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Abstract

Background: Studies have shown that enhancers are significant regulatory elements to play crucial roles in gene
expression regulation. Since enhancers are unrelated to the orientation and distance to their target genes, it is a
challenging mission for scholars and researchers to accurately predicting distal enhancers. In the past years, with the
high-throughout ChiP-seq technologies development, several computational techniques emerge to predict
enhancers using epigenetic or genomic features. Nevertheless, the inconsistency of computational models across
different cell-lines and the unsatisfactory prediction performance call for further research in this area.

Results: Here, we propose a new Deep Belief Network (DBN) based computational method for enhancer prediction,
which is called EnhancerDBN. This method combines diverse features, composed of DNA sequence compositional
features, DNA methylation and histone modifications. Our computational results indicate that 1) EnhancerDBN
outperforms 13 existing methods in prediction, and 2) GC content and DNA methylation can serve as relevant
features for enhancer prediction.

Conclusion: Deep learning is effective in boosting the performance of enhancer prediction.
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Background
Eukaryotic gene expression is dominated by a set of
events, including chemical modifications to nucleosomes
and DNA, the binding of regulatory proteins to DNA
and post-transcriptional modifications [1]. Cis-regulatory
elements, including enhancers, promoters, insulators and
silencers, play the significant role in the process of gene
expression. Among them, enhancers are short non-coding
DNA sequences that regulate gene expression patterns
independent of their relative distance and location to their
associated promoter.
Predicting enhancers is important for exploring the

biological activities of organisms. Enhancer prediction
has moved forward by recent technological advances,
including chromatin immunoprecipitation sequencing
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(ChIP-seq) [2], DNaseI-digested chromatin sequenc-
ing (DNase-seq) [3], RNA sequencing (RNA-seq), or
Formaldehyde-Assisted Isolation of Regulatory Elements
sequencing (FAIRE-seq) [4]. These technical methods
enable genome-wide measurement of the structural con-
formation of DNA, histone modifications and binding
sites of regulatory proteins. Furthermore, the FANTOM
project [5], ENCODE project [6], and other studies alike
focusing on different cell types [7, 8] have massively
increased the number of functional genomic data in
public [1].
Up to date, several computational methods have been

put forward to predict enhancers. For example, sup-
port vector machine (SVM) and linear regression models
have successfully distinguished novel enhancers active in
heart, hindbrain and muscle development [9–11]. Ran-
dom forests (RFs) [12] have also been trained using
histone modifications to predict p300 binding sites in
human lung fibroblasts and embryonic stem cells [1]. Two
research groups have employed unsupervised approaches
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based on dynamic Bayesian networks (Segway) [13] and
hidden Markov models (ChromHMM) [14]with signa-
tures in ENCODE data to segment the human genome
into regions and then assigned potential functions to these
regions. However, the unsatisfactory prediction perfor-
mance and the inconsistency of computational models
across different cell-lines call for further exploration in
this area.
Here, we proposed a method based on the deep

belief network (DBN) for predicting enhancers [15]. We
named this new method EnhancerDBN. EnhancerDBN
was trained on data fromVISTA Enhancer Browser, which
contains biologically validated enhancers samples, using
three kinds of features consisting of histonemodifications,
DNA sequence compositional features and DNA methy-
lation. EnhancerDBN turns the prediction problem into a
binary classification mission that determines whether any
DNA region is an enhancer candidate or not, using a two-
step scheme. The first step is to construct a DBN using
Restricted BoltzmannMachines (RBMs). The second step
is to train and optimise the DBN based deep neural net-
work classifier using the back propagation (BP) algorithm
[16]. 10-fold cross validation was employed to evalu-
ate EnhancerDBN. Experimental results indicate that 1)
EnhancerDBN can effectively predict enhancers, and out-
performs thirteen existing methods, and 2) GC content
and DNA methylation are informative for enhancer pre-
diction. Though in bioinformatics area deep learning has
also successfully applied to several problems such as drug
target prediction [17], to the best of our knowledge, this
is the first work that employs deep belief network for
enhancer prediction [15].

