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Abstract

Background: In recent years, protein-protein interaction (PPI) networks have been well recognized as important
resources to elucidate various biological processes and cellular mechanisms. In this paper, we address the problem of
predicting protein complexes from a PPl network. This problem has two difficulties. One is related to small complexes,
which contains two or three components. It is relatively difficult to identify them due to their simpler internal
structure, but unfortunately complexes of such sizes are dominant in major protein complex databases, such as
CYC2008. Another difficulty is how to model overlaps between predicted complexes, that is, how to evaluate different
predicted complexes sharing common proteins because CYC2008 and other databases include such protein
complexes. Thus, it is critical how to model overlaps between predicted complexes to identify them simultaneously.

Results: In this paper, we propose a sampling-based protein complex prediction method, RocSampler (Regularizing
Overlapping Complexes), which exploits, as part of the whole scoring function, a regularization term for the overlaps
of predicted complexes and that for the distribution of sizes of predicted complexes. We have implemented
RocSampler in MATLAB and its executable file for Windows is available at the site, http://imi.kyushu-u.acjp/~om/

software/RocSampler/.

Conclusions: We have applied RocSampler to five yeast PPl networks and shown that it is superior to other existing
methods. This implies that the design of scoring functions including regularization terms is an effective approach for
protein complex prediction.
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Background

In recent years, protein-protein interaction (PPI) datasets
have been recognized as important resources to elu-
cidate various biological processes and cellular mecha-
nisms. The prediction of protein complexes from PPIs
(see, for example, survey papers [1-3]) is one of the
most challenging inference problems from PPIs because
protein complexes are essential entities in the cell.
Proteins’ functions are manifested in the form of a protein
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complex. Thus, the identification of protein complexes
is necessary for the precise description of biological
systems.

For protein complex prediction, many computational
methods have been proposed, which were directly or indi-
rectly designed based on the observation that densely
connected subgraphs, or clusters of proteins, of a whole
PPI network often overlap with known complexes. This
observation is often valid for relatively large protein
complexes. However, small complexes, consisting of
two or three proteins, form a major category of the
known complexes of an organism [4, 5]. For example, a
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yeast protein complex database, CYC2008 [6], with 408
protein complexes includes 172 (42%) complexes con-
sisting of two different proteins (called heterodimeric
complexes), and 87 (21%) complexes consisting of
three different proteins (called heterotrimeric complexes).
Unfortunately, the density measure for a cluster of pro-
teins, being a predicted complex, works less for smaller
ones because the connectivity of PPIs within such a
complex has small variations. For example, a cluster
with two components either has an interaction or not.
Thus, how to predict small complexes accurately is a
critical issue,

To resolve this issue, we have proposed a sampling-
based method for predicting protein complexes, PPSam-
pler2 [4]. The concept of PPSampler2 involves regulating
the frequency of the sizes of predicted clusters by a
regularization term designed based on the observation
that the distribution of the sizes of the complexes of
an organism (see, for example, CYC2008 [6] for yeast
and CORUM [7] for human) can be approximated by a
power-law distribution. Namely, the regularization term
evaluates how the distribution of the sizes of predicted
clusters is likely to be a power-law distribution. The reg-
ularization term is used as part of the whole scoring
function of PPSampler2. As a result, it is possible to
identify small predicted complexes with relatively high
accuracy.

However, there is a drawback to the model for the
collection of clusters of proteins predicted by PPSam-
pler2. This model involves a partition of all proteins in
a given PPI network, and every element with two or
more proteins is taken as a predicted complex. Thus,
any two predicted complexes are exclusive, namely, they
never share any common proteins due to the structure
of partition. This partition model is also adopted by
the Markov cluster algorithm (MCL), which is a popu-
lar node-clustering algorithm for an edge-weighted undi-
rected graph based on the simulation of stochastic flow
in the graph [8]. On the other hand, it is known that
many complexes overlap with each other, namely they
share common proteins. Actually, CYC2008 has 216 pairs
of complexes sharing one or more common proteins. In
this sense, the partition model is not the best model for
a collection of predicted complexes. However, PPSam-
pler2 and MCL are reported to achieve relatively good
performance [4]. This implies that the partition model
is a good approximation model for a set of predicted
complexes.

