
Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496
DOI 10.1186/s12859-017-1919-y

RESEARCH Open Access

CAMSA: a tool for comparative analysis
and merging of scaffold assemblies
Sergey S. Aganezov1,2* and Max A. Alekseyev3

From 6th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS)
Atlanta, GA, USA. 13-15 October 2016

Abstract

Background: Despite the recent progress in genome sequencing and assembly, many of the currently available
assembled genomes come in a draft form. Such draft genomes consist of a large number of genomic fragments
(scaffolds), whose positions and orientations along the genome are unknown. While there exists a number of methods
for reconstruction of the genome from its scaffolds, utilizing various computational and wet-lab techniques, they
often can produce only partial error-prone scaffold assemblies. It therefore becomes important to compare and
merge scaffold assemblies produced by different methods, thus combining their advantages and highlighting
present conflicts for further investigation. These tasks may be labor intensive if performed manually.

Results: We present CAMSA—a tool for comparative analysis and merging of two or more given scaffold assemblies.
The tool (i) creates an extensive report with several comparative quality metrics; (ii) constructs the most confident
merged scaffold assembly; and (iii) provides an interactive framework for a visual comparative analysis of the given
assemblies. Among the CAMSA features, only scaffold merging can be evaluated in comparison to existing methods.
Namely, it resembles the functionality of assembly reconciliation tools, although their primary targets are somewhat
different. Our evaluations show that CAMSA produces merged assemblies of comparable or better quality than
existing assembly reconciliation tools while being the fastest in terms of the total running time.

Conclusions: CAMSA addresses the current deficiency of tools for automated comparison and analysis of multiple
assemblies of the same set scaffolds. Since there exist numerous methods and techniques for scaffold assembly,
identifying similarities and dissimilarities across assemblies produced by different methods is beneficial both for the
developers of scaffold assembly algorithms and for the researchers focused on improving draft assemblies of specific
organisms.

Keywords: Genome assembly, Assembly reconciliation, Scaffolding, Visualization, Breakpoint graph, Genome
finishing

Background
While genome sequencing technologies are constantly
evolving, researchers are still unable to read complete
genomic sequences at once from organisms of interest.
So, genome reading is usually done in multiple steps,
which involve both in vitro and in silico methods. It
starts with reading small genomic fragments, called reads,

*Correspondence: aganezov@cs.princeton.edu
1Princeton University, 35 Olden St., Princeton 08450, NJ, USA
2ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia
Full list of author information is available at the end of the article

originating from unknown locations in the genome. Mod-
ern shotgun sequencing technologies can easily produce
millions of reads. The problem then becomes to assem-
ble them into the complete genome. Existing de novo
genome assembly algorithms can usually assemble reads
into longer genomic fragments, called contigs, that are typ-
ically interweaved in the genome with highly polymorphic
and/or repetitive regions. The next step is to construct
scaffolds, i.e., sequences of (oriented) contigs along the
genome interspaced with gaps. The last but not least
step is genome finishing that recovers genomic sequences
inside the gaps within the scaffolds.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1919-y&domain=pdf
mailto: aganezov@cs.princeton.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 42 of 81

Unfortunately, the quality of scaffolds (e.g., exposing
severe fragmentation) for many genomes makes the fin-
ishing step infeasible. As a result, the majority of currently
available genomes come in a draft form represented by
a large number of scaffolds rather than complete chro-
mosomes [1]. This emphasizes the need for improving
the assembly quality of genomes by constructing longer
scaffolds from the given ones,1 which we refer to as the
scaffold assembly problem. In other words, the scaffold
assembly problem asks for reconstruction of the order of
input scaffolds along the genome chromosomes.

A number of methods have been recently proposed to
address the scaffold assembly problem by utilizing various
types of additional information and/or in vitro experi-
ments. These methods are based on jumping libraries
[2–8], long error-prone reads (such as PacBio or MinION
reads) [9–13], homology relationship between multiple
genomes [14–16], wet-lab experiments such as the flu-
orescence in situ hybridization (FISH) [17, 18], genome
maps [19–21], higher order chromatin interactions [22],
and so on. Depending on the nature and accuracy of uti-
lized information and techniques, assemblies produced
by different methods may still be incomplete and contain
errors, thus deviating from each other. Moreover, some
scaffolding methods (e.g., based on FISH or HiC data) can
produce assemblies, where the (strand-based) orientation
of some assembled scaffolds is yet to be determined.

It therefore becomes crucial to determine what parts of
different assemblies are consistent with and/or comple-
ment each other, and what parts are conflicting with other
assemblies (or even within the same assembly). Further-
more, some scaffold assemblies may utilize only a frac-
tion of the input scaffolds (e.g., homology-based assembly
methods do not take into account unannotated scaffolds),
thus posing a problem of analyzing and comparing assem-
blies of varying subsets of scaffolds. Comparative analy-
sis of scaffold assemblies produced by different methods
can help the researchers to combine their advantages,
and highlight potential conflicts for further investigation.
These tasks may be labor-intensive if performed manually.

While there exists a number of methods [23–29] for rec-
onciling multiple assemblies of the same organism, they
all are limited only to oriented scaffolds and thus are inap-
plicable to scaffold assemblies that include unoriented
scaffolds. Furthermore, some of these methods require a
reference genome sequence, which is often unavailable for
non-model organisms. On the other hand, reconciliation
methods that operate in de-novo fashion often process the
input assemblies progressively, which makes such meth-
ods sensitive to the order of the input assemblies and
affects the quality of the reconciled assembly.

