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Abstract

Background: A network motif is defined as a statistically significant and recurring subgraph pattern within a
network. Most existing instance collection methods are not feasible due to high memory usage issues and provision
of limited network motif information. They require a two-step process that requires network motif identification prior
to instance collection. Due to the impracticality in obtaining motif instances, the significance of their contribution to
problem solving is debated within the field of biology.

Results: This paper presents NemoProfile, an efficient new network motif data model. NemoProfile simplifies
instance collection by resolving memory overhead issues and is seamlessly generated, thus eliminating the need for
costly two-step processing. Additionally, a case study was conducted to demonstrate the application of network
motifs to existing problems in the field of biology.

Conclusion: NemoProfile comprises network motifs and their instances, thereby facilitating network motifs usage in
real biological problems.
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Background
Systems biology elucidates, models, and predicts the
behavior of all biological components and their interac-
tions. Its emphasis on the interconnections of molecules
produced biological networks as described in Fig. 1, where
nodes are molecules and edges are interactions between
them. Understandably, various graph theory topics are
substantially applied to resolve various biological prob-
lems, such as prediction of biological function, detection
of protein complexes, discovery of new interactions, evo-
lutionary analysis, information integration, diagnosis of
disease, and drug design [1].
Network motif analysis is one of the graph theory

methods used to find biologically relevant functions in
networks [2]. A network motif is defined as an overly fre-
quent and unique subgraph pattern in a network, and it

*Correspondence: kimw6@uw.edu
Division of Computing and Software Systems, School of Science, Technology,
Engineering, and Mathematics (STEM), University of Washington Bothell,
18115 Campus Way NE, 98011-8246 Bothell, WA, USA

has been applied to solve various biological and medi-
cal problems: predicting protein-protein interactions [3],
determining protein functions [4], detecting breast-cancer
susceptibility genes [5], investigating for evolutionary con-
servation [6, 7], and discovering essential proteins [8, 9].
Furthermore, a broad spectrum of applications has been
explored: ‘motif clustering’ [10], ‘motif themes’ [11], ‘rel-
ative graphlet frequency distances’ [12, 13], ‘motif modes’
[14], and ‘MotifScores’ [15].
However, identifying network motifs is intrinsically very

costly, and this high computational cost restricts extensive
and exhaustive experiments for real problems. The pro-
cess involves enumeration of millions of subgraphs in the
input graph, and classification through canonical labeling
or isomorphic testing. Then, a network motif ’s unique-
ness is established through rigorous statistical testing
in a huge random pool. Consequently, various heuristic
methods and parallel algorithms have been proposed that
alleviate the performance concerns of exhaustive search
methods [16].
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Fig. 1 Examples of biological networks: a a metabolic network is composed of different types of nodes and edges; b all the nodes in a gene
regulatory network are genes, and directed edges represent a regulatory process; c a protein-protein interaction network is composed of proteins,
and their binary interactions are undirected edges

Network motifs may remain meaningless unless their
biological significance is properly evaluated. In order to
determine biological relevance, individual motif instances
need to be collected and evaluated in the context of bio-
logical systems. However, most motif-finding algorithms
provide only frequency and statistical significance of each
pattern, which restricts its usability for real-world prob-
lems. Therefore, we introduce a new network motif rep-
resentation to overcome this problem, and define it as
NemoProfile.
In this paper, we show how efficiently NemoProfile

is generated and how this significantly reduces motif
instance collection time. We also provide a case study
where NemoProfile is directly applied to the prediction of
essential proteins from protein-protein interaction (PPI)
networks.

Methods
Here, we introduce a new network motif representation,
as NemoProfile. NemoProfile can be effortlessly gen-
erated while detecting network motifs, and effectively
collects network motif instances. We designed and imple-
mented a program based on a flowchart illustrated in
Fig. 2 to provide three separate output options: NemoPro-
file, NemoCount, and NemoCollect.
NemoCount, which implements ESU (Enumerate SUb-

graphs) algorithm [17], provides the frequency and statis-
tical testing result only. NemoProfile andNemoCollect are
described followed by the definition of network motifs.