Methods
Datasets
Enhancer data were downloaded from VISTA enhancer
Browser (http://enhan-cer.lbl.gov/) on June 1st, 2015,
which consist of 741 human enhancers. DNA sequence
data and DNA methylation data were the February 2009
assembly of the human genome (GRCh37/hg19). The raw
histone modification data were downloaded from NIH
Roadmap Epigenomics. A summary of the data used in
this paper is given in Table 1.
We used the VISTA Enhancer Browser data because

these enhancers were experimentally validated. We chose
the histone modification features because some existing
works [1, 12] have shown that they are indicative of
enhancers. We used GC content for the reason that Erwin
et al. [1] found that the heart enhancers were more likely
to be identified because they had high GC content. Pre-
vious bioresearch also found that low DNA methylation
is possibly related to enhancers, which inspired us to use
DNA methylation as a type of enhancer features.

Table 1 Datasets used in this paper

Dataset g Source Website

Enhancers VISTA enhancer
Browser

https://enhancer.lbl.gov/

DNA sequence UCSC http://hgdownload.soe.ucsc.edu/
downloads.html#human

Histone
modification

NIH Roadmap http://www.roadmapepigenomics.
org/

DNA
methylation

UCSC http://genome.ucsc.edu/cgi-bin/
hgTables

We used all the 741 VISTA human enhancers as posi-
tive enhancers, and generated 741 negatives by randomly
selecting 741 genomic background regions of similar
length and chromosome distribution to the positives. As
in the existing works [1], we did not use the VISTA neg-
atives because these so-called negative enhancers were
probably real enhancers, and they are not representatives
of non-enhancer regions.

The pipeline of EnhancerDBN
Figure 1 shows the pipeline of the EnhancerDBN method.
It consists of three main steps: 1) Feature calculation.
Three types of features were used to represent enhancers,
including DNA sequence compositional features, his-
tone modifications and DNA methylation. 2) Training
the EnhanerDBN classifier for enhancer prediction. A
two-step scheme is used. The first step is to construct
the DBN by training a series of Restricted Boltzmann
Machines (RBMs); the second step is to train and optimize
the EnhancerDBN classifier by using the trained DBN
and an additional output layer with the backpropagation
(BP) algorithm [16]. 3) Enhancer prediction and perfor-
mance evaluation. 10-fold validation was used to evaluate
the proposed method. In what follows, we describe the
technical details of the major steps.

Feature calculation
DNA sequence compositional features
We used k-mers as the sequence compositional features,
with k ranging from 2 to 4. For a given k, there are at most
4k k-mers in a DNA sequence. As each DNA fragment can
be obtained from either strand of the DNA genome, one k-
mer and its opposite complement k-mer can be regarded
as one feature, thus we can reduce the number of sequence
compositional features to N(k) = 4k/2. Take k =2 for
example, N(2) = 42/2 = 8. That is, the number of 2-mer
features is 8. Similarly, there are 32 3-mer features, 128
4-mer features. Thus, we have totally 168 k-mer features
for enhancer representation. For each individual k-mer,
we counted its frequency in each positive/negative sample
sequence and take it as the corresponding feature value.

http://enhan-cer.lbl.gov/
https://enhancer.lbl.gov/
http://hgdownload.soe.ucsc.edu/downloads.html#human
http://hgdownload.soe.ucsc.edu/downloads.html#human
http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
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Fig. 1 The pipeline of EnhancerDBN

In addition, we also calculated the total frequency of
G and C occurring in each positive/negative sample, and
took it as the value of GC content feature.

DNAmethylation feature
According to previous bioresearch, low DNAmethylation
was shown to be relevant to enhancers. So we used the
level of DNA methylation of each sample as its feature.
The DNA methylation feature was calculated in two

steps. First, we obtained the location for each sample in
the genome. Then, according to its location, we counted
the total value of methylation within the region of the
sample, which was used as the sample’s methylation fea-
ture.