Some existing methods indirectly allow predicted com-
plexes to overlap with each other. Such methods often
adopt the same scheme, which can be called the cluster-
expansion approach. This involves repeatedly expanding
a cluster of proteins by adding a protein out of the clus-
ter, where an initial cluster is a cluster with either a single
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protein or a pair of proteins sharing an interaction, until
a stop criterion is satisfied. After this expansion process
is applied to all initial clusters, some of the resulting
clusters can overlap with each other. If two predicted clus-
ters have a large overlap, the high-scoring one remains
and the other is discarded, or they are merged into one.
This pruning process is repeated until there are no large
overlaps between clusters. As a result, some clusters
still overlap with each other. Examples of the cluster-
expansion approach are ClusterONE [9], RRW [10], and
NWE [11].

In this work, to address both of the issues of predicting
small complexes and overlapping complexes simultane-
ously, we improve PPSampler2 by relaxing the partition
model for a set of predicted complexes, so that predicted
complexes are allowed to overlap with each other. To real-
ize this relaxation, we propose a regularization term for
controlling overlaps of predicted complexes, and add it as
part of the whole scoring function of the new method.
Furthermore, we have designed a proposal function, by
which a current set of predicted complexes, some of which
can overlap with each other, is partially modified into
a new one. We call the resulting method RocSampler
(Regularizing Overlapping Complexes). In addition, Roc-
Sampler uses refined terms of the scoring function of
PPSampler2. We have empirically shown that RocSampler
is superior to existing methods on five different yeast PPI
datasets.

Methods

We formulate a scoring function, f(X,y), where X is a
set of predicted clusters of proteins, which are allowed
to overlap with each other, and y is a scaling exponent
of a power-law for the frequency of the size of pre-
dicted clusters in X. The probability, P(X, y), of (X, y) is
given by

P(X,y) «x exp (_f(X]:y))

where T is a positive real number, called a tempera-
ture parameter. Note that the lower f(X, y) is, the higher
P(X,y) is.

We construct a Metropolis-Hastings algorithm for
P(X, y) with a fixed constant, 7. This algorithm generates
a sequence of samples from the distribution over (X, y).
Furthermore, for the Metropolis-Hastings algorithm, we
introduce a cooling scheme, that is, a way of decreasing
T gradually. Thus, the resulting method becomes a sim-
ulated annealing algorithm, shown in Algorithm 1, where
a state of (X, y) is denoted by Z for simplicity. We call
the resulting algorithm RocSampler (Regularizing Over-
lapping Complexes). Among all samples, the one whose
score is lowest is returned as the output of an execution.
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Algorithm 1 Algorithm of RocSampler. L is a specified
repeat count
Let Z = (X, y) be an initial state.
for{ =1toL do
Let Z' be a proposed state from Z by a proposed
function with probability Q(Z'|Z).

_ oziz) 1)~ @)
Letr= 5% e (-14H2),

Z <« Z' with probability min{1, r}.
end for

In the subsequent section, we give the models of the
input and output of the scoring function, f(X,y), and
some notations used throughout this paper. After that, we
describe three key components of our methods: (i) the
scoring function, f (X, y), (ii) a proposal function that ran-
domly generates a candidate state, (X', y’), from a current
one, (X, y), and (iii) a cooling scheme of T.

Notations

A PPI network is represented as an undirected, edge-
weighted graph, G = (V, E, w), where a node in V repre-
sents a protein, an edge in Eisa PPLLand w : E — R is
a mapping from an edge in E to a weight in the interval,
[0,1]. Additionally, we suppose that, for e = {u,v} ¢ E,
w(e) = 0. We suppose that any self-loops, {u, u} where
u € V, are not included in E. If self-loops are included
in a given data set, they are removed in a preprocessing
step. For a subset, x, of V, we define w(x) as the sum of the
weights of the interactions included in , that is,

w(x) = Z w(u, v).
u,vex
Furthermore, for u € V and x C V, we denote by w(u, x)
the sum of weights of interactions between u and proteins
in x, that is,

w(u,x) = Z w(u,v).
VEX

We will use this notation in two different contexts, one of
which is the case where u is outside of x and the other in
which it is not.

We consider a subset of V' as a predicted complex, and
call it a predicted cluster to clearly distinguish it from a
known complex. We denote a set of predicted clusters by

X ={x1,x0,...,0, C V]|x;| = 2}.

Every predicted cluster, x; € X, should have two or more
components as it models a protein complex. Note that, in
this model, clusters are allowed to overlap with each other.

The Jaccard index between subsets of V, x and x’, which
is defined as

lxN x|
leUx|

Jx,x') =
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is often used as a similarity measure between two sets.
We use this measure in determining whether or not a pre-
dicted cluster, x, and a known complex, x/, match with
each other, and in evaluating dissimilarity between x and
x', which is explained in the next section.