We present CAMSA, a tool for comparative analysis and
de-novo merging of scaffold assemblies. CAMSA takes
as an input two or more assemblies of the same set

of scaffolds and generates a comprehensive comparative
report for them. Input assemblies can include both ori-
ented and unoriented scaffolds, which enables CAMSA
to process assemblies from the full range of scaffolding
techniques (both in silico and in vitro). The generated
comparative report not only contains multiple numerical
characteristics for the input assemblies, but also provides
an interactive framework, allowing one to visually analyze
and compare the input scaffold assemblies at regions of
interest. CAMSA also computes a merged assembly, com-
bining the input assemblies into a more comprehensive
one that resolves conflicts and determines orientation of
unoriented scaffolds in the most confident way. The non-
progressive nature of merging in CAMSA eliminates the
dependency on the order of input scaffold assemblies. We
remark that CAMSA can be utilized at different stages of
the genome assembly process and be applied to assem-
blies of various genomic fragments, ranging from contigs
to superscaffolds. In particular, CAMSA input can include
results of other assembly reconciliation methods.

Methods
Assembly analysis and visualization
For the purpose of comparative analysis and visualiza-
tion of the input scaffold assemblies, CAMSA utilizes the
breakpoint graphs, the data structure traditionally used for
analysis of gene orders across multiple species [30]. We
will refer to the breakpoint graph constructed on a set of
scaffold assemblies as the scaffold assembly graph (SAG).

We start with the case of assemblies with no unori-
ented scaffolds. Then each assembly A can be viewed as
a set of sequences of oriented scaffolds. We represent
A as an individual scaffold assembly graph SAG(A) with
two types of edges: directed edges (scaffold edges) encod-
ing scaffolds in A, and undirected edges (assembly edges)
representing scaffold adjacencies and connecting extrem-
ities (tails/heads) of the corresponding scaffold edges
(Fig. 1a, b, c).

We find it convenient to refer to each assembly edge as
an assembly point. Equivalently, an assembly point in A
can be represented by an ordered pair of oriented scaf-
folds. We specify the orientation of a scaffold s, either by
a sign (+s or −s) or by an overhead arrow (−→s or ←−s). For
example, (−→s1 , ←−s2) and (−→s2 , ←−s1) represent the same assem-
bly point between scaffolds s1 and s2 following each other
head-to-head. Clearly, any assembly is completely defined
by the set of its assembly points.

To construct the scaffold assembly graph
SAG(A1, . . . , Ak) of input assemblies A1, . . . , Ak , we rep-
resent them as individual graphs SAG(A1), . . . , SAG(Ak),
where the undirected edges in each SAG(Ai) are colored
into unique color. Then the graph SAG(A1, . . . , Ak) can
be viewed as the superposition of individual graphs
SAG(A1), . . . , SAG(Ak) and can be obtained by gluing

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 43 of 81

a b

d

c

Fig. 1 Individual scaffold assembly graphs for assemblies A1 = {(−→s1 , −→s3 , ←−s4
)

, (s2)
}

(red edges), A2 = {(−→s1 , −→s2 , −→s3 , s4
)}

(blue edges), and
A3 = {(−→s1 , −→s2 , s3

)
, (s4)

}
(green edges), and their scaffold assembly graph SAG(A1, A2, A3). Scaffold edges are colored black. Actual assembly edges

are shown as solid, while candidate assembly edges are shown as dashed. a Individual scaffold assembly graph SAG(A1). b Individual scaffold
assembly graph SAG(A2). c Individual scaffold assembly graph SAG(A3). d Scaffold assembly graph SAG(A1, A2, A3)

the identically labeled directed edges. So the graph
SAG(A1, . . . , Ak) consists of (directed, labeled) scaffold
edges encoding scaffolds and (undirected, unlabeled)
assembly edges of k colors encoding assembly points
in different input assemblies (Fig. 1d). We will refer to
edges of color Ai (i.e., coming from SAG(Ai)) as Ai-edges.
The assembly edges connecting the same two vertices x
and y form the multiedge {x, y} in SAG(A1, . . . , Ak). The
multicolor of {x, y} is defined as the union of the colors of
individual edges connecting x and y.

We define the (ordinary) degree odeg(x) of a vertex x
in SAG(A1, . . . , Ak) as the number of assembly edges inci-
dent to x. We distinguish it from the multidegree mdeg(x)

defined as the number of adjacent vertices that are con-
nected to x with assembly edges.

When all assemblies A1, . . . , Ak agree on a particular
assembly point {x, y}, the graph SAG(A1, . . . , Ak) contains
a multi-edge {x, y} composed of edges of all k differ-
ent colors. In other words, both vertices x and y in this
case have degree k and multidegree 1. For a vertex z in
SAG(A1, . . . , Ak), odeg(z) �= k or mdeg(z) �= 1 indicate
some type of inconsistency between the assemblies.

For given scaffold assemblies A1, . . . , An, we classify an
individual assembly point p ∈ Ai representing an Ai-edge
{x, y} in SAG(A1, . . . , Ak) as follows:

• unique if the multicolor of {x, y} is {Ai}, i.e., the
assembly point p is present only in a single assembly;

• conflicting with an assembly point c ∈ Aj if c
represents an assembly edge {x, z} with z �= y (i.e.,
mdeg(x) > 1), or an assembly edge {y, z} with z �= x
(i.e., mdeg(y) > 1). In particular, p is

– in-conflicting with c if i = j (Fig. 2c);
– out-conflicting with c if i �= j (Fig. 2a).2

• non-conflicting if p is not conflicting with any other
assembly points.