Histonemodification features
There are many kinds of histone modifications, includ-
ing H3K4me1, H3K4me2, H3ac and so forth. Here, we
used 106 kinds of histone modifications. Similarly, The
histonemodification features were calculated in two steps.
First, we obtained the location for each positive/negative
sample in the genome. Then, according to the location,
for each kind of histone modifications, we counted its
total amount within the region of the positive/negative
sample. Thus, we obtained a 106-dimension histone
modification feature vector for each positive/negative
sample.

Constructing the EnhancerDBN classifier
Figure 2 illustrates the architecture of the EnhancerDBN
classifier, which consists of a DBN and an output layer. To
train the EnhancerDBN classifier, the DBN must be first
trained in an unsupervised way. After that, the trained
DBN is further combined with the output layer to form
a deep neural network (DNN), which is trained by the
backpropagation (BP) algorithm in a supervised way, and
finally the EnhancerDBN classifier is obtained.

Training DBNwith RBMs
As shown in Fig. 2, a DBN is a multilayer, stochastic
generative model that is constructed by training a stack
of RBMs, each of which is trained by using the hidden
variables of the previous RBM as its visible variables [16].
Here we built the DBN with 3 RBMs. Each RBM has its

own visible layer and output layer. After performance tun-
ing, we set the number of nodes in the hidden layer for the
three RBMs to 50, 50 and 200, respectively. As the training
samples are 276-dimension vectors, the number of nodes
in the visible layer for the 1st RBM is 276. For the 2nd and
the 3rd RBMs, the number of nodes in the visible lay is 50.
These three connected RBMs construct the DBN with a
structure of 276-50-50-200.
A greedy layer-wise unsupervised training process was

performed to the DBN with RBMs as its building blocks.
The training process is as follows:
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Fig. 2 The architecture of the EnhancerDBN classifier

• Step 1. Training the 1st RBM by inputting the
training data to its visible layer.

• Step 2. Training the 2nd RBM by treating the hidden
layer of the 1st RBM as its visible layer.

• Step 3. Training the 3rd RBM by treating the hidden
layer of the 2nd RBM as its visible layer.

• Step 4. Building the DBN with weights and biases
learned in the three RBMs.

We can see that the RBMs are trained one by one,
obtaining the weights between the visible layer and the
hidden layer of each RBM, by using contrastive divergence
[18, 19]. The details are presented below.

Training restricted Boltzmannmachine (RBM)
A restricted Boltzmann machine (RBM) is a particular
type of random neural network model that has a two-layer
architecture as shown in Fig. 3. One layer is called visible
layer, which is also the input layer; The other layer is called
hidden layer. Nodes in the two layers are fully connected,
while there is no connection within the same layer. This
constitutes a bipartite structure.
As shown in Fig. 3, the bottom layer contains visible

variables (nodes) v and the top layer contains hidden vari-
ables (nodes) h. The matrix W is used to represent the
symmetric interaction terms between the visible variables
and the hidden variables.
The energy function of the joint configuration can be

expressed as:

E(v, h; θ) = −
∑

ij
Wijvijhj −

∑
bivi −

∑
ajhj, (1)

where θ={W , a, b} represents the model parameters, ai is
the bias of visible unit i, and bj is the bias of hidden unit j.

The joint probability distribution of a certain configura-
tion is determined by the Boltzmann distribution (and the
energy of this configuration):

Pθ (v, h) = 1
Z(θ)

exp(−E(v, h; θ)), (2)

Z(θ) =
∑

h,v
exp(−E(v, h; θ)), (3)

where Z(θ) is the normalization constant.
When a vector v=(v1, v2, . . . , vi, . . .) is input to the visi-

ble layer, the binary state hj of the hidden unit j is set to 1
with the probability as follows:

P(hj = 1|v) = sigmoid
(

∑

i
Wijvi + aj

)
. (4)

Fig. 3 The RBM Architecture
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With the states of the hidden units, the binary state vi of
visible unit i is set to 1 with the probability below:

P(vi = 1|h) = sigmoid

⎛

⎝
∑

j
Wijhj + bi

⎞

⎠ . (5)

A RBM is usually trained as follows:

• Step 1. The states of the visible units are set
according to the training data.

