
Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518
DOI 10.1186/s12859-017-1917-0

RESEARCH Open Access

Cache and energy efficient algorithms for
Nussinov’s RNA Folding
Chunchun Zhao* and Sartaj Sahni

From 6th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS)
Atlanta, GA, USA. 13-15 October 2016

Abstract

Background: An RNA folding/RNA secondary structure prediction algorithm determines the
non-nested/pseudoknot-free structure by maximizing the number of complementary base pairs and minimizing the
energy. Several implementations of Nussinov’s classical RNA folding algorithm have been proposed. Our focus is to
obtain run time and energy efficiency by reducing the number of cache misses.

Results: Three cache-efficient algorithms, ByRow, ByRowSegment and ByBox, for Nussinov’s RNA folding are
developed. Using a simple LRU cache model, we show that the Classical algorithm of Nussinov has the highest
number of cache misses followed by the algorithms Transpose (Li et al.), ByRow, ByRowSegment, and ByBox (in this
order). Extensive experiments conducted on four computational platforms–Xeon E5, AMD Athlon 64 X2, Intel I7 and
PowerPC A2–using two programming languages–C and Java–show that our cache efficient algorithms are also
efficient in terms of run time and energy.

Conclusion: Our benchmarking shows that, depending on the computational platform and programming language,
either ByRow or ByBox give best run time and energy performance. The C version of these algorithms reduce run time
by as much as 97.2% and energy consumption by as much as 88.8% relative to Classical and by as much as 56.3% and
57.8% relative to Transpose. The Java versions reduce run time by as much as 98.3% relative to Classical and by as
much as 75.2% relative to Transpose. Transpose achieves run time and energy efficiency at the expense of memory as it
takes twice the memory required by Classical. The memory required by ByRow, ByRowSegment, and ByBox is the same
as that of Classical. As a result, using the same amount of memory, the algorithms proposed by us can solve problems
up to 40% larger than those solvable by Transpose.

Keywords: RNA Folding, Nussinov’s algorithm, Cache efficient

Background
Introduction
RNA secondary structure prediction (i.e., RNA folding)
[1] “is the process by which a linear ribonucleic acid
(RNA) molecule acquires secondary structure through
intra-molecular interactions. The folded domains of RNA
molecules are often the sites of specific interactions with
proteins in forming RNA–protein (ribonucleoprotein) com-
plexes.” Unlike a paired double strand DNA sequence,
RNA primary structure is single strand which could be

*Correspondence: czhao@cise.ufl.edu
Department of Computer and Information Science and Engineering,
University of Florida, FL 32611 Gainesville, USA

considered as a chain (sequence format) of nucleotides,
where the alphabet is {A (adenine), U(uracil), G(guanine),
C(cytosine)}. This single strand could fold onto itself
such that (A, U), (C, G) and (G, U) are complemen-
tary base pairs. The secondary structure of RNA is such
two-dimensional structure composed by list of comple-
mentary base pairs which are close together with the
minimum energy. RNA folding algorithm is the approach
to predict this secondary structure of RNA. In other
words, we are given a primary structure of RNA, which
is a list of sequence characters A[1 : n] = a1a2 · · · an
where ai ∈ A, U , G, C. We are required to determine this
non-nested/pseudoknot-free structure P with minimum
energy, such that the number of complementary base

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1917-0&domain=pdf
mailto: czhao@cise.ufl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 16 of 81

pairs in P is maximum. (A pseudoknot [2] “is a nucleic
acid secondary structure containing at least two stem-loop
structures in which half of one stem is intercalated between
the two halves of another stem.”)

Smith and Waterman (SW) [3] and Nussinov et al. [4]
proposed a dynamic programming algorithm for RNA
folding in 1978. Zuker et al. [5] modified Nussinov’s algo-
rithm using thermodynamic and auxiliary information.
The asymptotic complexity of the SW’s, Nussinov’s, and
Zuker’s algorithms are O(n3) time and O(n2) space, where
n is the length of the RNA sequence. Li et al. [6] pro-
posed a cache-aware version of Nussinov’s algorithm,
called Transpose, that takes twice the memory but reduces
run time significantly. Many parallel algorithms for RNA
folding have also been proposed ( see, for e.g., [6–15]).

In this paper, we focus on reducing the number of
cache misses that occur in the computation of Nussinov’s
method without increasing the memory requirement. Our
interest in cache misses stems from two observations–(1)
the time required to service a lowest-level-cache (LLC)
miss is typically 2 to 3 orders of magnitude more than
the time for an arithmetic operation and (2) the energy
required to fetch data from main memory is typical
between 60 to 600 times that needed when the data is on
the chip. As a result of observation (1), cache misses dom-
inate the overall run time of applications for which the
hardware/software cache prefetch modules on the target
computer are ineffective in predicting future cache misses.
The effectiveness of hardware/software cache prefetch
mechanisms varies with application, computer architec-
ture, compiler, and compiler options used. So, if we are
writing code that is to be used on a variety of computer
platforms, it is desirable to write cache-efficient code
rather than to rely exclusively on the cache prefetching
of the target platform. Even when the hardware/software
prefetch mechanism of the target platform is very effec-
tive in hiding memory latency, observation (2) implies
excessive energy use when there are many cache misses.

We develop three algorithms that meet our objec-
tive of cache efficiency without memory increase–ByRow,
ByRowSegment, and ByBox. Since these take the same
amount of memory as Classical and Transpose takes twice
as much, the maximum problem size (n) that can be
solved in any fixed amount of memory by algorithms
Classical, ByRow, ByRowSegment, and ByBox is 40% more
than what can be done by Transpose. On practical but
large instances, ByRow and ByRowSegment have the same
run time performance. Our experiments indicate that,
depending on the computational platform and program-
ming language, either ByRow or ByBox give best run time
and energy performance. In fact, the C version of our pro-
posed algorithms reduce run time by as much as 97.2%
and energy consumption by as much as 88.8% relative to
Classical and by as much as 56.3% and 57.8% relative to

Transpose. The Java versions reduce run time by as much
as 98.3% relative to Classical and by as much as 75.2%
relative to Transpose.

The rest of the paper is organized in the following way.
We first introduce our simple cache model that we use
in our cache-efficiency analysis. Then we propose three
cache- and memory-efficient RNA folding algorithms.
These algorithms are being theoretically analyzed using
our cache model. Finally, we present our experimental and
benchmark results.