Scoring function
In this section, we describe our scoring function, (X, y),
which is a linear combination of various terms,

f(X7 V) = b(X) + hclu—den(X) + Celu—dis - hclu—dis(X)
SmaX
FCelu—size * Z hety—sizes(X, ¥) + Chy * hhy(y)
s=2
+Cpro—num * hprofnum X)

where Smax is the upper bound on the size of a predicted
cluster. The default value is simply set to be 100, and
Celu—dis Cclu—sizes Chy» a0d Cpro—pum, are the coefficients of
the corresponding terms.

Here, we briefly explain each term. After that, we give
their details. The first term, b(X), checks the minimum
requirements for the predicted cluster of X. Whenever
there is a cluster in X violating at least one of them,
the resulting probability of X is zero. The second term,
Hety—den(X), calculates the negative of the sum of a
generalized density of a predicted cluster in X. The
effectiveness of these two terms for protein complex
prediction is empirically shown in our previous works
[4, 12]. The term of Ay, 4s(X) is a newly introduced
regularizer to penalize overlaps between predicted clus-
ters of X. The remaining terms, ng;" Nety—size,s X5 ¥),
hpy(v), and hpro—num (X), are regularization terms refined
from the original ones of the previous works. The group
of terms, Zf‘;‘%" clu—sizes(X, V), is a regularizer that
checks how the distribution of the sizes of predicted
clusters in X is similar to the power-law distribution of
the scaling exponent y. The term of /1, yum(X) is also
another regularizer that restricts the number of proteins
included in X.

Basic constraints on the model of a protein complex

The Boolean term, b(X), checks whether every cluster
in X satisfies basic criteria so that it is reasonable as a
predicted cluster. The resulting probability of X is set
to be zero whenever some of those criteria are false. We
require the following two basic constraints on a cluster
of proteins, x(C V). One is that the size of x should be
at most Spyax. We simply set the default value of Spax to
be 100. The other constraint is that the vertex-induced
subgraph of G by x should be connected. Namely, every
pair of proteins in x should have a path via PPIs within «.
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The logical product of the two constraints is represented
by the binary function

0 if [x] < Smax
b(x)= and the vertex-induced subgraph of G by x is connected,
oo otherwise.

‘We then define
b(X) = b().

xeX
Thus, whenever X includes a cluster violating one of
the above constraints, the resulting probability density,

P (—b(—;f)), becomes zero, and one otherwise.

The minimum size of predicted clusters is set to be
two in our method since a true complex has two or
more components. The Boolean term does not include
this minimum size requirement because our procedure
never produces a predicted cluster with fewer than two
components.

Density measure

The term /g, g, (X) evaluates the density of predicted
clusters in X, in which a generalized density measure for a
cluster,x C V,

density(x) = M
VAl
is used. The feature of this density measure is that the sum
of the weights of all interactions within x is divided by
/1«] to alleviate excessively severer evaluation of a larger
cluster. The standard (weighted) density measure is
w(x)
x| - (Jx] — 1)/2

the sum of the weights of the interactions within the
cluster divided by the possible number of interactions,
which is O(|x|?). However, it is not physically reasonable
that every pair of proteins within a large complex has
an interaction. In this sense, it is not appropriate to use
the standard density. Thus, we have reduced the order of
the denominator from 2 to 0.5. This density measure was
introduced in our previous work [4], and some deeper
discussion on the generalized density measure is given
in [12]. Based on the density measure for a cluster, x,
the cost function, %.,_ e, (X), over X to be minimized is
formulated as

Nepy—den(X) = — Z density(x).
xeX

Regularizing overlaps of clusters

One of the mathematical models representing a set of pre-
dicted clusters of proteins is a partition of all proteins
of a given set of PPIs, where each element with two or
more components in the partition represents a predicted
cluster. For example, this model is adopted by MCL [8],
SPICi [13], and PPSampler2 [4]. If those clusters could be
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allowed to slightly overlap with each other, the predictabil-
ity of those tools is expected to be improved by identifying
overlapping complexes. We then design a regularization
term that gives a larger penalty for a larger overlap (or say,
less dissimilar) between two predicted clusters.