We say that an assembly point is in-/out- conflicting if it is
in-/out- conflicting with at least one other assembly point.

Dealing with Unoriented scaffolds
While conventional multiple breakpoint graphs are con-
structed for sequences of oriented genes, in CAMSA we
extend scaffold assembly graphs to support assemblies
that may include oriented as well as unoriented scaffolds.

In addition to (oriented) assembly points formed by
pairs of oriented scaffolds, we now consider semi-oriented
and unoriented assembly points.

A semi-oriented assembly point represents an adjacency
between an oriented scaffold and an unoriented one.
For example, (←−s1 , s2) and (s2, −→s1) denote the same semi-
oriented assembly point, where scaffold s1 is oriented and
s2 is not (as emphasized by a missing overhead arrow).
Similarly, an unoriented assembly point represents an
adjacency between two unoriented scaffolds. For example,
(s1, s2) and (s2, s1) denote the same unoriented assembly
point between unoriented scaffolds s1 and s2.

We define a realization of an assembly point p as any
oriented assembly point that can be obtained from p by
orienting unoriented scaffolds. We denote the set of real-
izations of p as R(p). If p is oriented, then it has a single
realization equal to p itself (i.e., R(p) = {p}); if p is semi-
oriented, then it has two realizations (i.e., |R(p)| = 2);
and if p is unoriented, then it has four realizations (i.e.,
|R(p)| = 4). For example,

R ((s1, s2)) = {
(←−s1 , ←−s2), (←−s1 , −→s2), (−→s1 , ←−s2), (−→s1 , −→s2)

}
.

In the scaffold assembly graph, we add assembly edges
encoding all realizations of semi-/un- oriented assembly

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 44 of 81

a b

c d

Fig. 2 Illustration of various conflicts between assembly points of assemblies A1 (red edges) and A2 (blue edges). a Assembly points
(−→s1 , −→s2

)
from

assembly A1 and
(−→s1 , −→s3

)
from assembly A2 are out-conflicting. b Assembly points

(
s1, −→s2

)
from A1 and

(−→s1 , −→s2
)

from A2 are out-semiconflicting. c
Assembly points

(−→s1 , −→s2
)

and
(−→s2 , −→s3

)
both from A1 are in-conflicting. d assembly points

(
s1, −→s2

)
and

(−→s1 , −→s2
)

both from A1 are in-semiconflicting

points and refer to such edges as candidate, in contrast to
actual assembly edges encoding oriented assembly points.

We extend the conflictedness classification to semi-
oriented and unoriented assembly points as follows. An
assembly point p is in-conflicting (out-confliciting) with
an assembly point c if all pairs of their realizations
{p′, c′} ∈ R(p) × R(c) are in-conflicting (out-confliciting).
Similarly, an assembly point p is in-semiconflicting (out-
semiconfliciting) with an assembly point c if some but
not all pairs of their realizations are in-conflicting (out-
confliciting) (Fig. 2b, d). It is easy to see that for the case
of all assembly points being oriented, this definition is
consistent with the one given in the previous section.

Merging assemblies
CAMSA can resolve conflicts in the input assemblies by
merging them into a single (not self-confliciting) merged
assembly that is most consistent with the input ones. The
merged assembly is also used to determine orientation
of (some) unoriented scaffolds in one input assemblies
that is most confident and/or consistent with other input
assemblies. In other words, the merged assembly helps to
identify realizations of (some) semi-/un- oriented assem-
bly points that are most consistent with other assem-
blies. Namely, for each semi-/un- oriented assembly point,
the merged assembly contains either only one or none
of its realizations; and in the former case, the included
realization defines the most confident orientation of the
corresponding unoriented scaffolds.

Assembly merging performed by CAMSA is based on
how often each assembly point appears in the input
assemblies as well as on the (optional) confidence of each
such appearance. Namely, for each assembly point p in
an input assembly A, CAMSA allows to specify the confi-
dence weight CWA(p) from the interval [0, 1], which is then

assigned to the corresponding assembly edge(s) (Fig. 3a).
The confidence weights are expected to reflect the confi-
dence level of the assembly methods in what they report as
scaffold adjacencies (e.g., heuristic methods should prob-
ably have smaller confidence as compared to more reliable
wet-lab techniques). By default, all actual assembly edges
have the confidence weight equal 1, and all candidate
assembly edges have weight 0.75 (these default values can
be overwritten by the user).

For any oriented assembly B (viewed as a set of oriented
assembly points), we define the consistency score CSB(A)
of an input assembly A with respect to B as CSB(A)=∑

p∈B CWA(p), where

CWA(p) =
{

0, if ∀ x ∈ A : p �∈ R(x);
CWA(x), if ∃ x ∈ A : p ∈ R(x).

We pose the assembly merging problem (AMP) as follows.

Problem 1 (Assembly Merging Problem, AMP) Given
assemblies A1, . . . , Ak of the same set of scaffolds S, find an
assembly M of S containing only oriented assembly points
such that

(i) M is not self-conflicting (i.e., does not contain any in-
conflicting assembly points);

(ii)
∑k

i=1 CSM(Ai) is maximized;
(iii) for every assembly point p ∈ A1∪· · ·∪Ak, at most one

of its realizations is present in M (i.e., |M∩R(p)| ≤ 1).