Cache model
We use a simple cache model so that the cache miss anal-
ysis is of manageable complexity. In this model, there is
a single cache whose capacity is sw words, where s is the
number of cache lines and w is the number of words in a
cache line. Each data item is assumed to have the same size
as a word. The main memory is assumed to be partitioned
into blocks of size w words each. Data transfer between
the cache and memory takes place in units of a block
(equivalently, a cache line). A read miss occurs when-
ever the program attempts to read a word that is not in
cache. To service this cache miss, the block of main mem-
ory that includes the needed word is fetched and copied
into a cache line, which is selected using the LRU (least
recently used) rule. Until this block of main memory is
evicted from this cache line, its words may be read without
additional cache misses. We assume the cache is written
back with write allocate. That is, when the program needs
to write a word of data, a write miss occurs if the block
corresponding to the main memory is not currently in
cache. To service the write miss, the corresponding block
of main memory is fetched and copied in a cache line.
Write back means that the word is written to the appro-
priate cache line only. A cache line with changed content
is written back to the main memory when it is about to be
overwritten by a new block from main memory.

In practice, modern computers commonly have two or
three levels of cache and employ sophisticated adaptive
cache replacement strategies rather than the LRU strategy
described above. Further, hardware and software cache
prefetch mechanisms, out of order executions are often
deployed to hide the latency involved in servicing a cache
miss. These mechanisms may, for example, attempt to
learn the memory access pattern of the current application
and then predict the future need for blocks of main mem-
ory. The predicted blocks are brought into cache before
the program actually tries to read/write from/into those
blocks thereby avoiding (or reducing) the delay involved in
servicing a cache miss. Actual performance is also influ-
enced by the compiler used and the compiler options in
effect at the time of compilation.

As a result, actual performance may bear little rela-
tionship to the analytical results obtained for our simple



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 17 of 81

cache model. Despite this, we believe the simple cache
model serves a useful purpose in directing the quest for
cache-efficient algorithms that eventually need to be vali-
dated experimentally. We believe this because our simple
model favors algorithms that exhibit good spatial local-
ity in their data access pattern over those that do not
and all cache architectures favor algorithms with good
spatial locality. The experimental results reported in this
paper strengthen our belief in the usefulness of our sim-
ple model. These results indicate that algorithms with
a smaller number of cache misses on our simple model
actually have a smaller number of (lowest level) cache
misses on a variety of modern computers that employ
potentially different cache replacement strategies (ven-
dors often use proprietary cache replacement strategies).
Further, a reduction in cache misses on our simple model
often translates into a reduction in run time.

Methods
Classical RNA folding algorithm (Nussinov’s algorithm)
Let A[1 : n] = a1a2 · · · an be an RNA sequence and let Hij
be the maximum number of the complimentary pairs in a
folding of the sub-sequence A[i : j], 1 ≤ i ≤ j ≤ n. So,
H1n is the score of the best folding for the entire sequence
A[1 : n]. The following dynamic programming equations
to compute H1n are due to Nussinov [4].

Hi,i−1 = 0, 2 ≤ i ≤ n (1)

Hi,i = 0, 1 ≤ i ≤ n (2)

Hi,j = max

⎧
⎪⎪⎨

⎪⎪⎩

Hi+1,j
Hi,j−1
Hi+1,j−1 + c(ai, aj)
maxi<k<j{Hi,k + Hk+1,j}

(3)

where c(ai, aj) is the match score between characters ai
and aj. If ai and aj are complimentary pairs such as AU,
GC or GU, c(ai, aj) is 1, otherwise it is 0. The differ-
ent cases of the recurrence in Nussinov’s algorithm are
illustrated in Fig. 1, where Fig. 1a shows the case when
ai is added to the best RNA folding of the subsequence

A[i + 1 : j]. Figure 1b shows the case when aj is added
to the best RNA folding of A[i : j − 1], Fig. 1c shows
the case when (ai, aj) is added to the best RNA folding of
A[i + 1 : j − 1] and Fig. 1d shows the combining of two
subsequences A[i : k] and A[k + 1 : j] into one.

Due to the fact that Fig. 1a and b can be considered as a
special case of combining two subsequences where one of
them is a single node subsequence. Several authors ([15],
for example) have observed that Nussinov’s equations may
be simplified to

Hi,i = 0, 1 ≤ i ≤ n (4)

Hi,i+1 = 0, 1 ≤ i ≤ n − 1 (5)

Hi,j = max
{

Hi+1,j−1 + c(ai, aj)
maxi≤k<j{Hi,k + Hk+1,j} (6)

Once the best RNA folding score, H1n, has been com-
puted, a standard dynamic programming traceback pro-
cedure, which takes O(n) time, may be performed to find
the path leading to the maximum score. This path defines
the actual RNA secondary structure.

Algorithm 1 gives the Classical algorithm to compute
H1n using the simplified Nussinov’s equations. This algo-
rithm computes H by diagonals and within a diagonal
from top to bottom. It’s run time is O(n3). Although the
algorithm is written using two-dimensional array nota-
tion for H, we need only the upper triangle of H. Hence,
a memory efficient implementation would either map the
upper triangle into a 1D array or employ a dynamically
allocated 2D array with variable size rows. In either case,
we would need memory for n(n + 1)/2 elements of H
rather than for n2 elements.

For the (data) cache miss analysis, we focus on read
and write misses of the array H and ignore misses due
to the reads of the sequence A as well as of the scoring
matrix c (notice that there are no write misses for A and c).
Figure 2 shows the memory access pattern for H. Figure 2a
left shows the order (by diagonals and within a diagonal
from top to bottom) in which the elements of H are com-
puted. In this figure, three diagonals have been computed

Fig. 1 Four cases for Nussinov’s equations [21]



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 18 of 81

Algorithm 1 Nussinov’s classical RNA folding algorithm
1: Classical(A[1 : n] )

2: for i ← 0 to n − 2 do
3: H[i] [i] ← 0 //first diag
4: H[i] [i + 1] ← 0 //second diag
5: end for
6: H[n − 1] [n − 1] ← 0
7: for d ← 2 to n − 1 do
8: for i ← 0 to n − 1 − d do
9: j ← i + d // d diag, i row, j col

10: temp ← H[i + 1] [j − 1] +c(A[i] , A[j] )

11: for k ← i to j − 1 do
12: temp ← max(temp, H[i] [k] +H[k + 1] [j] )

13: end for
14: H[i] [j] ← temp
15: end for
16: end for
17: return H[0] [n − 1]

as have 2 elements of the fourth; we are presently comput-
ing the third element (Hij) of the fourth diagonal. Figure 2b
shows the elements of H in row i and column j that are
needed for the computation of Hij (i.e., in the computation
of max{Hi,k + Hk+1,j}). The elements in row i are accessed
from left to right while those in column j are accessed from
top to bottom. So, w row elements are brought into cache
with a single miss and a miss takes place for each element
of column j that is accessed. Note that the cache lines for
column j also contain the column j + 1 data needed in the
computation of Hi+1,j+1. However, when n is sufficiently
large, this data is overwritten by new data under the LRU
policy before it can be used in the computation of Hi+1,j+1.
So, for each of the j − i sums of max{Hi,k + Hk+1,j} we
incur 1/w read misses on average for Hi,k and 1 read miss
for Hk+1,j. Over the entire computation we compute n3/6
(plus low order terms) of these sums incurring a total of
(n3/6)(1 + 1/w) read misses. Although to complete the
computation of Hi,j we also need Hi+1,j−1, accessing these
values of H incurs only O(n2) read misses. The number

Fig. 2 Memory access pattern for algorithm Classical (Algorithm 1)

of write misses for H is also O(n2). So, for our simplified
cache model, the number of cache misses incurred when
computing H using algorithm Classical is (n3/6)(1+1/w)

(plus low order terms).