The dissimilarity term between two predicted clusters is
formulated based on the Jaccard index as follows. For con-
venience, we denote by m1, v the minimum size of x,x" C
V, that is, m,, ,» = min{|x|, |«|}. The dissimilarity between
x and &’ is defined as

J(x, ') if my,y <3and|xNa’| <1,
/ JxNx’|
Bty —ais(x, %) = Or My > 4 andm <8,

%) otherwise.

Namely, we use different criteria for the small clusters
with two or three components and for the larger ones. If
one of x and &’ has two or three components, x and «’
are allowed to share only one protein. This constraint is
reasonable given their smallness. If both of x and «" have
four or more components and the ratio of the number of
shared proteins to the minimum number of components
is less than or equal to 8, the penalty is the Jaccard index,
J(x,x), and oo otherwise. We then formulate the term
hety—ais(X) as follows,

hey—ais(X) = Z hclu—dis(x’x/)'

xx' €X

Note that this dissimilarity measure has a similar role to
the repulsive force term used in the task of simultaneously
finding multiple sequence motifs [14].

Regularizing the distribution of cluster sizes

The graph in Fig. 1 shows a long-tailed distribution of the
sizes of the protein complexes in CYC2008 [6], a yeast
protein complex database. The complexes have 2 to 81
components, shown on the x-axis. The graph also gives
a power-law regression curve, which is proportional to
57202 with s € [2,100]. Thus, the scaling exponent is
2.02. The root-mean-square error is 1.75. Furthermore, a
human protein complex database, CORUM (7], also has
the same tendency. Thus, it is reasonable to exploit this
power-law feature as prior knowledge to regulate a set of
predicted clusters.

Thus, we regularize the distribution of the sizes of pre-
dicted clusters in X by a two-sided truncated power-law
distribution over the range [2, Smax]- The probability of
cluster size, s, in the power-law distribution with a scaling
exponent, y, is formulated as

1
Yy (s) = —g— -
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Fig. 1 Distribution of protein complex size. The x-axis shows the number of components of protein complexes in CYC2008. The y-axis represents

where s = 2,3, ..., Smax.- We denote by ¥x(s) the fraction
of predicted clusters with s components in X, that is,

l{x € X||x| = s}|
Yx(@) = ————.
|X]
Then, we define the term /.y, iz s(X) as the square error
between ¥x(s) and ¥, (s), that is,

Pl —sizes(X) = (¥x(s) — ¥y (s)).

The term hy,(y) is a prior distribution of y, which is
defined as a quadratic loss function, that is,

Iy (v) = (v — y0)™.

The parameter yy is set to be 2.5, the median of the
interval, (2, 3), which is the typical range of a scaling expo-
nent of power-law distributions in physics, biology, and
the social sciences [15]. Note that this prior distribution
of y is introduced in this work, although y was fixed to
be 2 in the previous work [4], which is almost the same
as 2.02, the scaling exponent of the power-law regression
curve mentioned above.

Regularizing the number of proteins in clusters
Using the term /0 num(X), we also control the total
number of proteins over all predicted clusters in X. The

term is simply formulated as the square of that number,
that is,

2
hpro—num (X) =

QE:

xeX

This term provides a force to reduce the number of pro-
teins within clusters of X. Thus, it can be expected that this
term contributes to form more reliable predicted clusters.

This term is simpler than the corresponding term,
(| Usex x| — k)z, given in the previous work [4, 12], where
A is a parameter representing a target number of proteins
over all clusters. Thus, we do not need to specify that
parameter in our new method.

Proposal function

In general, a proposal function of the Metropolis-Hastings
algorithm provides a candidate state of the next iteration
that is slightly and randomly modified from the current
state. The proposal function used in Algorithm 1 first
randomly chooses one of the following four procedures
with probabilities, oy, 0tap, rc, and oy, respectively
(The subscripts of “a’, “’, “c’, and “p” stand for “addition’,
“remove’, “cluster’, and “protein’; respectively):

¢ randomly add a new cluster with two components to
a set of predicted clusters, X,
¢ randomly add a new protein to a cluster in X,
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e randomly remove a cluster with two components in
X, and
e randomly remove a protein from a cluster in X.

Details of the four procedures are explained in the sub-
sequent sections. After executing one of the above four
options, the proposal function subsequently proposes a
new candidate value of y, which is max{10719,y + ¢}
where ¢ ~ A(0,0.001). Note that N'(i, o) is the normal
distribution with mean parameter, u, and variance param-
eter, 2. The minimum value of 10719 is used to avoid the
value y being negative.