• Step 2. Calculating the binary states of the hidden
variables by Eq. (4).

• Step 3. After determining the states of all the hidden
units, the states of all visible units are determined by
Eq. (5).

• Step 4. The gradients of W are evaluated by the
contrastive divergence (CD) learning algorithm, then
the gradient descent algorithm is carrying out to
update the parametersW , a, b.

Training the EnhancerDBN classifier
The DBN is trained in an unsupervised way, which is used
to learn features for prediction, and mainly used as the
initial network for constructing classifiers.
With the trained DBN above and an additional out-

put layer, our EnhancerDBN classifier was built, and then
trained by the same training dataset in a supervised way.
The BP algorithm was used to train the classifier. As we
employ 10-fold cross validation. We split the data set into
ten partitions, with 9 partitions (1334 samples) for train-
ing and the rest partitions (containing 148 samples) for
test. So 10 trials were done, and the average result was
used as the final prediction performance.

Results and discussion
We conducted 10-fold cross-validation to assess the pro-
posed method. We first evaluated the predictive power
of different types of features in terms of prediction error
rate, then compared our method with thirteen existing
methods in terms of AUC value or prediction accuracy.

Performance evaluation with different types of features
To evaluate the predictive power of different types of fea-
tures, we constructed four kinds of feature combinations:
“Histone + Sequence”, “Histone + Sequence + GC”, “His-
tone + Sequence +Methylation” and “Histone + Sequence +
Methylation + GC”. Here, “+” means “and”. For example,
“Histone + Sequence” means using both sequence com-
positional features and histone modification features We
compared the error rates of our method when using the
four different feature combinations, the results are listed
in Table 2.
From Table 2, we can see that when either GC content

or DNA methylation is included as feature, the error rate

Table 2 Prediction error rates when using different feature
combinations

Features Error rate

Histone + Sequence 0.115

Histone + Sequence + GC 0.102

Histone + Sequence + Methylation 0.099

Histone + Sequence + Methylation + GC 0.0915

decreases, and when both GC content and DNAmethyla-
tion are considered, the lowest error rate is achieved. This
result shows that GC content and DNA methylation are
relevant to enhancers, can serve as effective features for
predicting enhancers.

Performance comparison with existing methods
The EnhancerDBN model was implemented in Matlab by
using the DBN algorithm, with the nodes of hidden lay-
ers being 50-50-200. The input for the model is the matrix
with enhancer samples as rows and features as columns.
Here, we first compared our method with five exist-
ing methods, including EnhancerFinder [1], CLARE [20],
DEEP [21], ChromHMM and Segway in ROC space. Note
that comparisons with the existing methods are not easy
due to the fact that most existing methods were devel-
oped in different contexts. CLARE is a popular method of
identifying enhancers using DNA sequence, transcription
factor binding sitemotifs and other sequence patterns, it is

Fig. 4 Performance comparison with five typical existing methods in
ROC space. The “×” of different colors are used for ChromHMM to
represent state predictions based on data from different ENCODE cell
types: GM12878 (blue), H1-hESC (violet), HepG2 (brown), HMEC (tan),
HSMM (gray), HUVEC (light green), K562 (green), NHEK (orange), NHLF
(light blue), and all cell types (red)
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Table 3 Accuracy comparison with other eight existing methods

Method Description Epigenetic feature
type

Accuracy(%) Website Reference

ChAT Dynamic Programming Histone modification 41.7 — [22]

ChromaSig Likelihood Function
Clustering

Histone modification,
Histone distribution

62.6 Bioinformatics- renlab.
ucsd.edu/rentrac/wiki/
ChromaSig

[23]

CSI-ANN Artificial Neural Network Histone modification 66.3 www.medicine.Uiowa.
edu/Labs/tan/

[24]

Chromogens Support Vector Machine Histone modification 90.0 sysimm.ifrec.saka-u.ac.
jp/download/Diego/

[25]

Won’s method Hidden Markov Model Histone modification 80.0 nash.ucsd.edu/
chromatin.tar.gz.