Transpose RNA folding algorithm
Li et al. [6] have proposed a cache-efficient computa-
tion of Nussinov’s simplified equations. Their algorithm,
which we refer to as Transpose, uses an n × n array H in
which the upper triangle is used to store the Hi,j, j ≤ i,
values defined by Nussinov’s equations and the lower tri-
angle is used to store the transpose of the upper triangle.
That is, Hi,j = Hj,i for all i and j. As new Hijs are com-
puted, they are stored in both Hi,j and Hj,i. The sum
Hi,k + Hk+1,j is computed as Hi,k + Hj,k+1, with the result
that a sum now requires only 2/w cache misses on average.
So, the total number of read misses is (n3/6)(2/w) plus
low order terms. The number of write misses is O(n2). The
ratio of cache misses of Classical to Transpose is approx-
imately (1 + 1/w)/(2/w) = (w + 1)/2. The run time
remains O(n3).

ByRow RNA folding algorithm
Although Transpose reduces the number of cache misses
(in our model) by an impressive factor of (w+1)/2 relative
to Classical, it does so at the cost of doubling the memory
requirement. The increased memory requirement means
that Classical can be used to solve problems up to 40%
bigger than can be solved by Transpose on any computer
with a fixed memory size. For smaller instances that can
be solved by both algorithms, we expect Transpose to take
less time. In this section, we propose an alternative cache-
efficient algorithm ByRow that does not have a memory
penalty associated with it. In our cache model, ByRow
incurs the same number of cache misses as incurred by
Transpose.

The algorithm ByRow computes the Hi,js by row
bottom-to-top and within a row left-to-right. This is illus-
trated in Fig. 3. Figure 3a shows the situation after the 4
bottommost rows of H have been computed. The compu-
tation of the next row (i.e, row 5 from the bottom in our
example) is done in two stages. Note that the first two ele-
ments on each row are 0 by definition. So, only elements
3 onward are to be computed. In the first stage, every Hi,j,
j > i + 1 on the row being computed is initialized to
Hi+1,j−1. The memory access pattern for this is shown in
Fig. 3b. The second stage comprises many sub-stages. In
a sub-stage, all Hi,js in row i are updated using the sums
Hi,k +Hk+1,j for a single k. In the first sub-stage, we use Hi,i
and Hi+1,j to update Hi,j, j > i + 1 (see Fig. 3c). In the next
sub-stage, we use Hi,i+1 and Hi+1,j to update Hi,j, j > i + 1
and so on. Algorithm 2 gives the details.



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 19 of 81

Algorithm 2 ByRow RNA folding algorithm
1: ByRow(A[1 : n] )

2: for i ← 0 to n − 2 do
3: H[i] [i] ← 0 //first diag
4: H[i] [i + 1] ← 0 //second diag
5: end for
6: H[n − 1] [n − 1] ← 0
7: for i ← n − 3 to 0 do
8: for j ← i + 2 to n − 1 do
9: H[i] [j] ← H[i + 1] [j − 1] +c(A[i] , A[j] )

10: end for
11: for k ← i to n − 2 do
12: for j ← k + 1 to n − 1 do
13: H[i] [j] ← max(H[i] [j] , H[i] [k] +H[k + 1] [j] )

14: end for
15: end for
16: end for
17: return H[0] [n − 1]

It is easy to see that ByRow takes O(n3) time and that
its memory requirement is the same as that of Classi-
cal and about half that of Transpose. For the cache miss
analysis, we see that for each element initialized in stage 1,
an average of 1/w read misses and 1/w write misses occur.
So, this stage contributes O(n2) to the overall cache miss
count. For the second stage, we see that the total number
of read misses for the first term in an Hi,k + Hk+1,j over
all sub-stages is O(n2/w) and that for the second term is
(n3/6)(1/w) (plus low order terms). Additionally, there are
(n3/6)(1/w) (plus low order terms) read misses for Hi,j. So,

Fig. 3 Memory access pattern for ByRow algorithm (Algorithm 2)

the total number of misses is (n3/6)(2/w) (plus low order
terms).

The algorithm ByRowSegment reduces this count by
computing the elements in each row of H in segments of
size no larger than the capacity of our cache. The seg-
ments in a row are computed from left to right. When
the segment size is s, the number of read misses for
Hik becomes (n3/6)(1/s). The misses for Hk+1,j remains
(n3/6)(1/w). So, the total number of misses is further
reduced to (n3/6)(1/s + 1/w).

ByBox RNA folding algorithm
In the ByBox algorithm, we partition H into boxes and
compute these boxes in an appropriate order. For the par-
titioning, we first divide the rows of H into strips of p rows
each from bottom-to-top (Fig. 4a). Note that the top most
strip may have fewer than p rows. Next each strip is par-
titioned into a triangle box and multiple rectangle boxes
(Fig. 4b). The width of the first box is p, that of all but the
last of the remaining boxes is q, and that of the last is ≤ q.
Observe that the first box in a strip is a p × p triangle
(the height of the triangle in the topmost strip may be
less than p), the last box in a strip is a p × q rectangle
(again the height in the top strip may be less than p), and
the remaining boxes are p×q boxes (again, the height may
be less in the top strip).

The elements in triangular boxes are computed using
ByRow. These triangular boxes may be computed in any
order. The rectangular boxes are computed by strips
bottom-to-top and within a strip from left-to-right. Let T
denote the rectangular box to be computed next (Fig. 5a).
Because of the order in which rectangular boxes are com-
puted, all H values to its left and below it have already been
computed. Let L0, L1, · · · , Lk−1 be the boxes to the left of
T. Note that L0 is a triangular box. Partition the Hs below
T into q × q boxes B1, B2, · · · , Bk−1 plus a last triangular
box Bk whose width is w (Fig. 5b).

To compute T, we first consider the pairs of rectangular
boxes (Li, Bi), 1 ≤ i < k. When a pair (Li, Bi) is consid-
ered, we update all Hs in the box T that depend on values
in this pair of boxes. To complete the computation of the
Hs in box T, we read in the triangular boxes L0 and Bk and
update all Hs in T by moving up the rows of T and within
a row of T from left-to-right (Algorithm 3).