Adding a new cluster with two components

In this option, an interaction, e € E, is randomly chosen
with the probability proportional to the weight, w(e). Let
x. be the cluster formed with the two proteins of e. Then,
x. is added to X. As a result, a candidate state X’ is given
as X U {x.}. The total probability of this proposal, denoted
by Quc(X'1X), is

w(e)

X'|X) = =
Qac(X'1X) = age Ze'e]g w(e)
If the same cluster has already existed in X, X’ is set to
be X.

Adding a protein to a cluster
For a cluster of proteins, x, we denote by N(x) the set of
neighboring proteins to x, i.e.,

Nx)={ueViu&x,Ivex{uv €L}

The procedure of adding a protein to a cluster in X is as
follows:

1. A cluster, x, is uniformly chosen at random from X.

2. A protein, u, is randomly chosen from N (x) with
probability proportional to w(u, x), which is the sum
of the weights of the interactions between u and all
components of x.

3. The chosen protein, u, is added to x.

The resulting state is X”. The resulting probability of this
proposal is

QurX'1X) =ty - i . %
a,, — Ya, .
g TOXD Yene W)

If N(x) is empty, X’ is the same as X.

Removing a cluster with two components

This procedure removes a cluster with two components
from X. It chooses a cluster, x, of size two from X at ran-
dom with probability proportional to the inverse of the
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weight of the unique interaction of x. The probability of
this proposal is given as

_ 1/wx)
Ywex stlwj=a L/wE)

If such an x does not exist, X’ is equal to X.

Qr,c(X/LX) = Crc

Removing a protein from a cluster
The last option removes a protein from a cluster by the
following procedure.

1. A cluster, x, is uniformly chosen at random from the
clusters with three or more components in X.

2. A protein, u, in x is randomly chosen with probability
proportional to 1/w(u, x), representing the inverse of
the strength of the connectivity between u and x.

3. The chosen protein, u, is removed from x.

Thus, the resulting probability is

1 1/w(u,x)
P e X = 3) Yoo, 1/w(vna)

Qr,p(X/|X) =
VEX
If X does not include any clusters with three or more
components, X' becomes X.

Cooling schedule for the temperature

We denote the value of the temperature parameter of the
£-th iteration of Algorithm 1 by T}, which is simply for-
mulated as follows. Let Ty be the initial temperature. It is
gradually reduced from To(= 1) by

T@ = Tg,1 x 0.999999.

Performance measure

We use the same performance measure as in [16, 17],
which can be described as follows. We say that x matches
k with matching threshold 7 if J(x, k) > n. Let X be a set
of all clusters predicted by a method, and K be a set of all
known complexes. For subsets, ¥ € X and K C K, we use
the following two sets,

Npe (X, K, n) = {xlx € X, 3k € K, ] (x, k) = n},
Nie (X, K, n) = {klk € K,3x € X, ] (%, k) > n}.

Table 1 Input PPl datasets

#Protein #PPI Degree Threshold
WI-PHI 5953 49,607 16.7 N/A
Collins 1,622 9,074 1.2 top 9,074
Krogan core 2,708 7,123 53 0.273
Krogan extended 3,672 14,317 7.8 0.101
Gavin 1,855 7,669 8.3 5

This table shows the number of proteins, the number of PPIs, the average of the
degrees of proteins, and the threshold used to filter out unreliable PPIs



Maruyama and Kuwahara BMC Bioinformatics 2017, 18(Suppl 15):491 Page 57 of 81
Table 2 The frequency of overlap sizes of protein complexes in CYC2008

Overlap size 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16 17
Frequency 151 22 9 13 4 1 10 1 0 1 1 1 0 0 0 1 1

The row of “Overlap size” shows the size of the intersection between two complexes. The row of “Frequency” gives the number of overlapping complexes

The former represents the subset of X, each of which
matches at least one known complex in K with 7. The lat-
ter is the subset of K, each of which matches at least one
predicted cluster in X with 5. For an integer i (> 2), we
denote by X|; the subset of X whose elements have i com-
ponents, that is, X|; = {x € X||x| = i}, and by X|5; the
subset of X whose elements have i or more components,
that is, X|>; = {x € X||x| > i}. Similarly, we introduce
the notations of K|; and K|>; for K. We then formulate the
precision and recall as follows:

precision(X, K)

|X|
XNpc (X154, K|34,0.5) |) , recall(X, K)

(INpe (X2, K12, 1) | + [Npe (X13, K3, 1) | + |

1
K (INke (X12, K12, 1) | + [Nk (X3, K3, 1) [ + |

XNkC (X|24: I<|Z4: 0'5) |) .