For a solution M to the AMP, the condition (i) implies
that the assembly edges in SAG(M) form a matching. Fur-
thermore, M is assumed to correspond to the genome,
which may be subject to additional constraints such
as having all chromosomes linear (e.g., for vertebrate

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 45 of 81

a

b

Fig. 3 a Scaffold assembly graph SAG(A1, A2, A3), where assemblies A1, A2, and A3 are represented as red, blue, and green assembly edges,
respectively, labeled with the corresponding confidence weights. b Merged scaffold assembly graph MSAG(A1, A2, A3) obtained from
SAG(A1, A2, A3) by replacing each assembly multi-edge with an ordinary edge of combined weight. The bold assembly edges represent the merged
assembly computed by CAMSA

genomes) or having a single chromosome (e.g., for bacte-
rial genomes). These constraints are translated for M as
the absence in SAG(M) of cycles formed by alternating
assembly and scaffold edges (for a unichromosomal circu-
lar genome, such a cycle can be present in SAG(M) only if
it includes all scaffold edges).

To address the AMP, we start with construction
of the (weighted) merged scaffold assembly graph
MSAG(A1, . . . , Ak) from SAG(A1, . . . , Ak) by replacing
each assembly multi-edge with an ordinary assembly edge
of the weight equal the total weight of the correspond-
ing multi-edge (Fig. 3). So, MSAG(A1, . . . , Ak) is the graph
with two types of edges: unweighted directed scaffolds
edges and weighted undirected assembly edges. The AMP
is then can be reformulated as the following restricted
maximum matching problem (RMMP) on the graph G =
MSAG(A1, . . . , Ak):

Problem 2 (Restricted Maximum Matching Problem,
RMMP) Given a merged scaffold assembly graph G, find a
subset M of assembly edges in G such that

(i) M is a matching;
(ii) M has maximum weight;
(iii) there are no cycles in SAG(M).

Let M be a solution to the RMMP. Then the graph
SAG(M) consists of scaffold edges forming a perfect
matching and assembly edges from M forming a (pos-
sibly non-perfect) matching by the condition (i). Thus
SAG(M) is formed by collection of paths and cycles, whose
edges alternate between scaffold and assembly edges.
Furthermore, by the condition (iii), SAG(M) consists

entirely of alternating paths. A similar optimization prob-
lem, where the number of paths and the number cycles
in the resulting SAG(M) are fixed, is known to be NP-
complete [31], leaving a little hope for the RMMP to have
a polynomial-time solution. Instead, CAMSA employs two
merging heuristic solutions building upon the previously
proposed algorithms [31, 32] as described below in this
section.

Greedy merging heuristics. For a given merged scaffold
assembly graph G, this strategy starts with the graph H
consisting of scaffold edges from G and then iteratively
enriches H with assembly edges so that no cycles are cre-
ated in H. At any stage of this process, H is considered as a
collection of alternating paths, some of which are merged
into a longer path by adding a corresponding assembly
edge. The paths to merge are selected based on the con-
fidence weight of their linking assembly edge. The final
graph H constructed this way defines M as the set of
assembly edges in H (and so SAG(M) = H).

Maximum matching heuristics. For a given merged
scaffold assembly graph G, this first computes the max-
imum weighted matching M′ formed by assembly edges
of G. Namely, CAMSA employs the NetworkX library [33]
implementation of the blossom algorithm [34] for com-
puting M′.3 For the maximum weighted matching M′,
CAMSA looks for cycles in SAG(M′) (notice that all cycles
in SAG(M′) are vertex-disjoint) and removes an assembly
edge of the lowest confidence weight from each such cycle.
These edges are also removed from M′ to form M so that
SAG(M) consists entirely of alternating paths.

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 46 of 81

We remark that before solving the RMMP for G =
MSAG(A1, . . . , Ak), CAMSA allows to remove assembly
edges from G that have weight smaller than the weight
threshold specified by the user (by default, this thresh-
old is set to 0, i.e., no edges are removed). The removal
of small-weighted assembly edges may be desirable if one
wants to restrict attention only to assembly points of cer-
tain confidence level (e.g., assembly points coming either
from individual highly-reliable assemblies or as a con-
sensus from multiple assemblies). When such removal
of low-confidence edges is performed, it is important to
do so before (not after) solving the RMMP, since other-
wise these edges may introduce a bias for an inclusion of
high-confidence edges into the merged assembly M.

Results
Structure of CAMSA report
The results of comparative analysis and assembly merging
performed by CAMSA are presented to the user in the
form of an interactive report. The report is generated in a
form of a JavaScript-powered HTML file, readily accessi-
ble for viewing/working in any modern Internet browser
(for locally generated reports, Internet connection is not
required). Many of the report sections are also available
in the form of text files, making them accessible for
machine processing. All tables in the report are powered
by the DataTables JavaScript library [35], which provides
flexible and dynamic filtering, sorting, and searching
capabilities.

The first section of the CAMSA report presents aggre-
gated characteristics of each input assemblies as com-
pared to the others:

• the number of oriented, semi-oriented, and
unoriented assembly points;

• the number of in-/out- conflicting assembly points;
• the number of in-/out- semiconflicting assembly

points;
• the number of nonconflicting assembly points;
• the number of assembly points that participate in the

merged assembly.