Algorithm 3 Computing the rectangular box T (Partial
ByBox algorithm)

1: ComputeRectangularBox(T)

2: Let L0, L1...Lk−1 and B1, B2...Bk be as described
3: for i ← 1 to k − 1 do
4: Update T using the pair (Li, Bi)
5: end for
6: Finalize T using pair (L0, T) and (Bk , T)



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 20 of 81

Fig. 4 Partitioning H into boxes

The time and memory required by algorithm ByBox are
the same as for Classical and ByRow. For the cache miss
analysis, assume that we have enough cache to hold one
pair (Li, Bi) as well as the box T. Loading Li and Bi into
cache incurs pq/w misses for Li and q2/w for Bi. The num-
ber of Hi,k + Hk+1,j computations we can do for each H in
T without additional misses is q. So, with (p+q)q/w cache
misses we can do pq2 sum computations. Or, an average of
(p+q)q/(wpq2) = (p+q)/(wpq) misses per computation.
Therefore, to do all n3/6 required computations we incur
(n3/6)(p+q)/(wpq) cache misses. The misses attributable
to the remaining terms in Nussinov’s equations as well as
to writes of H are O(n2) and may be ignored.

When q = w, the cache miss count for ByBox becomes
(n3/6)(1/w2 + 1/(wp)), which is quite a bit less than that
for our other algorithms.

When p = 1, ByBox has much similarity with
ByRowSegment. However, since ByBox needs sufficient
cache for a q × q Bi, q ≤ √

s, where s is the largest seg-
ment size that can be accomodated in cache. So, the miss
count for ByBox is (n3/6)(p + q)/(wpq) = (n3/6)(1 +
1/

√
s)(1/w), which is more than that for ByRowSegment

when w <
√

s.

Practical considerations
We make the following observations regarding our expec-
tations for the performance of the various Nussinov’s
algorithms described in this section:

1. We have used a very simple 1-level cache model for
our analyses and also assumed an LRU replacement
strategy. Modern computers have two or three levels
of cache and employ more sophisticated cache
replacement strategies. So, our analyses, are at best a
crude approximation of actual cache misses.

2. Modern computers employ sophisticated hardware
and software methods for cache miss prediction and
prefetch data based on this prediction. To the extent
these methods are successful in accurately predicting
the need for data sufficiently in advance, the latency
due to cache misses can be masked. As a result,
observed run times may not be indicative of cache
misses.

3. In practice, the maximum n will be small enough
that many of the cache misses counted in our
analyses will actually not occur. For example, in the
ByRow algorithm, the lowest level cache will usually

Fig. 5 Boxes in the computation of the rectangular box T



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 21 of 81

Fig. 6 Run time, in seconds, for random sequences on Xeon E5 platform

be large enough to hold a row of H. This expectation
comes from the observation that when n = 100, 000
(say), we will need more than 2 × 1010 bytes of main
memory to hold the upper triangle of H (assuming 4
bytes per element) and only 400,000 bytes of cache to
hold a row of H. As a result, the cache misses for Hi,j
will be O(n2) rather than O(n3). Similarly, for
ByRowSegment, s = n. So, in practice, we expect
ByRow and ByRowSegment to have the same
performance.

4. In ByBox, using a q as small as w is not expected to
result in speedup because of the overheads involved
in this algorithm. In practice, we wish to use large
nearly square boxes such that Li, Bi, and T fit in
cache. When the size of the lowest level cache is
sufficient for 3 ∗ 220 elements (say), we could set
p = q = 1024.

Results
Experimental platform and test data
We implemented the Classical, Transpose, ByRow, and
ByBox RNA folding algorithms in two programming

languages – C and Java. For the data set sizes used by
us, ByRow and ByRowSegment are identical as a row fits
into cache and the segment size equals the row size. Con-
sequently, we did not experiment with ByRowSegment.
For all but Transpose, we conducted preliminary tests
benchmarking 3 different implementations as below:

1. H is a classical n × n array.
2. The upper triangle of H is mapped into a 1D array of

size n(n + 1)/2 in row-major order [16].
3. H is a 2D array with variable size rows. The first row

has n entries, the next has n − 1, the next has n − 2,
· · · and the last has 1 entry. Such an array may be
dynamically allocated as in [16]

The last two of these implementations take about half
the memory as taken by Transpose and the first imple-
mentation. Our preliminary benchmarking showed that,
in C, the last implementation is faster than the other two
while in Java the first implementation is the fastest and
the third next fastest. More specifically, the third imple-
mentation takes between 1% and 4% less time than the

Table 1 Run time (HH:mm:ss) for random sequences on Xeon E5 platform

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

4000 0:02:02 0:00:20 0:00:13 0:00:11 89.13% 35.18% 90.79% 45.03%

8000 0:14:49 0:02:35 0:01:44 0:01:18 88.30% 33.10% 91.26% 50.00%

12,000 0:37:51 0:08:33 0:05:51 0:04:05 84.55% 31.61% 89.20% 52.17%

16,000 1:12:49 0:20:08 0:13:47 0:09:22 81.08% 31.55% 87.14% 53.49%

20,000 2:33:39 0:38:54 0:26:48 0:17:49 82.56% 31.12% 88.41% 54.22%

24,000 3:38:09 1:07:00 0:45:15 0:30:10 79.26% 32.46% 86.17% 54.98%

28,000 5:57:03 1:46:00 1:12:01 0:47:18 79.83% 32.06% 86.75% 55.37%

32,000 - 2:37:50 1:47:28 1:09:58 - 31.91% - 55.68%

36,000 - 3:44:51 2:35:58 1:38:50 - 30.63% - 56.05%

40,000 - 5:08:10 3:33:43 2:14:38 - 30.65% - 56.31%



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 22 of 81

Fig. 7 Run time, in seconds, for RNA sequences from [20] on Xeon E5 platform

first in C and approximately 10% more time than the first
in Java. The performance results reported in this section
are for the third implementation except in the case of
the smaller Java tests for which we had sufficient mem-
ory to use implementation 1. In other words, the reported
performance results are for the fastest of the three possi-
ble implementations for Classical, ByRow, and ByBox. For
Transpose, the standard 2D array implementation is used
as this algorithm uses the entire n × n array.

The following platforms were used to compile and exe-
cute the codes.

1. Xeon E5-2603 v2 Quad Core processor 1.8 GHz with
10 MB cache On this platform, the C codes were
compiled using gcc version 5.2.1 with the O2 option
and the Java codes were compiled using javac version
1.8.0_72.

2. AMD Athlon 64 X2 5600+ 2.9 GHz with 512 KB LLC
cache. The C codes were compiled using gcc version

4.9.2 with the O2 option and the Java codes were
compiled using javac version 1.8.0_73.

3. Intel I7-x980 3.33 GHz CPU with 12 MB LLC cache.
The C codes were compiled using gcc 4.8.4 with the
O2 option and the Java codes were compiled using
javac 1.8.0_77.