[26]

BNFinder Bayes Network Histone modification,
Pol II site

78.0 bioputer.mimuw.edu.
pl/software/bnf/

[27]

Yip’s method Random Forest Histone modification 67.0 metatracks.
Encodenets.
Gersteinlab.org/

[28]

RFECS Random Forest Histone modification 90.0 enhancer.ucsd.
edu/renlab/RFECS_
enhancer_prediction/

[12]

EnhancerDBN DEEP Belief Network Histone modification 92.0 — —

publicly available as a web server. The DEEP method and
EnhancerFinder work with the VISTA Enhancer Browser.
To evaluate ChromHMM and Segway, we considered the
states overlapping our training and testing regions. Any
region with an overlapping enhancer state was consid-
ered an enhancer and the others were non-enhancers. As
a result, we obtained a single point in ROC space for
the state predictions. Since there is no score or confi-
dence value associated with the state assignments, a full
ROC curve could not be obtained for these methods. The
results are presented in Fig. 4.
Actually, there are some other methods in the litera-

ture. So we then compared our method with eight other
existing methods in terms of prediction accuracy, since no
confidence values associated with these methods. Table 3
presents the accuracy comparison of our method with the
eight existing methods. From this table, we can see that
our EnhancerDBN obtains a 92% accuracy, while Chro-
mogens and RFECS both achieve 90.0% accuracy, but the
others have only about 80.0% or lower accuracy. So our
method is still the best.
In summary, either from the perspective of accuracy or

in terms of ROC AUC, EnhancerDBN achieves the best
performance, in comparison with totally thirteen exist-
ing methods. This result shows that EnhancerDBN is an
effective and reliable method to predict enhancers.

Conclusions
In this study, we proposed EnhancerDBN, an new
enhancer predicting method based on DBN. The VISTA

Enhancer dataset was used to train and test the
proposed method. Three kinds of features, including
DNA sequence, histone modifications and DNAmethyla-
tion were used to represent positive/negative enhancers.
EnhancerDBN used a two-step scheme to construct and
train a deep neural network (DNN) classifier, which turns
the prediction problem into a binary classification task to
decide whether or not a DNA region is an enhancer. The
first step is to construct a DBN using RBMs, and the sec-
ond step is to train and optimize the DNN classifier using
the BP algorithm. Our experimental results demonstrate
that EnhancerDBN outperforms thirteen existing meth-
ods, and GC content and DNA methylation are informa-
tive for enhancer prediction. In the future, we will explore
other deep learning techniques to predict enhancers and
other cis-regulatory elements.
Abbreviations
RBM: Restricted Boltzmann Machines; DBN: Deep Belief Network.

Acknowledgements
A 2-page abstract has been published in Lecture Notes in Computer Science:
Bioinformatics Research and Applications

Funding
National Natural Science Foundation of China (NSFC) (grants No. 61272380
and No. 61300100) for the design of the study, data generation and analysis,
manuscript writing, and publication cost; The National Key Research and
Development Program of China (grant No. 2016YFC0901704) and Shanghai
Natural Science Foundation (13ZR1451000) for data collection and analysis;
the Program of Shanghai Subject Chief Scientist (15XD1503600), Chen Guang
Program sponsored by Shanghai Municipal Education Commission and
Shanghai Education Development Foundation as well as the Fundamental
Research Funds for the Central Universities (13D111206) for data interpretation
and manuscript writing. No funding body played any role in conclusion.