The second section of the CAMSA report focuses on
consistency across various subsets of input assemblies.
For each subset, it gives characteristics similar to the ones
in the first section, but the values here are aggregated
over all assemblies in the subset. The subsets are listed
as a bar diagram in the descending order of the num-
ber of unique assembly points they contain (Fig. 4). Such
statistics eliminates the need of running CAMSA sepa-
rately on any assemblies subsets and allows the user to
easily identify groups of assemblies that agree/conflict
among themselves the most. We remark that each assem-
bly point is counted only once: for the set of assemblies
that contains this assembly point (but not for any of its
smaller subset). Since the the number of all subsets of
input assemblies can be large, CAMSA allows the user to
specify the number of top subsets to be displayed.

Fig. 4 The second section of the CAMSA report for the scaffold assemblies of H. sapiens Chr14 produced by ScaffMatch (A1), SGA (A2), SOAPdenovo2
(A3), and SSPACE (A4). For each subset of the assemblies A1, A2, A3, and A4, it gives the number of assembly points that are unique to this subset;
participate in the merged assembly; are in-conflicting; and are in-semiconflicting

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 47 of 81

The third section of the CAMSA report provides statis-
tics for each assembly point within each assembly. Exten-
sive interactive filtering allows the user to select assembly
points of interest, as well as to export the filtered results,
creating problem- / region- / fragment- focused analysis
pipelines. We remark that statistical characteristics (e.g.,
whether an assembly point is in-/out- conflicting or in-
/out- semiconflicting) are computed with respect to all of
the assembly points in all input assemblies.

The fourth section of the CAMSA report provides statis-
tics for each assembly point aggregated over all of the
input assemblies (Fig. 5). In contrast to the third section,
here each assembly point is shown exactly once, and the
sources column shows the set of assemblies where this
assembly point is present (e.g., in Fig. 5 the assembly point
(
−−−−−−−−→
contig_16, −−−−−−−−→

contig_17) is present in A1, A2, and A3).
Again, CAMSA provides extensive filtering to enable a
focused analysis of assembly points of interest. The result
of assembly points filtration can further be exported in the
same format, which is utilized for CAMSA input files (i.e.,
list of assembly points in a tab-separated format).

Besides the text-based representation and export, the
CAMSA report also provides an interactive visualization
and further graphical export of assembly points in the
form of the scaffold assembly graph. A vector-based inter-
active graph visualization is created using the Cytoscape.js
library [36]. This visualization has a dynamic graph layout

and supports filtration of graph components. We allow the
user to choose from several Cytoscape.js graph layouts;
the default layout comes from [37]. At any point the cur-
rent image of the scaffold assembly graph can be exported
from the report into a PNG file.

The time required for graph visualization heavily
depends on the chosen layout and the underlying graph
complexity. In cases when visualization inside the
report takes too much time, we provide the following
workarounds. The assembly points can be exported in
a text file and then converted into a DOT file describing
the corresponding scaffold assembly graph, whose visu-
alization then can be constructed with GraphViz [38].
Alternatively, one can choose to export the SAG subgraph
induced by the filtered assembly points into a JSON
file, which can further be processed with the desktop
Cytoscape software [39].

Evaluation
While merging of multiple input scaffold assemblies is just
one of the features of the CAMSA framework, it is the only
one that resembles existing tools, namely those perform-
ing assembly reconciliation. We therefore feel obliged to
compare its performance to such tools, even though we
pose CAMSA as a meta-tool that can take as an input the
results of various scaffolding methods, including assembly
reconciliation tools.

Fig. 5 The fourth section of the CAMSA report for the scaffold assemblies of S. aureus produced by ScaffMatch (A1), SGA (A2), SOAPdenovo2 (A3),
and SSPACE (A4). a Table resulting from filtration and containing only assembly points involving scaffold contig_17. b A subgraph of the scaffold
assembly graph SAG(A1, A2, A3, A4) induced by the assembly points involving scaffold contig_17

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 48 of 81

We evaluated the assembly merging in CAMSA by
running it on multiple scaffold assemblies of genomes
of different sizes from the GAGE project [40]. While
CAMSA can be used at any stage of genome scaffolding,
in this evaluation we applied it to the results of initial
scaffolding of contigs based on jumping libraries. We
chose the following four scaffolders for performing such
task: ScaffMatch [41], SOAPdenovo2 [6], SGA [42], and
SSPACE [8]. The input to these scaffolders was formed
by contigs and jumping libraries assembled and corrected
by Allpaths-LG [43], which are provided by GAGE. The
scaffold assemblies produced by these scaffolders were
used as an input to CAMSA as well as to Metassembler
[28] and GAM-NGS [29] assembly reconciliation tools.4
To demonstrate the advantages of CAMSA as a meta-
tool, we also run it on the four aforementioned scaffold
assemblies combined with the two reconciled assemblies
produced by Metassembler and GAM-NGS, and denoted
as CAMSA(+GM) in the evaluation results.