4. PowerPC A2 processor(IBM Blue Gene Q) 1.33 GHz
64-bit with 32 MB LLC cache. On this platform, the C
codes were compiled using Mpixlc: IBM XL C/C++
for Blue Gene Version 12.01. The Java codes were
not run on this platform.

Our Xeon platform had tools to measure cache misses
and energy consumption. So, for this platform we report
cache misses and energy consumption as well as run time.
On this platform, we used the “perf” [17] software to mea-
sure energy usage through the RAPL interface. For the
PowerPC A2 (Blue Gene Q) platform, the MonEQ soft-
ware [18, 19] was used to measure the power usage every

Table 2 Run time (HH:mm:ss) for real RNA sequences of [20] on Xeon E5 platform

Code SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

NM_178697.5 4008 0:02:17 0:00:20 0:00:13 0:00:11 90.38% 35.19% 91.93% 45.66%

XM_018415261.1 8011 0:11:56 0:02:36 0:01:44 0:01:17 85.45% 33.28% 89.30% 50.95%

XM_018223360.1 11,995 0:34:06 0:08:34 0:05:49 0:04:02 82.96% 32.16% 88.17% 52.92%

NM_003458.3 15,964 1:17:17 0:19:59 0:13:38 0:09:09 82.36% 31.77% 88.15% 54.18%

XM_018221838.1 19,957 2:32:50 0:38:39 0:26:36 0:17:25 82.60% 31.19% 88.61% 54.95%

XM_007787868.1 24,003 4:24:21 1:06:57 0:46:14 0:29:53 82.51% 30.94% 88.70% 55.37%

LH929943.1 28,029 7:04:35 1:46:18 1:13:34 0:46:59 82.67% 30.80% 88.93% 55.80%

XM_007916465.1 32,040 - 2:38:22 1:49:50 1:09:47 - 30.65% - 55.93%

JL711896.1 35,962 - 3:44:10 2:35:14 1:37:39 - 30.75% - 56.44%

AJ245616.1 40,003 - 5:08:02 3:34:06 2:13:44 - 30.49% - 56.58%



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 23 of 81

Fig. 8 Cache Misses, in billions, for random sequences on Xeon E5 platform

half second and calculate the actual energy consumption.
For the remaining 2 platforms (Xeon and AMD), we were
able to determine only the run time as we did not have the
tools available to measure cache misses and energy.

For test data, we used randomly generated RNA
sequences as well as real RNA sequences obtained
from the National Center for Biotechnology Information
(NCBI) database [20].

C Implementations
Xeon E5-2603
Figure 6 and Table 1 give the run times of our various algo-
rithms for our random data sets on our Xeon platform
for sequence sizes between 4000 and 40000. Figure 7 and
Table 2 do this for sample real RNA sequences from [20].
In both figures, the time is in seconds while in both tables,
the time is given using the format hh : mm : ss. We did not
measure the time required by Classical for n > 28, 000 as
this algorithm took almost 6 hours for n = 28, 000. The
column labeled RvsC (BvsC) in Tables 1 and 2 gives the
run time reduction achieved by ByRow (ByBox) relative to

Classical. Similarly, RvsT and BvsT give the reductions rel-
ative to Transpose. As can be seen, on our Xeon platform,
ByRow performs better than Classical and Transpose algo-
rithms, ByBox outperforms all other three algorithms. On
the randomly generated data set, the ByRow algorithm
reduces run time by up to 89.13% compared to the orig-
inal Nussinov’s Classical algorithm and by up to 35.18%
compared to the cache-efficient Transpose algorithm of Li
et al. [6]. The corresponding reductions for ByBox are up
to 91.26% and 56.31%. On the real RNA sequences, ByRow
algorithm reduces run time by up to 90.38% and 35.19%
compared to Classical and Transpose algorithm. The cor-
responding reductions for ByBox are up to 91.93% and
56.58%.

Since the results for randomly generated RNA
sequences are comparable to those for similarly sized
sequences from the NCBI database [20], in the rest of
paper, we present results only for randomly generated
sequences.

Figure 8 and Table 3 gives the number of cache misses
on our Xeon platform. ByBox reduces cache misses by up

Table 3 Cache misses, in millions, for random sequences on Xeon E5 server

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

4,000 842 293 41 1 95.11% 85.94% 99.77% 99.35%

8,000 9,759 1,969 346 18 96.45% 82.39% 99.81% 99.07%

12,000 35,165 5,947 1,484 66 95.78% 75.04% 99.81% 98.89%

16,000 85,213 13,132 3,139 151 96.32% 76.10% 99.82% 98.84%

20,000 140,528 24,443 5,036 300 96.42% 79.39% 99.79% 98.77%

24,000 246,127 40,508 8,195 502 96.67% 79.77% 99.80% 98.76%

28,000 412,983 63,547 14,136 748 96.58% 77.75% 99.82% 98.82%

32,000 - 92,117 21,477 1,184 - 76.68% - 98.71%

36,000 - 186,895 29,430 1,138 - 84.25% - 99.39%

40,000 - 257,450 38,786 2,300 - 84.93% - 99.11%



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 24 of 81

Fig. 9 CPU and cache energy consumption, in thousands joules, for random sequences on Xeon E5 platform

to 99.8% relative to Classical and by up to 99.3% relative to
Transpose. The corresponding reductions for ByRow are
96.6% and 85.9%. The very significant reduction in cache
misses is expected given the cache miss analysis was done
using our simple cache model. The reduction in run time,
while significant, isn’t as much as the reduction in cache
misses possibly due to the effect of cache prefetching,
which reduces cache induced computational delays.

Figure 9 and Tables 4 give the CPU and Cache energy
consumption, in joules, by our Xeon platform. On our
datasets, ByBox required up to 88.77% less CPU and
Cache energy than Classical and up to 57.76% less than
Transpose. It is interesting to note that the energy reduc-
tion is comparable to the reduction in run time suggesting
a close relationship between run time and energy con-
sumption for this application.

AMD Athlon 64
Figure 10 and Table 5 give the run times on our AMD
platform. The Classical algorithm took over 9 hours for
n = 16, 000. As a result, we did not measure the run time

of this algorithm for larger values of n. ByBox is faster
than ByRow and both are substantially faster than Clas-
sical and Transpose. ByBox reduced run time by up to
97.16% compared to Classical and by up to 39.55% com-
pared to Transpose. The reductions achieved by ByRow
relative to Classical and Transpose were up to 96.08% and
up to 18.33%, respectively.

Intel I7
Figure 11 and Table 6 give the run times on our Intel
I7 platform. Once again, we were unable to run Clas-
sical on our larger data sets (this time, n > 28, 000)
because of the excessive time required by this algorithm
on these larger data sets. As was the case for our Xeon
and AMD platforms, the algorithms are ranked ByBox,
ByRow, Transpose, Classical, fastest to slowest. The run
time reduction achieved by ByBox is up to 93.70% relative
to Classical and up to 51.92% relative to Transpose. ByRow
is up to 89.19% faster than Classical and up to 15.62%
faster than Transpose.