Network motif
Network motifs are defined as frequent and unique sub-
graphs in a network. Formally, ifG = (V ,E) is a graph and
k ranges from 3 to n << |V |, then a network motif m is

a connected subgraph of size k in G, which appears more
frequently than usual. In the definition of network motifs,
‘more frequent than usual’ refers to a structural unique-
ness and it is determined by p-value as in Eq. (1) or z-score
as in Eq. (2) after a number of random graphs have been
generated.

p-value(m) = 1
N

N∑

n=1
c(n), where c(n) =

{
1, if fR(m) ≥ fG(m)

0, otherwise.

(1)

z-score(m) = fG(m) − average(fR(m))

std(fR(m))
(2)

Here, fG(m) is the frequency of motif m in G and fR(m)

be that of motif in random graph R. Also, average(fR(m))

and std(fR(m)) refer to the average and standard deviation
of frequencies in random networks, respectively. Gener-
ally, a subgraph with p-value less than 0.01 or z-score
greater than 2.0 is considered as a network motif.
Figure 3 describes how to find size 3 network motifs

from the input graph G in the upper left corner by ESU
algorithm [17]. The method enumerated a total of 16 sub-
graphs of size 3, but one instance, ({1,2,3}), is a triangle
type while others are all linear types. Although the fre-
quency of triangle type is much less than the linear type,
p-value and z-score determine that the triangle type is a
network motif. Therefore the frequency (or count) of the
network motif is 1, and the instance of the network motif
is ({1,2,3}). We want to note that all existing software pro-
grams provide the frequency, and p-value or z-scores of
network motifs but not the instances of network motifs
due to heavymemory overhead. In this paper, we putmore
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Fig. 2 Flow chart of a network motif finding program producing NemoProfile, NemoCollect, and NemoCount(ESU). It searches all subgraphs in a
given network by ‘Enumeration,’ then asks if instances should be collected. If yes, all the instances are collected as ‘SubgraphProfile’ form. Otherwise
the occurrences of each graph pattern is recorded as in the ‘Counting’ step. These counts are essential to determine which graph pattern is a
network motif as its relative frequency is compared in the random graph pool. In the final output, the SubgraphProfile is used to produce
NemoProfile or NemoCollect. NemoCount output can be produced without the SubgraphProfile

weight on the importance of network motif instances by
introducing a NemoProfile.

Network motif detection algorithms
Various network-motif-finding algorithms are available,
classified into network-centric and motif-centric algo-
rithms [16]. Network-centric algorithms identify network
motifs while exploring subgraphs in the input graph,

whereas motif-centric algorithms count the instances for
each pattern in a predefined query set. Then its signif-
icance is determined through various statistical testing
in a large random pool to determine network motifs, as
summarized in Fig. 4.
Although network-centric algorithms have the bene-

fit that subgraphs that are not in the input graph will
never be considered, the inevitable enumeration process

Fig. 3 An example of a graph with network motifs and their instances, courtesy of paper [17]
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Fig. 4 Network-centric methods consists of enumeration and classification, random graph generation, and statistical testing. For example, out of six
non-isomorphic subgraphs of size 4 (upper-right table), three patterns at the bottom are determined as network motifs

is heavily expensive. Motif-centric algorithms can reduce
classification time if combined with symmetry breaking
or mapping strategies, and can directly verify whether a
specific pattern is a network motif or not [16, 17]. How-
ever, the number of non-isomorphic subgraphs (patterns)
increases exponentially with the size of motifs, therefore
even listing them is intractable. As an example, there are
11,716,571 patterns for motif size 10, as shown in Table 1
Many motif search programs are also available [18]:

MFinder [19], FANMOD [20], Kavosh [21], Mavisto [22],

Table 1 Number of non-isomorphic subgraphs for undirected
and directed graphs with up to 10 vertices [31]