All tools were run on the same computer system with
dual Intel Xeon E5-2670 2.6GHz 8-core processors and
64GB of RAM. First, we measured the running time of
each tool. Then we assessed the quality of the result-
ing scaffold assemblies (formed by merged scaffolds) with
the number of metrics computed by QUAST [44] with
--scaffolds flag. Below we present most important
metrics, while the complete QUAST reports for both
input (Additional file 1: Tables S6, S7, S8) and result-
ing scaffold assemblies (Additional file 1: Tables S9, S10,
S11) are provided in Additional file 1. Namely, we mostly
consider the following QUAST metrics:

• # contigs: in our evaluation, the contigs counted by
QUAST correspond the merged scaffolds; so their
number measures the contiguity of the resulting
scaffold assemblies.

• # misassemblies (miss.): number of breakpoints in the
merged scaffolds, for which the left and right flanking
sequences align in the reference genome to different
strands / chromosomes (inversions / translocations),
or on the same stand and chromosome with a gap of
≥1000bp between each other (relocations).

• # local misassemblies (local miss.): number of
relocations with a gap in the range from 85bp to
1000bp.

• NA50: the maximum length L such that the
fragments of length ≥ L obtained from the merged
scaffolds by breaking them at misassembly sites cover
at least 50% of assembly.

• NA75: similar to NA50, but with 75% coverage of the
assembly.

Table 1 demonstrates that CAMSA is the fastest among
the tools in comparison. We separately benchmarked the

Table 1 Running time of GAM-NGS, Metassembler, and CAMSA
on scaffold assemblies produced by ScaffMatch, SOAPdenovo2,
SGA, and SSPACE on three GAGE datasets

S. aureus R. sphaeroides H. sapiens Chr14

GAM-NGS 4m25s (+2m3s) 8m47s (+4m14s) 1h29m (+43m)

Metassembler 59m16s (+0s) 1h48m53s (+0s) 8h19m10s (+0s)

CAMSA 2s (+3s) 2s (+10s) 48s (+59m)

CAMSA(+GM) 2s (+3s) 2s (+10s) 54s (+1h10m)

Time in parentheses is additional and corresponds to the data preparation. Best
results are shown in bold

data preparation and processing. We remark that depend-
ing on the format of input scaffold assemblies as well as
the overall assembly pipeline, the data preparation step
may be not required or take significantly different time.
For CAMSA in this evaluation data preparation involves
the conversion of scaffold assemblies from FASTA for-
mat into the set of assembly points,5 using a utility script
based on NUCmer software [45] ran in parallel for each of
the input assemblies. For GAM-NGS, one needs to align
the jumping libraries onto the input scaffold assemblies
as well as onto the intermediate reconciled assemblies
(progressively generated from the input assemblies). The
former alignments were treated as data preparation (since
they may be readily available from the assembly pipeline),
while the latter alignments are generally unavailable and
thus were treated as data processing. For Metassembler,
no data preparation was required since all alignments are
performed internally.

Table 2 shows the quality of the scaffold assemblies
produced by different tools. In all datasets, the assembly
produced by CAMSA was either the best or very close to
the best in each of the metrics. We remark that in some
cases CAMSA(+GM) takes advantage of the reconciled
assemblies and demonstrates better results than CAMSA.
In other cases, however, having the reconciled assemblies
turns out to be disadvantageous due to the elevated pres-
ence of misassemblies in them. This emphasizes the fact
that assembly reconciliation/merging is sensitive to the
quality of input assemblies and should be interpreted with
caution. The comparative report in CAMSA can greatly
help in identification of conflicting assembly points (indi-
cating potential misassemblies), enabling their targeted
analysis.

Discussion
We remark that CAMSA expects as an input a list of
assembly points, which differs from the output produced
by some conventional scaffolding tools. This inspired
us to develop a set of utility scripts that automate the
input/output conversion process for CAMSA (e.g., from/to
formats like FASTA,6 AGPv2, or GRIMM), and include
them in the CAMSA package. We remark that our current

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 49 of 81

Table 2 Quality of the reconciled/merged scaffold assemblies
constructed by GAM-NGS, Metassembler, and CAMSA from the
scaffold assemblies produced by ScaffMatch, SOAPdenovo2,
SGA, and SSPACE on three GAGE datasets

contigs # miss. # local miss. NA50 NA75

S. aureus

GAM-NGS 6 0 6 1082860 1082860

Metassembler 6 0 3 1083010 1083010

CAMSA 6 0 3 1083448 1083448

CAMSA(+GM) 6 0 2 1083436 1083436

R. sphaeroides

GAM-NGS 16 6 17 3080645 3080645

Metassembler 9 6 17 3080845 3080845

CAMSA 9 6 9 2965313 2965313

CAMSA(+GM) 10 6 9 2964450 2964450

H. sapiens Chr14

GAM-NGS 128 83 543 2941846 1235019

Metassembler 93 94 528 2494911 1235460

CAMSA 109 91 485 2624904 1235471

CAMSA(+GM) 94 84 511 2979834 1235464

Best results are shown in bold

model treats scaffolds that are present more than once
in the input assembly as conflicts, thus limiting the
ability to work with scaffolds coming from repetitive
DNA regions. However, this issue may rarely appear
for long scaffolds, and in fact we did not encounter it
in our evaluations. Still, we have plans to expand the
model and add support for repetitive scaffolds in future
CAMSA releases.

We further plan to enrich the graph-based analysis
in CAMSA with various pattern matching techniques,
enabling a better classification of assembly conflicts based
on their origin (e.g., conflicting scaffold orders, wrong
orientation of scaffolds, or different resolution of assem-
blies). We also plan on adding a reference mode, so that
classification of assembly points in the input assemblies
can be done with respect to a known reference genome,
rather than just with respect to each other.