Table 4 CPU and cache energy consumption, in joules, for random sequences on Xeon E5 server

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

4000 461.27 126.45 82.02 66.44 82.22% 35.14% 85.60% 47.46%

8000 4,009.37 957.73 649.48 461.25 83.80% 32.19% 88.50% 51.84%

12,000 9,191.74 3,164.37 2,184.09 1,462.51 76.24% 30.98% 84.09% 53.78%

16,000 28,291.57 7,405.47 5,074.94 3,357.95 82.06% 31.47% 88.13% 54.66%

20,000 55,183.94 14,374.95 10,053.49 6,395.33 81.78% 30.06% 88.41% 55.51%

24,000 96,430.95 25,082.80 17,254.61 10,825.72 82.11% 31.21% 88.77% 56.84%

28,000 142,359.14 39,491.70 27,332.57 17,004.35 80.80% 30.79% 88.06% 56.94%

32,000 - 58,821.30 40,551.20 25,204.38 - 31.06% - 57.15%

36,000 - 82,974.06 58,011.66 35,620.84 - 30.08% - 57.07%

40,000 - 114,886.41 80,002.00 48,531.81 - 30.36% - 57.76%



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 25 of 81

Fig. 10 Run time, in seconds, for random sequences on AMD Athlon 64 server

Power PC A2
Figure 12 and Table 7 give the run times on our Power PC
A2 platform. On this platform, we were able to run Clas-
sical only for n ≤ 8000 and the remaining algorithms only
for n ≤ 15, 000, because of the excessive time required
by our algorithms on larger instances. On this platform,
the speed ranking of our algorithms is consistent with our
other 3 platforms. The ranking, fastest to slowest, is now
ByBox, ByRow, Transpose, Classical. ByBox is up to 87.74%
faster than Classical and up to 33.43% faster than Trans-
pose, where ByRow is up to 84.18% faster than Classical
and up to 14.68% faster than Transpose.

Table 8 gives the energy consumption in joules on our
Power PC platform. As other platforms, the energy reduc-
tion by our cache efficient algorithms tracked run time
quite closely. For example, while ByBox was almost always
slower than Transpose, it almost always used less energy.
ByBox reduced energy consumption by up to 87.59% rela-
tive to Classical and by up to 40.31% relative to Transpose.
And ByRow is up to 82.6% and 16.7% relative to Classical
and Transpose, respectively.

Java implementations
Figures 13, 14 and 15 and Tables 9, 10 and 11 give the run
time for our Java implementations on our Xeon, AMD,
and Intel platforms.

The Java implementations take much substantially time
and memory than do the C implementations. Because of
memory limitations, Transpose could not be run on our
AMD and Intel platforms for n ≥ 16, 000 and n ≥ 24, 000,
respectively. Because of time requirements, we did not
experiment with n > 28, 000 for any algorithm on any
platform. The speed ranking, fastest to slowest, for the
Java implementations is ByBox, Transpose, ByRow, Clas-
sical. The Java implementation of ByBox was up to 88.9%
faster than the Java implementation of Classical on our
Xeon platform, up to 98.3% faster on the AMD, and up to
88.5% faster on the Intel I7. The corresponding speedups
relative to the Java implementation of Transpose were
75.2%, 64.6%, and 69.7%.

We observe that the run time of ByRow was generally
more than that of Transpose on all of our platforms. We
suspect this is because our Java code for ByRow makes

Table 5 Run time, in HH:mm:ss, for random sequences on AMD Athlon 64 platform

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

4000 0:02:35 0:00:25 0:00:22 0:00:15 85.97% 13.31% 90.22% 39.55%

8000 0:38:38 0:03:13 0:02:49 0:02:01 92.71% 12.35% 94.79% 37.35%

12,000 3:50:04 0:10:41 0:09:56 0:06:48 95.68% 7.11% 97.04% 36.35%

16,000 9:26:30 0:25:19 0:22:12 0:16:05 96.08% 12.35% 97.16% 36.46%

20,000 - 0:48:44 0:43:08 0:31:27 - 11.50% - 35.46%

24,000 - 1:25:19 1:14:14 0:54:04 - 12.99% - 36.61%

28,000 - 2:16:54 1:58:40 1:26:35 - 13.32% - 36.75%

32,000 - 3:25:21 2:58:02 2:09:05 - 13.30% - 37.14%

36,000 - 4:51:36 4:01:38 3:02:53 - 17.13% - 37.28%

40,000 - 6:42:24 5:28:38 4:10:53 - 18.33% - 37.65%



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 26 of 81

Fig. 11 Run time, in seconds, for random sequences on Intel I7 platform

more accesses to array elements than made by our Java
code for Transpose. Array accesses are expensive in Java
as the array indexes are checked for validity whenever an
attempt is made to access an array element (we note that C
does not perform such a check). Although some Java com-
pilers eliminate this check when they can assert there
will be no violation of array bounds, their ability to make
this assertion is both variable and limited. In the case of
Transpose, our code reduces the number of array accesses
significantly by copying an array element that is to be used
many times into a simple variable and then referring to
this simple variable in reuses of the element. This reduc-
tion strategy could not be employed in the code for ByRow.
As a result of the increased array bounds checking done in
our Java code for ByRow relative to that done in our Java
code for Transpose, the former is often slower.

Discussion and conclusions
We have proposed three cache-efficient algorithms–
ByRow, ByRowSegment, and ByBox–for RNA folding using
Nussinov’s dynamic programming equations. Their cache

miss efficiency was analyzed using a simple cache model.
Although the simple cache model does not accurately
reflect the cache architecture of modern computers, it is
useful for an initial assessment of cache performance as
the model encourages the design of algorithms with good
spatial locality and good spatial locality results in better
cache performance on virtually all cache architectures.