renlab.ucsd.edu/rentrac/wiki/ChromaSig
renlab.ucsd.edu/rentrac/wiki/ChromaSig
renlab.ucsd.edu/rentrac/wiki/ChromaSig
www.medicine.Uiowa.edu/Labs/tan/
www.medicine.Uiowa.edu/Labs/tan/
http://dx.doi.org/sysimm.ifrec.saka-u.ac.jp/download/Diego/
http://dx.doi.org/sysimm.ifrec.saka-u.ac.jp/download/Diego/
nash.ucsd.edu/chromatin.tar.gz.
nash.ucsd.edu/chromatin.tar.gz.
bioputer.mimuw.edu.pl/software/bnf/
bioputer.mimuw.edu.pl/software/bnf/
metatracks.Encodenets.Gersteinlab.org/
metatracks.Encodenets.Gersteinlab.org/
metatracks.Encodenets.Gersteinlab.org/
enhancer.ucsd.edu/renlab/RFECS_enhancer_prediction/
enhancer.ucsd.edu/renlab/RFECS_enhancer_prediction/
enhancer.ucsd.edu/renlab/RFECS_enhancer_prediction/


The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):418 Page 105 of 131

Availability of data andmaterial
The datasets used in this study are available at http://dmb.tongji.edu.cn/
supplementary-information/enhancerdbn.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 12, 2017: Selected articles from the 12th International Symposium
on Bioinformatics Research and Applications (ISBRA-16): bioinformatics. The full
contents of the supplement are available online at https://bmcbioinformatics.
biomedcentral.com/articles/supplements/volume-18-supplement-12.

Authors’ contributions
JH and SG designed the research and revised the manuscript. HD and YL
developed the method, carried out experiments, and drafted the manuscript.
YW prepared data and coded some of the algorithms. All authors read and
approve the final paper

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science and Technology, Tongji University, 4800
Cao’an Road, Shanghai 201804, China. 2School of Computer, Donghua
University, 2999 Renming North Road, Shanghai 201620, China. 3Shanghai Key
Lab of Intelligent Information Processing, and School of Computer Science,
Fudan University, 220 Handan Road, Shanghai 200433, China. 4The
Bioinformatics Lab at Changzhou NO. 7 People’s Hospital, Changzhou, Jiangsu
213011, China. 5School of Software, Jiangxi Normal University, 99 Ziyang
Avenue, Jiangxi 330022, China.

Published: 16 October 2017

References
1. Erwin GD, Oksenberg N, Truty RM, et al. Integrating diverse datasets

improves developmental enhancer prediction. Plos Comput Biol.
2014;10(6):e1003677.

2. Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in
vivo protein-DNA interactions. Science. 2007;316(5830):1497–502.

3. Boyle AP, Davis S, Shulha HP, et al. High-resolution mapping and
characterization of open chromatin across the genome. Cell. 2008;132(2):
311–22.

4. Giresi PG, Kim J, McDaniell RM, et al. FAIRE (Formaldehyde-Assisted
Isolation of Regulatory Elements) isolates active regulatory elements from
human chromatin. Genome Res. 2007;17(6):877–85.

5. Andersson R, Gebhard C, Miguel-Escalada I, et al. An atlas of active
enhancers across human cell types and tissues. Nature. 2014;507(7493):
455–61.

6. Dunham I, Kundaje A, Aldred SF, et al. An integrated encyclopedia of
DNA elements in the human genome. Nature. 2012;489(7414):57–74.

7. Wamstad JA, Alexander JM, Truty RM, et al. Dynamic and coordinated
epigenetic regulation of developmental transitions in the cardiac lineage.
Cell. 2012;151(1):206–20.

8. Paige SL, Thomas S, Stoick-Cooper CL, et al. A temporal chromatin
signature in human embryonic stem cells identifies regulators of cardiac
development. Cell. 2012;151(1):221–32.

9. Narlikar L, Sakabe NJ, Blanski AA, et al. Genome-wide discovery of human
heart enhancers. Genome Res. 2010;20(3):381–92.