Notice that the matching threshold for predicted clus-
ters and known complexes with four or more components
is set to be n = 0.5. On the other hand, the matching cri-
terion for predicted clusters and known complexes with
two or three components is an exact match as n = 1. The
reason for this is as follows. In many works on the prob-
lem of protein complex prediction, the degree of overlap

between a predicted cluster, x, and a known complex, x/,
JxNa’|
[xUx|
ratio of the size of the intersection between x and %’ to

the geometric mean of |x| and |x’|, that is, % These
measures do not work well for small sizes if a thresh-
old is low. For example, consider the case where x and
x with |x| = |&’| = 2 share exactly one protein. Note
that this situation is easily realized by randomly predict-
ing clusters with two components because there are many
known complexes with two components in protein com-
plex datasets. In this case, we see that J(x,x) = 1/3 and
the other ratio is 1/2. Thus, x and &’ are determined to
match with each other by both measures if the threshold
is set to be less than or equal to 1/3. We avoid this issue by
setting the threshold to be one for small clusters and com-
plexes. The F-measure of X to K is the harmonic mean of
the corresponding precision and recall, that is,

is measured by the Jaccard index, J(x,&") = , or the

precision(X, K) - recall(X, K)

FX,K)=2- — .
precision(X, K) + recall(X, K)

Results and discussion

Input PPl datasets and gold standard protein complexes

A set of PPIs with weights is given as input to a protein
complex prediction method. Our main PPI dataset is the
WI-PHI database [18]. Every PPI of the dataset is assigned
a weight representing its reliability derived from various
heterogeneous data sources. Any PPI of the dataset except
self-loop interactions is not filtered out by a threshold
to the weight. The number of proteins is 5953 and that
of non-self-loop PPIs is 49,607, as shown in Table 1. On
average, a protein has 16.7 interactions with others. The
weights of the PPIs range from 6.6 to 146.6. The normal-
ized weights, which are divided by the maximum value,
are given to protein complex prediction methods.

In addition to the WI-PHI dataset, we also use four dif-
ferent datasets of PPIs with weights, which are denoted
by Collins [19], Gavin [20], Krogan core, and Krogan
extended [21], which were also used in [9]. As shown
in Table 1, the number of proteins included in each
dataset is much smaller than the number of all yeast pro-
teins, which is about 6,000. Those datasets are filtered
by the threshold of those weights, shown in Table 1, to
use reliable PPIs. Those thresholds are the same as in
the original papers [19-21] of the PPI datasets and the
work [9].

All protein complexes in the yeast protein complex
database, CYC2008 [6], are used as gold standard protein
complexes. As mentioned before, an interesting point is
that among the complexes, 172 (42%) and 87 (21%) com-
plexes have two and three components, respectively. It has
216 pairs of two complexes overlapping with each other,
and those pairs are formed with 112 complexes. Details
are given in Table 2.

Table 3 Selected parameters

Parameters Value
MCL Inflation 34
SPICi Density, support, graph 0.1,05,0
ClusterONE Density 0.2
NWE Restart, cutoff, overlap 04,0.3,03
PPSampler2 Size dist coef, scaling exp, 500, 3,
Protein num coef, A 106, 2000
RocSampler Celu—dis: B.Cclu—size: Chy: 110, 0.2, 500, 10,
Cpro—num: 5% 107
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Fig. 2 Precision, recall, and F-measure of MCL, SPICi, ClusterONE,
NWE, PPSampler2, and RocSampler on the WI-PHI PPI dataset