Our algorithms were benchmarked against the classical
implementation, Classical, of Nussinov’s equations as well
as the cache efficient implementation Transpose proposed
by Li et al. [6]. The benchmarking was done using four dif-
ferent computational platforms (Xeon E5, AMD Athalon
64, Intel I7, Power PC A2) and two programming lan-
guages (C and Java). For the benchmarking, we excluded
ByRowSegement, as, for the dataset sizes we could han-
dle on our test platforms, ByRow and ByRowSegment are
identical. Our benchmarking shows that, depending on
the computational platform and programming language,
either ByRow or ByBox give best run time and energy per-
formance. In fact, the C version of these algorithms reduce
run time by as much as 97.2% and energy consumption by

Table 6 Run time, in HH:mm:ss, for random sequences on Intel I7 platform

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

4000 0:01:19 0:00:12 0:00:10 0:00:08 87.11% 15.62% 90.28% 36.35%

8000 0:12:33 0:01:30 0:01:21 0:00:51 89.19% 9.79% 93.19% 43.20%

12,000 0:38:58 0:04:56 0:04:33 0:02:40 88.31% 7.78% 93.17% 46.08%

16,000 1:31:52 0:11:36 0:10:48 0:06:00 88.24% 6.84% 93.46% 48.24%

20,000 3:03:31 0:22:23 0:21:01 0:11:25 88.55% 6.12% 93.78% 49.00%

24,000 4:52:55 0:38:45 0:36:11 0:19:12 87.65% 6.61% 93.45% 50.46%

28,000 7:56:51 1:01:12 0:57:23 0:30:03 87.97% 6.23% 93.70% 50.89%

32,000 - 1:30:58 1:25:48 0:43:44 - 5.68% - 51.92%

36,000 - 2:03:10 1:55:06 1:01:52 - 6.54% - 49.78%

40,000 - 2:45:08 2:35:03 1:24:07 - 6.10% - 49.06%



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 27 of 81

Fig. 12 Run time, in seconds, for random sequences on the Power PC A2 platform

Table 7 Run time, in HH:mm:ss, for random sequences on the Power PC A2 platform

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

1000 0:00:09 0:00:02 0:00:02 0:00:02 80.00% 14.68% 83.87% 31.19%

2000 0:01:27 0:00:17 0:00:15 0:00:11 82.99% 11.91% 87.14% 33.43%

3000 0:05:03 0:00:55 0:00:49 0:00:38 83.69% 9.64% 87.59% 31.25%

4000 0:11:55 0:02:08 0:01:58 0:01:29 83.52% 7.69% 87.57% 30.40%

5000 0:23:24 0:04:05 0:03:45 0:02:54 83.95% 8.06% 87.62% 29.08%

6000 0:40:24 0:07:01 0:06:36 0:05:00 83.65% 6.00% 87.62% 28.80%

7000 1:04:31 0:11:02 0:10:13 0:07:57 84.18% 7.43% 87.67% 27.90%

8000 1:36:36 0:16:27 0:15:36 0:11:50 83.85% 5.22% 87.74% 28.05%

9000 0:23:14 0:21:35 0:16:54 7.11% 27.26%

10,000 0:31:54 0:30:23 0:23:14 4.78% 27.17%

11,000 0:42:10 0:39:12 0:30:53 7.03% 26.75%

12,000 0:54:52 0:52:23 0:40:09 4.52% 26.82%

13,000 1:09:17 1:04:35 0:51:09 6.79% 26.18%

14,000 1:26:48 1:23:03 1:03:50 4.32% 26.46%

15,000 1:46:07 1:39:00 1:18:09 6.71% 26.34%

Table 8 Energy consumption, in joules, for random sequences on the Power PC A2

SeqLength Original Transpose ByRow ByBox RvsO RvsT BvsO BvsT

1000 30.77 8.17 6.80 4.97 77.89% 16.70% 83.86% 39.17%

2000 287.09 62.98 54.39 37.59 81.06% 13.65% 86.91% 40.31%

3000 999.30 203.04 180.26 125.87 81.96% 11.22% 87.40% 38.01%

4000 2,380.59 489.85 427.98 295.55 82.02% 12.63% 87.59% 39.67%

5000 4,632.91 931.05 824.09 583.93 82.21% 11.49% 87.40% 37.28%

6000 8,005.23 1,609.86 1,441.21 1,011.15 82.00% 10.48% 87.37% 37.19%

7000 12,822.30 2,510.05 2,226.54 1,615.56 82.64% 11.30% 87.40% 35.64%

8000 19,100.53 3,746.28 3,393.26 2,401.00 82.23% 9.42% 87.43% 35.91%

9000 5,310.33 4,709.12 3,430.15 11.32% 35.41%

10,000 7,290.13 6,647.03 4,709.83 8.82% 35.39%

11,000 9,434.29 8,569.82 6,276.69 9.16% 33.47%

12,000 12,606.74 11,375.63 7,994.03 9.77% 36.59%

13,000 15,121.14 14,056.36 10,291.69 7.04% 31.94%

14,000 19,849.26 18,233.34 12,840.73 8.14% 35.31%

15,000 24,308.08 21,648.41 15,661.49 10.94% 35.57%



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 28 of 81

Fig. 13 Run time, in seconds, for random sequences using our Java implementations on our Xeon E5 platform

Fig. 14 Run time, in seconds, for random sequences using our Java implementations on our AMD platform

Fig. 15 Run time, in seconds, for random sequences using our Java implementations on our Intel I7 platform



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 29 of 81

Table 9 Run time, in HH:mm:ss, for random sequences using our Java implementations on our Xeon E5 platform

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

4000 0:01:29 0:00:49 0:00:49 0:00:13 45.18% 1.62% 85.72% 74.37%

8000 0:14:38 0:06:34 0:06:29 0:01:38 55.70% 1.30% 88.86% 75.17%

12,000 0:46:36 0:21:44 0:21:37 0:05:36 53.60% 0.55% 87.98% 74.23%

16,000 1:56:26 0:51:22 0:51:22 0:13:16 55.88% -0.02% 88.60% 74.16%

20,000 3:39:36 1:40:09 1:40:05 0:26:10 54.42% 0.06% 88.08% 73.87%

24,000 6:29:22 2:52:43 2:52:54 0:44:43 55.59% -0.11% 88.52% 74.11%

28,000 8:05:15 4:33:21 4:35:04 1:10:48 43.32% -0.62% 85.41% 74.10%

Table 10 Run time, in HH:mm:ss, for random sequences using our Java implementations on our AMD platform

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

4000 0:06:10 0:00:54 0:01:03 0:00:21 82.90% -18.00% 94.23% 60.20%

8000 2:01:55 0:06:27 0:07:43 0:02:46 93.68% -19.42% 97.73% 57.22%

12,000 8:48:01 0:26:02 0:29:56 0:09:12 94.33% -14.97% 98.26% 64.64%

16,000 18:45:51 out of memory 1:07:26 0:26:48 94.01% 97.62%

20,000 35:02:59 out of memory 2:04:00 0:48:39 94.10% 97.69%

Table 11 Run time, in HH:mm:ss, for random sequences using our Java implementations on our Intel I7 platform

SeqLength Classical Transpose ByRow ByBox RvsC RvsT BvsC BvsT

4000 0:01:01 0:00:29 0:00:34 0:00:09 44.54% -16.54% 85.29% 69.10%

8000 0:10:12 0:03:51 0:04:31 0:01:11 55.79% -17.19% 88.46% 69.41%

12,000 0:30:03 0:12:54 0:14:43 0:03:55 50.99% -14.18% 86.94% 69.57%

16,000 1:10:05 0:30:44 0:35:27 0:09:19 49.40% -15.36% 86.70% 69.67%

20,000 2:10:22 0:59:25 1:07:14 0:18:15 48.43% -13.15% 86.00% 69.29%

24,000 5:33:02 out of memory 2:19:19 0:42:07 58.17% 87.35%

28,000 7:22:37 out of memory 3:44:46 1:06:56 49.22% 84.88%



Zhao and Sahni BMC Bioinformatics 2017, 18(Suppl 15):518 Page 30 of 81

as much as 88.8% relative to Classical and by as much as
56.3% and 57.8% relative to Transpose. The Java versions
reduce run time by as much as 98.3% relative to Classical
and by as much as 75.2% relative to Transpose.