Vertices
Number of non-isomorphic subgraphs

Undirected Directed

1 1 1

2 1 2

3 2 13

4 6 199

5 21 9,364

6 112 1,530,843

7 853 880,471,142

8 11,117 1,792,473,955,306

9 261,080 13,026,161,682,466,200

10 11,716,571 341,247,400,399,400,000,000

and NeMoFinder [23] follow the network-centric meth-
ods. Motif-centric methods are available with Grochow’s
[24], and MODA [25]. However, most of them provide
only frequency and statistical significance as in Fig. 5,
because collecting all instances of each pattern creates
a serious memory overhead problem. Hypothetically, the
number of subgraphs in the input graph is |EG||Em| where
|EG| is the number of edges in the input graph and |Em|
is the number of edges in motif m [26]. That means most
biological networks have several tens or even hundreds
of millions of subgraphs, even for small motifs. There-
fore, instances of network motifs have to be collected
as post-processing if necessary, and it usually requires
more efforts than detecting network motifs, as this step is
unavailable with current programs.
Considering that most real world problems that use

network motifs require a knowledge of what nodes and
edges actually belong to network motifs [8, 9], providing
their instances will greatly increase the usability of net-
work motifs. Therefore, the work in this paper focuses
on the neglected task in network motif finding, which is
collecting instances efficiently and utilizing them for real
biological problems.

NemoProfile
To reduce computational cost but still provide valuable
results, we propose a new network motif representation,
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Fig. 5 The example format of network motif finding outputs, which shows frequency and significance for each pattern

NemoProfile that relates each node to network motifs
as a profile matrix while identifying network motifs. As
illustrated in Fig. 2, a SubgraphProfile, T as an n × m
matrix is first constructed where n is the number of nodes
in the input graph and m is the number of all subgraph
patterns of size k. While enumerating, Tij increments by
1 if a pattern mj includes node vi. After network motifs
are determined NemoProfile takes the network motif
columns from T.
For example, we can find 14 instances of “graph78”

size-3-subgraphs and 2 of “graph238” size-3-subgraphs if
a target graph has 9 vertices and 10 edges as shown in
Fig. 6a. While the Fanmod program that implements ESU
can trace all 16 instances, saving all instances as sets of
vertices, such as, 〈 graph78 = ({1, 2, 4},{1, 2, 5}, {1, 2,

6},...,{2, 3, 9} ), graph238 =({1, 2, 3}, {3, 8, 9}) 〉 causes
a great amount memory overhead. Therefore, Fanmod
(ESU algorithm) provides the frequencies and statistical
results of each type, but discards the motif instances. On
the other hand, NemoProfile saves the set of instances as
a matrix so that the frequency of each node’s involvement
to each pattern is recorded as shown in Fig. 6a. Figure 6b
describes how to recover the network motif instances
as sets of vertices from a NemoProfile, which generates
NemoCollect.

NemoCollect
We define NemoCollect as in Algorithm 1 describing the
process to collect instances of a network motif m with
NemoProfile. It derives an induced subnetwork comprised

Fig. 6 The process of collecting instances for graph238: a SubgraphProfile is obtained in the process of ESU from the original input graph in the left.
From the graph patterns graph78 and graph238, “graph238” is determined to be a network motif through statistical analysis; b NemoProfile (left) is
derived from the SubgraphProfile in (a), and effectively identifies an induced subgraph for motif “graph238” by collecting the nodes corresponding
to a non-zero value in the column of graph238. The induced subgraph with nodes 1, 2, 3, 8, and 9 will be processed with EnumerateSubgraph(ESU)
[17] to collect all the instances for graph238
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Fig. 7 a The chart shows that the running time (Y-axis) to detect size 4 network motifs from various size (number of nodes, X-axis) of PPI networks is
very similar with all three options; b This chart compares times of ESU, NemoProfile, and NemoCollect methods while detecting various sizes of
motifs, from size 3 to size 8. NemoCollect takes longer than the other options for larger motif sizes

by all nodes whose m-corresponding column value being
non-negative. The subnetwork is fed back to Enumerate-
Subgraph function from [17] to collect the instances of
motif m. Figure 6 illustrates the process with an input
graph and NemoProfile.