Performance comparison

To evaluate how RocSampler works well, we carry out a
performance comparison with existing methods, MCL [8],
SPICi [13], ClusterONE [9], NWE [11], and PPSampler2
[4]. For each tool and each PPI dataset, the parameter
set with the highest F-measure is determined as follows.
MCL is a popular clustering-based method. It alternately
repeats two different steps. One is the expansion step,
which takes the square of a current transition matrix of
an input PPI network. Another is the inflation step, in
which all transition probabilities are raised to the power
of the value of the inflation parameter and normalized.
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The inflation parameter is optimized over the range from
1.2 to 5.0 in steps of 0.1. SPICi is a clustering algorithm
using the weighted version of the standard density mea-
sure. The parameters of minimum cluster density and
minimum support threshold are independently chosen in
the range from 0.1 to 0.9 in steps of 0.1. The graph mode
parameter is also optimized over O (sparse graph), 1 (dense
graph), and 2 (large sparse graph). ClusterONE is also
a clustering algorithm using a cohesiveness score. The
most important parameter is the minimum density of pre-
dicted complexes. We optimized the parameter value over
the range from 0.1 to 0.9 in steps of 0.1. NWE executes
random walks with restarts and constructs predicted clus-
ters based on the probability from one protein to another
obtained from the random walks. Here, three parame-
ters are optimized. The restart probability takes the range
from 0.4 to 0.8 in steps of 0.1. The early cutoff is opti-
mized in the range from 0.3 to 0.7 in steps of 0.1. The
overlap threshold is selected from the range from 0.1 to 0.4
in steps of 0.1. PPSampler2 is an MCMC(Markov Chain
Monte Carlo)-based method whose structure of a set of
predicted clusters is a partition of proteins. The following
four parameters are optimized. The coefficient of the term
regulating the power-law distribution of sizes of predicted
clusters is selected among 500, 1000, and 1,500. The scal-
ing exponent is optimized over 2.0, 2.5, and 3.0. The coef-
ficient of the term regulating the number of proteins over
predicted clusters is selected from 10°, 10°, and 107. The
target number of proteins used in that term, A, is selected
from 1,000, 2,000, and 3,000. The four coefficients of the

120
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Fig. 3 The distributions of sizes of predicted clusters by PPSampler2 and RocSampler
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scoring function of RocSampler are optimized over the
ranges: B € {0.2,0.3,0.4}, cy—size € {200, 300,400, 500},
chy € {5,10,15,20}, Cpro—mum € {5 x 107°,107%,1.5 x
1074}, and cgu_gis € {70,90,110,130,150,170}. The
repeat count, L, is fixed to 5,000,000.

Note that MCL, SPICi, and PPSampler2 do not allow
predicted clusters to overlap with each other.

Prediction from WI-PHI
The selected parameter values on the WI-PHI PPI dataset
are shown in Table 3, and the precision, recall, and
F-measure are given in Fig. 2. Regarding precision, the
methods are classified into three groups. The top group
comprises only RocSampler, which achieved a remark-
ably high precision score, 0.52. This score is derived
from 147 correctly predicted clusters out of 281 predicted
ones. The second group consists of SPICi, PPSampler2,
and ClusterONE, whose scores are 0.40, 0.37, and 0.35,
respectively. The third group consists of the remaining
tools, MCL and NWE, whose scores are drastically low, at
about 0.06. Regarding recall, RocSampler and PPSampler2
obtain the same highest score, 0.38. This score is obtained
from 156 predicted clusters matched with at least one
known complex over all 408 known complexes. The third
best score, 0.33, is achieved by ClusterONE. The scores
of the remaining tools are less than 0.26. Recall that F-
measure is the harmonic mean of precision and recall.
Regarding this measure, RocSampler clearly outperforms
the other tools. The F-measure score is 0.44, followed by
0.37 (PPSampler2), 0.34 (ClusterONE), and 0.31 (SPICi).
We here compare the performances of PPSampler2
and RocSampler intensively, because, RocSampler is an
improved version of PPSampler2. The precision scores
of PPSampler2 and RocSampler are 145/396 = 0.37 and
147/281 = 0.52, respectively. On the other hand, their
recall scores are, as mentioned, the same, 156/408 = 0.38.
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Fig. 4 Prediction performance on the Collins PPl dataset
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Fig. 5 Prediction performance on the Gavin PPI dataset

Thus, RocSampler improves the precision score without
reducing the recall score. As a result, the F-measure score
of RocSampler, 0.44, is 19% higher than that of PPSam-
pler2, 0.37.

We furthermore compare details of the predictions by
PPSampler2 and RocSampler. Figure 3 shows the distribu-
tions of the sizes of predicted clusters of PPSampler2 and
RocSampler. We can see that PPSampler2 predicted more
clusters with two to ten components. These extra clusters
just make the precision score of PPSampler2 worse than
that of RocSampler because both of the recall scores are
the same.

Surprisingly, no predicted clusters of RocSampler over-
lap with others, although we had expected that some
would overlap with each other. A relatively sparse set
of predicted clusters might be a good approximation to
the current gold standard protein complexes, although
further investigation of this issue is required.
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Fig. 6 Prediction performance on the Krogan core PPl dataset
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Fig. 7 Prediction performance on the Krogan extended PPI dataset

We have mentioned that the scaling exponent of the
power-law regression curve in Fig. 1 is 2.02. The found
value of y is 1.91, which is quite similar to the true value.