Conclusion
CAMSA addresses the current deficiency of tools for
automated comparison and analysis of multiple assem-
blies of the same set scaffolds. Since there exist numerous
methods and techniques for scaffold assembly, identifying
similarities and dissimilarities across assemblies produced
by different methods is beneficial both for the develop-
ers of scaffold assembly algorithms and for the researchers
focused on improving draft assemblies of specific
organisms.

CAMSA is currently utilized in the study of Anophe-
les mosquito genomes [46], where multiple research
laboratories work on improving the existing assemblies for
a set of mosquito species.

Endnotes
1 We remark that contigs can be viewed as scaffolds with

no gaps. So, under scaffolds we understand both contigs
and scaffolds.

2 We remark that an assembly point can be in/out-
conflicting with multiple different assembly points at the
same time.

3 The blossom algorithm computes a maximal weighted
matching in a graph in O(V 3) time, where V is the
number of vertices.

4 We also considered GARM [27], but were unable to
run it on any GAGE dataset, facing issues similar to those
reported in [28].

5 We remark that conversion, for example, from NCBI
AGPv2 format (rather than FASTA) would be much faster.

6 We support FASTA files that may or may not contain
gap filling.

Additional file

Additional file 1: CAMSA: Evaluation Details. (PDF 192 kb)

Funding
The work and publication costs are funded by the National Science
Foundation under the grant No. IIS-1462107.

Availability of data and materials
CAMSA is distributed under the MIT license and is available at http://cblab.
org/camsa/. All utilized datasets are publicly available as specified in
Additional file 1.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 15, 2017: Selected articles from the 6th IEEE International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS): bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-18-supplement-15.

Authors’ contributions
The authors have contributed equally to preparation of the present
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://dx.doi.org/10.1186/s12859-017-1919-y
http://cblab.org/camsa/
http://cblab.org/camsa/
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-15
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-15

Aganezov and Alekseyev BMC Bioinformatics 2017, 18(Suppl 15):496 Page 50 of 81

Author details
1Princeton University, 35 Olden St., Princeton 08450, NJ, USA. 2ITMO University,
49 Kronverksky Pr., St. Petersburg 197101, Russia. 3The George Washington
University, 45085 University Dr., Suite 305, 20147 Ashburn, VA, USA.

Published: 6 December 2017

References
1. Reddy T, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J,

Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC. The Genomes OnLine
Database (GOLD) v.5: a metadata management system based on a four
level (meta)genome project classification. Nucleic Acids Res. 2015;43(D1):
1099–106.

2. Hunt M, Newbold C, Berriman M, Otto TD. A comprehensive evaluation
of assembly scaffolding tools. Genome Biol. 2014;15(3):1–15.

3. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a
parallel assembler for short read sequence data. Genome Res. 2009;19(6):
1117–23.

4. Koren S, Treangen TJ, Pop M. Bambus 2: scaffolding metagenomes.
Bioinformatics. 2011;27(21):2964–71.

5. Gritsenko AA, Nijkamp JF, Reinders MJ, de Ridder D. GRASS: a generic
algorithm for scaffolding next-generation sequencing assemblies.
Bioinformatics. 2012;28(11):1429–37.

6. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y,
et al. SOAPdenovo2: an empirically improved memory-efficient
short-read de novo assembler. GigaScience. 2012;1:18.

7. Dayarian A, Michael TP, Sengupta AM. SOPRA: Scaffolding algorithm for
paired reads via statistical optimization. BMC Bioinformatics. 2010;11:345.

8. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding
pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578–9.

9. Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJ, Birol I.
LINKS: Scalable, alignment-free scaffolding of draft genomes with long
reads. GigaScience. 2015;4:35.

10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new
genome assembly algorithm and its applications to single-cell
sequencing. J Comput Biol. 2012;19(5):455–77.

11. Bashir A, Klammer AA, Robins WP, Chin CS, Webster D, Paxinos E, Hsu D,
Ashby M, Wang S, Peluso P, et al. A hybrid approach for the automated
finishing of bacterial genomes. Nat Biotechnol. 2012;30(7):701–7.

12. Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft
genomes using long read sequence information. BMC Bioinformatics.
2014;15:211.

13. Lam KK, LaButti K, Khalak A, Tse D. FinisherSC: a repeat-aware tool for
upgrading de novo assembly using long reads. Bioinformatics.
2015;31(19):3207–9.

14. Assour L, Emrich S. Multi-genome synteny for assembly improvement. In:
Proceedings of 7th International Conference on Bioinformatics and
Computational Biology. Honolulu: International Society for Computers
and their Applications (ISCA). 2015. p. 193–9.

15. Aganezov S, Alekseyev MA. Multi-Genome Scaffold Co-Assembly Based
on the Analysis of Gene Orders and Genomic Repeats. In: Bourgeois A, et
al, editors. Proceedings of the 12th International Symposium on
Bioinformatics Research and Applications (ISBRA). Lecture Notes in
Computer Science. 2016. p. 237–49. doi:10.1007/978-3-319-38782-6_20.

16. Anselmetti Y, Berry V, Chauve C, Chateau A, Tannier E, Bérard S.
Ancestral gene synteny reconstruction improves extant species
scaffolding. BMC Genomics. 2015;16:1–13.