Algorithm 1: NEMOCOLLECT USING NEMOPRO-
FILE AND ESU [17]

input : Graph G = (V ,E), k : motif size,
NemoProfile, motifm

output
:

A set of instances of motifm

1 Let nodeIdVec as a set of the node IDs. for
∀node ∈ G do

2 if node corresponds to motif m then
3 add to nodeIdvec;
4 Induce a subnetwork S of nodeIdvec
5 Call EnumerateSubgraph (S, k)
6 Output a set of instances of motifm

Results and discussion
We tested the efficiency and effectiveness of NemoPro-
file with a number of PPI networks that are available in
the DIP database [27] in a Linux operating system, Xeon
Core i7 with 5,959MiB systemmemory. The DIP database
includes eight different species of protein-protein inter-
action (PPI) networks, which are manually and computa-
tionally curated. Almost every threemonths, the networks
are updated by adding or removing proteins and their
interactions.We selected five E. coli core PPIs, five S. cere-
visiae core PPIs, and six H. sapiens core PPI networks that
are updated each year from 2010 through 2014.
We designed and implemented a program by modify-

ing ESUwith SNAP (Stanford Network Analysis Platform)
C++ library [28] to have three separate output options,
‘NemoCount (ESU)’, ‘NemoProfile’, and ‘NemoCollect’ as
shown in the bottom box in the flowchart of Fig. 2. We
should note that the ‘SubgraphProfile’ is an intermedi-
ate datum to generate ‘NemoProfile’ and ‘NemoCollect’ at
the end.

Fig. 8 a This chart shows that NemoCollect takes significantly less time compared to AllCollect and QueryCollect, while collecting size 4 motif
instances from various inputs; b It shows that AllCollect takes up significant time compared to other methods, and that NemoCollect method is the
most efficient when collecting size 5 motif instances
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Table 2 Running time (in seconds) of NemoCollect, QueryCollect
and AllCollect with various motif sizes, as in Fig. 8b

E:size3 S:size3 E:size4 S:size4 E:size5

NemoCollect 5.56 27.86 61.74 348.01 1768.40

QueryCollect 11.18 54.14 117.45 655.04 2504.40

AllCollect 17.74 159.53 2405.90 131.49 170,420.00

NemoCollect is the most efficient, while AllCollect becomes intractable with motifs
of larger sizes

Performances of NemoProfile and NemoCollect are
compared with NemoCount in various testing scenarios
by varying the size of the input graph, or by varying the
size of network motifs to detect. Figure 7a demonstrates
NemoProfile and NemoCollect take almost the same time
as NemoCount(ESU) for size 4 network motifs in vari-
ous input graph sizes. Time for detection of various sizes
of network motifs is also compared in Fig. 7b. Inevitably,
NemoCollect takes slightly more time than others as the
size increases due to the additional instance collection
time. However, time of NemoProfile is still similar to that
of ESU proving that it is efficiently generated but contains
much richer information than ESU.
Next, we wanted to see if NemoProfile significantly

alleviates the memory overhead problem when collect-
ing network motif instances. We design “NemoCollect”
process as shown in Algorithm 1 which uses NemoPro-
file in the process. Since none of the existing network
motif finding algorithms collect network motif instances,
we designed a couple of alternatives to compare themwith
NemoCollect: AllCollect is collecting all subgraphs while
searching network motifs, and QueryCollect is collect-
ing the instances of motifs using motif-centric method.
Although the time of AllCollect is directly measured, the
time for QueryCollect method is estimated, assuming that
it will run ESU first to determine network motifs and
run MODA later to collect the instances of the network
motifs. Since MODA takes as much time as ESU, accord-
ing to paper [25, 26], we estimated the time for QueryCol-
lect as twice that of ESU. Figure 8a and b demonstrate
that NemoCollect is the most efficient method for motif
instance collection, even with an increase in motif size.
Table 2 supplements Fig. 8b to show the differences
clearly.