10. Burzynski GM, Reed X, Taher L, et al. Systematic elucidation and in vivo
validation of sequences enriched in hindbrain transcriptional control.
Genome Res. 2012;22(11):2278–89.

11. Busser BW, Taher L, Kim Y, et al. A machine learning approach for
identifying novel cell type–specific transcriptional regulators of
myogenesis. Plos Genet. 2012;8(3):e1002531.

12. Rajagopal N, Xie W, Li Y, et al. RFECS: a random-forest based algorithm
for enhancer identification from chromatin state. Plos Comput Biol.
2013;9(3):e1002968.

13. Hoffman MM, Buske OJ, Wang J, et al. Unsupervised pattern discovery in
human chromatin structure through genomic segmentation. Nat
Methods. 2012;9(5):473–6.

14. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods. 2012;9(3):215–6.

15. Bu HD, Gan YL, Wang Y, et al. EnhancerDBN: An Enhancer Prediction
Method Based on Deep Belief Network. Lect Notes Bioinform. 2016;9683:
312–3.

16. Hinton GE, Osindero S, Teh YW. Training products of experts by
minimizing contrastive divergence. Neural Comput. 2006;18(7):1527–54.

17. Zhang RC, Cheng ZZ, Guan JH, et al. Exploiting topic modeling to boost
metagenomic reads binning. Lect Notes Bioinform. 2015;16:S2.

18. Hinton GE. Training products of experts by minimizing contrastive
divergence. Neural Comput. 2002;14(8):1771–800.

19. Carreira-Perpinan MA, Hinton G. On Contrastive Divergence Learning.
Aistats. 2005;10:33–40.

20. Taher L, Narlikar L, Ovcharenko I. CLARE: cracking the language of
regulatory elements. Bioinformatics. 2012;28(4):581–3.

21. Kleftogiannis D, Kalnis P, Bajic VB. DEEP: a general computational
framework for predicting enhancers. Nucleic Acids Res. 2015;43(1):e6.

22. Wang JR, Lunyak VV, King JI. Chromatin signature discovery via histone
modification profile alignments. Nucleic Acids Res. 2012;40(27):10642–56.

23. Hon G, Ren B, Wang W. ChromaSig: a probabilistic approach to finding
common chromatin signatures in the human genome. Plos Comput Biol.
2008;10(4):e1000201.

24. Firpi HA, Ucar D, Tan K. Discover regulatory DNA elements using
chromatin signatures and artificial neural network. Bioinformatics.
2010;26(13):1579–86.

25. Fernandez M, Miranda-Saavedra D. Genome-wide enhancer prediction
from epigenetic signatures using genetic algorithm-optimized support
vector machines. Nucleic Acids Res. 2012;40(10):e77.

26. Won KJ, Chepelev I, Ren B, et al. Prediction of regulatory elements in
mammalian genomes using chromatin signatures. BMC Bioinformatics.
2008;9(1):1.

27. Bonn S, Zinzen RP, Girardot C, et al. Tissue-specific analysis of chromatin
state identifies temporal signatures of enhancer activity during
embryonic development. Nat Genet. 2012;44(2):148–56.

28. Yip KY, Cheng C, Bhardwaj N, et al. Classification of human genomic
regions based on experimentally determined binding sites of more than
100 transcription-related factors. Genome Biol. 2012;13(9):R48.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dmb.tongji.edu.cn/supplementary-information/enhancerdbn
http://dmb.tongji.edu.cn/supplementary-information/enhancerdbn
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-12
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-12

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Datasets
	The pipeline of EnhancerDBN
	Feature calculation
	DNA sequence compositional features
	DNA methylation feature
	Histone modification features

	Constructing the EnhancerDBN classifier
	Training DBN with RBMs
	Training restricted Boltzmann machine (RBM)
	Training the EnhancerDBN classifier


	Results and discussion
	Performance evaluation with different types of features
	Performance comparison with existing methods

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and material
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

