widely used RASA feature are rather poor. To fur-
ther explore why the amino acid type works so well in
our case we focused on how INSPiRE differs from the
existing methods that use information about local neigh-
borhood or the propensity of an amino acid to be part
of an interface. For example, PrISE computes the RASA
value for a local structure neighborhood of an amino acid
as a whole and also compares histograms of selected atom
types in the neighborhood. PresCont utilizes the propen-
sity of amino acid pairs to be a part of interface. But these
approaches usually do not retain the information about
the structure of a neighborhood; they utilize structural
information only to identify the nearby residues.

INSPiRE is different in that it retains information about
the structure of neighborhood. To confirm this, we dis-
regarded information about the structural neighborhood
and used the information about the central amino acid
only, which is equivalent to c0 and d0 neighborhoods. The
best result we were able to reach for amino acid type was
MCC = 0.078, while the RASA value reached MCC =
0.272. It means that amino acid type itself corresponds
to a virtually random predictor and the strength of this
feature is based on using information about the neighbor-
hood (see Fig. 5). In contrast to that, the RASA value itself
is a better estimator of interface which can be explained
by the fact that the amino acid must be on the surface

Table 4 Comparison on the DS188 dataset

MCC Precision Recall ACC F1

INSPiRE 0.481 0.534 0.567 0.879 0.550

PredUs [4] 0.345 0.503 0.575 0.726 0.530

PrISE [23] 0.338 0.480 0.432 0.806 0.455

RAD-T [6] 0.222 0.285 0.647 0.652 0.355

MetaPPISP [22] 0.262 0.490 0.267 0.811 0.346

The best achieved value in each metric is highlighted by boldface
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Fig. 5 The relationship between prediction quality, size of the
neighborhood and used features. The dependence of the prediction
quality on the size of the used ck neighborhood (X-axis) and on the
used features (individual lines). Shown are the following features
types: amino acid type only (AA.AA), fingerprints with amino acid type
and both amino acid type and RASA value on the central residue
(AA.AA-RASA), RASA value only (RASA.RASA) and fingerprints with
RASA value and both amino acid type and RASA value on the central
residue (RASA.AA-RASA). Fingerprints length was 1023 bits and one
most similar element was used

to interact (see Fig. 6), but the improvement is not so
significant when a bigger neighborhood is considered.

As we mentioned in the introduction, methods like
CRF can be used in the final phase for smoothing the
prediction. Thus we tried to utilize it for smoothing
the prediction provided by INSPiRE. However, the bet-
ter the prediction of INSPiRE was, the less improvement
was achieved by utilizing CRF. E.g. MCC = 0.523 was
improved by CRF to MCC = 0.560, while MCC = 0.685
was improved only to MCC = 0.687. This suggests that
we almost completely exploit given information and new

Fig. 6 Probability of being an interface amino acid based on the RASA
value. The dependence of probability to be an interface amino acid
on the RASA value. For example an amino acid with RASA value less
then 0.05 has at most 4% probability to be an interface, while an
amino acid with RASA value higher than 0.5 has at least 24%
probability to be an interface

information must be added to improve the prediction
quality.

In the chapter Structural elements representation and
storage, we mentioned that the construction of finger-
prints is ambiguous, i.e. two non-isomorphic graphs can
have an identical fingerprint. In the case of settings used
for comparison with the state-of-the-art methods, 4.8% of
fingerprints in our knowledge base were ambiguous and
13% of residues in the knowledge base had an ambiguous
fingerprint. Thus we tried to add an additional step to fil-
ter out non-isomorphic graphs with identical fingerprints.
However, this filtration had no measurable effect on the
prediction quality on the KL-subset (the difference was in
the fourth decimal position) which indicates that in our
case it is not necessary to specially treat hashing collisions
in our case.

Finally, we asked ourselves whether a larger knowledge
base with the same settings would increase the predic-
tion quality or whether we had already reached the limits
of the algorithm. To explore this, we created smaller sub-
sets of the knowledge base used for comparison with the
state-of-the-art methods based release dates of contained
complexes. Results on the KL-subset showed that a sub-
set of 13,000 complexes published before 2005 (21% of the
full set) is enough to reach 90% of the prediction quality of
the full knowledge base and that a subset of 38,000 com-
plexes published before August 2011 (63% of the full set)
differs in less then 1% of predictions (see Fig. 7). This sug-
gests that further efforts should be focused on the quality
control of complexes in the knowledge base instead of its
enlargement.

Conclusions
In this paper, we introduced INSPiRE a novel method
for the prediction of protein-protein interaction sites. I
NSPiRE is a knowledge-based approach whose knowledge
base is built over structural patterns in protein graphs

Fig. 7 The relationship between prediction quality and size of the
knowledge base. The figure shows the dependence of prediction
quality on the number of complexes in the knowledge base.
(Neighborhood: c12; fingerprints length: 1023 bits; features type:
amino acid type only; one most similar element)
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of structures from the PDB. The knowledge base is uti-
lized to search for amino acids with similar structural
neighborhoods as the ones to be predicted as interface
or non-interface. This was enabled by the utilization of
molecular fingerprints, an approach widely used in virtual
screening.

The prediction performance of INSPiRE significantly
overcomes currently used methods on all tested datasets.
We attribute the high performance to the utilization of not
only the RASA value, but also of the amino acid type in
combination with the preservation of information about
the structural neighborhood arrangement of amino acids.
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