The algorithms ByRow, ByRowSegment, ByBox, and
Classical require about half as much memory as does
Transpose. While run time becomes a limiting factor
more often than memory, in our Java experiments, we
were unable to run Transpose on our larger data sets on
our AMD and Intel I7 platforms because of insufficient
memory.

Abbreviations
A:Adenine; AMD: Advanced micro devices; C:Cytosine; CPU:Central processing
unit; DNA: DeoxyriboNucleic acid; GPU: Graphics processing unit; G:Guanine;
LRU:Least recently used; LLC:Last level cache; NCBI:National center for
biotechnology information; RNA: RiboNucleic acid; SW: Smith and waterman;
U: Uracil

Acknowledgements
The authors are grateful to Argonne Labs for providing access to their IBM
Blue Gene/Q computer on which the Power PC experiments were conducted.
The authors also would like to thank the anonymous reviewers for their
valuable comments and suggestions.

Funding
This research was funded, in part, by the National Science Foundation under
award NSF 1447711. Publication costs were funded by the University of Florida.

Availability of data and materials
All data generated or analyzed during this study are included in this
supplementary information files.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 15, 2017: Selected articles from the 6th IEEE International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS): bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-18-supplement-15.

Authors’ contributions
CZ and SS developed the new cache efficient sequence alignment algorithms,
did theoretical analysis and the experimental results analysis, and wrote the
manuscript. CZ programmed the algorithms and ran the benchmark tests.
Both authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 6 December 2017

References
1. RNA Folding. http://www.nature.com/subjects/rna-folding. Accessed 15

Aug 2017.
2. Pseudoknots. https://en.wikipedia.org/wiki/Pseudoknot. Accessed 15

Aug 2017.

3. Waterman MS, Smith TF. RNA secondary structure: A complete
mathematical analysis. Math Biosc. 1978;42:257–66.

4. Nussinov R, Pieczenik G, Griggs JR, Kleitman DJ. Algorithms for loop
matchings. SIAM J Appl Math. 1978;35(1):68–82.

5. Zuker M, Stiegler P. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Res.
1981;9(1):133–48.

6. Li J, Ranka S, Sahni S. Multicore and GPU algorithms for Nussinov RNA
folding. BMC Bioinformatics. 2014;15(Suppl 8):1.

7. Mathuriya A, Bader DA, Heitsch CE, Harvey SC. GTfold: a scalable
multicore code for RNA secondary structure prediction. In: Proceedings of
the 2009 ACM Symposium on Applied Computing. SAC ’09. New York:
ACM. 2009. p. 981–8.

8. Swenson MS, Anderson J, Ash A, Gaurav P, Sukosd Z, Bader DA, Harvey SC,
Heitsch CE. GTfold: Enabling parallel RNA secondary structure prediction
on multi-core desktops. BMC Res Notes. 2012;5(1):341.

9. Tan G, Sun N, Gao GR. A parallel dynamic programming algorithm on a
multi-core architecture. In: Proceedings of the Nineteenth Annual ACM Symposium
on Parallel Algorithms and Architectures. SPAA ’07. New York: ACM. 2007.
p. 135–44.

10. Estrada T, Licon A, Taufer M. CompPknots: a framework for parallel
prediction and comparison of RNA secondary structures with
pseudoknots. In: Frontiers of High Performance Computing and
Networking-ISPA 2006 Workshops. Berlin: Springer. 2006. p. 677–86.

11. Xia F, Dou Y, Zhou X, Yang X, Xu J, Zhang Y. Fine-grained parallel
RNAalifold algorithm for RNA secondary structure prediction on FPGA.
BMC bioinformatics. 2009;10(Suppl 1):37.

12. Jacob A, Buhler J, Chamberlain RD. Accelerating Nussinov RNA
secondary structure prediction with systolic arrays on FPGAs. In: 2008
International Conference on Application-Specific Systems, Architectures
and Processors. Washington, DC: IEEE. 2008. p. 191–6.

13. Dou Y, Xia F, Jiang J. Fine-grained parallel application specific computing
for RNA secondary structure prediction using scfgs on fpga. In:
Proceedings of the 2009 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems. CASES ’09. New York:
ACM. 2009. p. 107–16.

14. Rizk G, Lavenier D. GPU accelerated RNA folding algorithm. In: Computational
Science-ICCS 2009. Louisiana: Springer. 2009. p. 1004–1013.

15. Chang DJ, Kimmer C, Ouyang M. Accelerating the Nussinov RNA folding
algorithm with CUDA/GPU. In: Signal Processing and Information
Technology (ISSPIT), 2010 IEEE International Symposium On. ISSPIT ’10.
Washington, DC: IEEE Computer Society. 2010. p. 120–5.

16. Sahni S. Data Structures, Algorithms, and Applications in C++, Second
Edition. Summit: Silicon Press; 2005.

17. Perf Tool. https://perf.wiki.kernel.org/index.php/Main_Page. Accessed 15
Aug 2017.

18. Wallace S, Vishwanath V, Coghlan S, Tramm J, Zhiling L, Papkay ME.
Application power profiling on IBM Blue Gene/Q. In: 2013 IEEE
International Conference on Cluster Computing (CLUSTER). Washington,
DC: IEEE. 2013. p. 1–8.

19. Wallace S, Vishwanath V, Coghlan S, Zhiling L, Papkay ME. Measuring
power consumption on IBM Blue Gene/Q. In: Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2013 IEEE 27th
International. Washington, DC: IEEE. 2013. p. 853–859.

20. NCBI Database. http://www.ncbi.nlm.nih.gov/gquery. Accessed 15 Aug 2017.
21. Durbin R, Eddy S, Krogh A, Mitchison G. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge:
Cambridge University Press; 2006. p. 267–276. Chap. 10.2.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-15
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-15
http://www.nature.com/subjects/rna-folding
https://en.wikipedia.org/wiki/Pseudoknot
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.ncbi.nlm.nih.gov/gquery

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Introduction
	Cache model

	Methods
	Classical RNA folding algorithm (Nussinov's algorithm)
	Transpose RNA folding algorithm
	ByRow RNA folding algorithm
	ByBox RNA folding algorithm
	Practical considerations

	Results
	Experimental platform and test data
	C Implementations
	Xeon E5-2603
	AMD Athlon 64
	Intel I7
	Power PC A2

	Java implementations

	Discussion and conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