17. Rudkin GT, Stollar B. High resolution detection of DNA–RNA hybrids in
situ by indirect immunofluorescence. Nature. 1977;265:472. http://dx.doi.
org/10.1038/265472a0.

18. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries
with molecular biology. Nat Rev Genet. 2005;6(10):782–92.

19. Nagarajan N, Read TD, Pop M. Scaffolding and validation of bacterial
genome assemblies using optical restriction maps. Bioinformatics.
2008;24(10):1229–35.

20. Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, Schnable PS,
Lyons E, Lu J. ALLMAPS: robust scaffold ordering based on multiple
maps. Genome Biol. 2015;16:3.

21. Madoui MA, Dossat C, d’Agata L, van Oeveren J, van der Vossen E, Aury
JM. MaGuS: a tool for quality assessment and scaffolding of genome

assemblies with Whole Genome Profiling™Data. BMC Bioinformatics.
2016;17:115.

22. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J.
Chromosome-scale scaffolding of de novo genome assemblies based on
chromatin interactions. Nat Biotechnol. 2013;31(12):1119–25.

23. Yao G, Ye L, Gao H, Minx P, Warren WC, Weinstock GM. Graph
accordance of next-generation sequence assemblies. Bioinformatics.
2012;28(1):13–16.

24. Zimin AV, Smith DR, Sutton G, Yorke JA. Assembly reconciliation.
Bioinformatics. 2008;24(1):42–5.

25. Nijkamp J, Winterbach W, Van den Broek M, Daran JM, Reinders M,
De Ridder D. Integrating genome assemblies with MAIA. Bioinformatics.
2010;26(18):433–9.

26. Vezzi F, Cattonaro F, Policriti A. e-RGA: enhanced reference guided
assembly of complex genomes. EMBnet.J. 2011;17(1):46–54.

27. Mayela Soto-Jimenez L, Estrada K, Sanchez-Flores A. GARM: genome
assembly, reconciliation and merging pipeline. Curr Top Med Chem.
2014;14(3):418–24.

28. Wences AH, Schatz MC. Metassembler: merging and optimizing de novo
genome assemblies. Genome Biol. 2015;16:207.

29. Vicedomini R, Vezzi F, Scalabrin S, Arvestad L, Policriti A. GAM-NGS:
genomic assemblies merger for next generation sequencing. BMC
Bioinformatics. 2013;14(Suppl 7):6.

30. Avdeyev P, Jiang S, Aganezov S, Hu F, Alekseyev MA. Reconstruction of
ancestral genomes in presence of gene gain and loss. J Comput Biol.
2016;23(3):1–15.

31. Chateau A, Giroudeau R. A complexity and approximation framework for
the maximization scaffolding problem. Theor Comput Sci. 2015;595:92–106.

32. Moran S, Newman I, Wolfstahl Y. Approximation algorithms for covering
a graph by vertex-disjoint paths of maximum total weight. Networks.
1990;20(1):55–64.

33. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics,
and function using NetworkX. In: Proceedings of the 7th Python in
Science Conference (SciPy2008). Pasadena: Los Alamos National
Laboratory (LANL). 2008. p. 11–15.

34. Galil Z. Efficient algorithms for finding maximum matching in graphs.
ACM Comput Surv (CSUR). 1986;18(1):23–38.

35. Jardine A. DataTables JavaScript / JQuery library. 2011. https://datatables.
net. Accessed 13 Jun 2016.

36. Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD. Cytoscape.js: a
graph theory library for visualisation and analysis. Bioinformatics.
2016;32(2):309–11.

37. Dogrusoz U, Giral E, Cetintas A, Civril A, Demir E. A layout algorithm for
undirected compound graphs. Inf Sci. 2009;179(7):980–94.

38. Gansner ER, North SC. An open graph visualization system and its
applications to software engineering. Softw Pract Experience.
2000;30(11):1203–33.

39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T. Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res.
2003;13(11):2498–504.

40. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen
TJ, Schatz MC, Delcher AL, Roberts M, et al. GAGE: A critical evaluation of
genome assemblies and assembly algorithms. Genome Res. 2012;22(3):
557–67.

41. Mandric I, Zelikovsky A. ScaffMatch: scaffolding algorithm based on
maximum weight matching. Bioinformatics. 2015;31(16):2632–8.

42. Simpson JT, Durbin R. Efficient de novo assembly of large genomes using
compressed data structures. Genome Res. 2012;22(3):549–56.

43. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, et al. High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proc Natl
Acad Sci. 2011;108(4):1513–8.

44. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment
tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5.

45. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. Versatile and open software for comparing large genomes.
Genome Biol. 2004;5(2):12.

46. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, et
al. Highly evolvable malaria vectors: the genomes of 16 Anopheles
mosquitoes. Science. 2015;347(6217):1258522.
doi:10.1126/science.1258522.

http://dx.doi.org/10.1007/978-3-319-38782-6_20
http://dx.doi.org/10.1038/265472a0
http://dx.doi.org/10.1038/265472a0
https://datatables.net
https://datatables.net
http://dx.doi.org/10.1126/science.1258522

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Assembly analysis and visualization
	Dealing with Unoriented scaffolds
	Merging assemblies
	Greedy merging heuristics.
	Maximum matching heuristics.

	Results
	Structure of CAMSA report
	Evaluation

	Discussion
	Conclusion
	Additional file
	Additional file 1

	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