Case study: essential protein prediction and NemoProfile
This section demonstrates the usability of NemoPro-
file for real-world applications, specifically predicting
essential proteins in a PPI network where network
motif analysis has been applied previously [8, 9].
We used E. coli (‘Ecoli20101010CR’) and S. cere-
visiae (‘Scere20101010CR’) PPI networks from DIP, and
obtained the list of essential proteins from Database of
essential genes (DEG) [29]. E. coli has 121 essential pro-
teins out of 1,231 nodes, and S. cerevisiae contains 782
essential proteins out of 2,200 proteins.
First, NemoProfile program provides the NemoProfile

matrix (A) of each network where the number in Aij refers
the number of protein i overlaps with a motif j. Here, five
network motifs are identified in both of the networks, and
NemoProfile structure is directly converted to the set of
attributes for each protein. The data attributes along with
the protein’s essentiality is fed into Weka program [30]
to run a decision tree (J48) algorithm to predict essential
proteins.
Figure 9 summarizes the overall process, from a PPI net-

work, through NemoProfile, and the application of the
decision tree technique to predict essential proteins of
an organism. The classification is evaluated using 10-fold
cross-validation scheme, and Fig. 10 is one example of
Weka results on S. cerevisiae PPI.

Conclusions
Several computationally costly tasks are required for net-
work motif finding since network motifs are unique both
structurally and statistically. These tasks include enu-
meration, classification, and statistical analysis. Network-
centric andmotif-centric methods exist for findingmotifs.
While these methods have reduced computational costs,
they have not overcome the prejudice towards network
motifs in problem solving. The doubtfulness as to the rele-
vance of network motifs in biological problems continues
due to the lack of usability with existing programs.
Therefore, we emphasized their usability by present-

ing NemoProfile, an efficient network motif represen-
tation. Significant improvement is seen with the mem-
ory overhead problem resolution and the reuse of
NemoProfile to collect instances of motifs for direct appli-
cation to existing problems. Additionally, NemoProfile
provides the output from other representations, including

Fig. 9 Process to predict essential proteins in a PPI network. A PPI network is processed to obtain NemoProfile matrix (A) that shows protein i has Aij
overlaps with motif j. The matrix is directly loaded into a Weka program to run a decision tree algorithm and is evaluated through 10-fold
cross-validation method to provide prediction rate and ROC area value as a result
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Fig. 10 Result of prediction of essential proteins with Weka, detected from S. cerevisiae

the frequencies and statistical significance of subgraph
patterns.
A NemoProfile program was constructed and used

to demonstrate the effectiveness of network motifs in
application to real world problems. The experiment was
conducted using PPI networks and the results showed
that NemoProfile succinctly represents network motifs
and their instances with no extra computational costs
incurred. With a favorable outcome in comparison with
other alternative methods NemoCollect is defined as the
process of collecting instances from NemoProfile. The
outcome clearly demonstrates that the performance is sig-
nificantly better than the alternatives. A usability focused
case-study of NemoProfile was performed to predict
essential proteins in PPI networks. According to the study,
the application of machine learning algorithms can be eas-
ily applied to NemoProfile by first converting it to data
feature space.
Future works on NemoProfile include three main tasks.

First, the design of a framework to enhance the applica-
tion of NemoProfile to current and future problems, thus
reducing prejudice towards network motif analysis in the
field of biology. Second, enhance theNemoCollect process
using parallelization by leveraging each separate column
in NemoProfile. Third, improve the NemoCollect process
using a symmetry breaking or mapping process.
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