Prediction from other PPI datasets

The prediction performances of the methods on the four
remaining PPI datasets are given in Figs. 4, 5, 6 and 7. The
chosen best parameter values are given in Table 4. As we
can see, RocSampler is superior to the other methods in
F-measure for each PPI dataset. In addition, RocSampler
also outperforms the others at least in either precision or
recall.

Example of overlapping clusters

RocSampler has succeeded in predicting overlapping clus-
ters only from the Collins PPI dataset. We here give an
example of such overlapping clusters, which are good
predictions of known complexes.

Figure 8 shows two overlapping clusters and their
matched known complexes. The clusters are represented
by red and blue broken curves, denoted by x; and x,
which surround their component proteins. As we can
see, they share the four proteins, Smb1p, Smd1lp, Smd2p,
and Smd3p. These four proteins are known to be part of
the heteroheptameric complex with Smelp, Smx3p, and
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Smx2p, which are also shown in Fig. 8. The heterohep-
tameric complex is known as part of the spliceosomal U1,
U2, U4, and U5 snRNPs. snRNPs (small nuclear ribonu-
cleo proteins), which are RNA-protein complexes, form
a spliceosome with unmodified pre-mRNA and various
other proteins. Thus, it can be expected that x; and
x2 match some of the spliceosomal snRNPs. Actually,
as shown in Fig. 8, x; matches the Ul snRNP complex
[22] with Jaccard index 0.79, whose components are sur-
rounded by an orange solid curve. In addition, x; overlaps
more with the commitment complex with Jaccard index
0.81, indicated by a brown solid curve. The commit-
ment complex is known as an ATP-independent complex
that commits hnRNAs to the splicing pathway [23]. Fur-
thermore, x matches the U4/U6.U5 tri-snRNP complex
[24, 25] whose Jaccard index is 0.59, indicated by a green
solid curve in Fig. 8.

On the other hand, PPSampler2 found the cluster with
Mudlp, Luc7p, Prp42p, Snu56p, Snu71p, Nam8p, Snplp,
Prp40p, Yhclp, Prp39p, Stolp, Cbc2p, and Smx3p. This
cluster includes only Smx3p among the seven components
of the heteroheptameric complex. Although it matches
the commitment complex and Ul snRNP complex, the
Jaccard indexes are 0.61 and 0.58, lower than the corre-
sponding ones of RocSampler. It can be expected that all
or most of the remaining components of the heterohep-
tameric complex are included in another cluster which
matches the U4/U6.U5 tri-snRNP complex, but PPSam-
pler2 failed to find such a cluster. Thus, we can say that,
by allowing predicted clusters to overlap with each other,
more refined predictions are obtained.

Conclusion

In this work, we have proposed a novel sampling-based
protein complex prediction method, RocSampler, which is
a successor to PPSampler2. The major difference between
them is that RocSampler exploits a regularization term for
controlling overlaps of predicted clusters and PPSampler2
does not allow predicted clusters to overlap with each
other. RocSampler also introduced a new proposal func-
tion for generating overlapping clusters and regularization
terms refined from those of PPSampler2. We have shown

Table 4 Selected parameters for the Collins, Gavin, Krogan core, and Krogan extended PPl datasets

Collins Gavin Krogan core Krogan extended
MCL 2.1 25 24 16
SPICi 0.1,05,0 04,04,0 06,03,0 06,04,0
ClusterONE 0.7 04 0.6 0.7
NWE 04,03,0.1 04,03,02 04,03,04 04,07,0.1
PPSampler2 1500, 3, 107, 1000 500, 2.5,10%, 1000 1000, 2,107, 1000 1500, 3,107, 1000
RocSampler 90,0.3 300, 5, 170, 0.2, 200, 20, 170,03, 500, 15, 150,0.3, 200,15,
15 % 1074 1074 15 % 1074 15 % 1074
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Fig. 8 Example of overlapping clusters. The red and blue broken lines surround the proteins included by two predicted clusters. The brown, orange,
and green lines surround the proteins included by the known complexes that match one of the predicted clusters

that RocSampler outperforms five other methods on five
different PPI datasets. RocSampler has succeeded in find-
ing overlapping clusters from the Collins PPI dataset, but
it has not done so from the other PPI datasets. Future
work is required to identify the reason for this and to
devise a new scoring function to attain higher perfor-
mance and simultaneously to find overlapping clusters of
proteins.
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