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Abstract

Background: Long non-coding RNA (lncRNA) plays important roles in many biological and pathological processes,
including transcriptional regulation and gene regulation. As lncRNA interacts with multiple proteins, predicting
lncRNA-protein interactions (lncRPIs) is an important way to study the functions of lncRNA. Up to now, there have been
a few works that exploit protein-protein interactions (PPIs) to help the prediction of new lncRPIs.

Results: In this paper, we propose to boost the prediction of lncRPIs by fusing multiple protein-protein similarity
networks (PPSNs). Concretely, we first construct four PPSNs based on protein sequences, protein domains, protein GO
terms and the STRING database respectively, then build a more informative PPSN by fusing these four constructed
PPSNs. Finally, we predict new lncRPIs by a random walk method with the fused PPSN and known lncRPIs. Our
experimental results show that the new approach outperforms the existing methods.

Conclusion: Fusing multiple protein-protein similarity networks can effectively boost the performance of predicting
lncRPIs.
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Background
Long non-coding RNAs (lncRNAs in short), one type
of non-protein coding transcripts longer than 200
nucleotides, play important roles in complex biological
processes, ranging from transcriptional regulation, epige-
netic gene regulation to disease identification [1]. Up to
date, a number of lncRNAs have been identified, such as
HOTAIR [2], MALAT-1 [3] and Xist [4], but most of them
are still unknown. Researches have shown that most lncR-
NAs can exert their functions by interfacing with multi-
ple corresponding RNA binding proteins [5]. Therefore,
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predicting lncRNA-protein interactions (lncRPIs) is an
important way to study the functions of lncRNAs.
In the literature, there are more and more works that

employ machine learning methods to predict the inter-
actions between RNAs/ncRNAs/lncRNAs and proteins.
For example, Muppirala et al. [6] proposed the RPISeq
method for identifying RNA-protein interactions (RPIs) by
using Random Forest (RF) and Support Vector Machine
(SVM) classifiers trained with features of protein and
RNA sequences. Bellucci et al. [7] proposed the catRAPID
method by using a number of physicochemical features,
including hydrogen bonding, van der Waals interaction
and secondary structure, for predicting lncRPIs. Wang
et al. [8] developed an extended Naive Bayes classifier
for predicting RPIs using only protein and RNA sequence
information. Lu et al. [9] developed the LncPro tool for
lncRPI prediction based on Van der Waals propensities,
hydrogen bonding and secondary structures extracted
from lncRNA-protein pairs.
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Cheng et al. [10] proposed the PRIPU approach that
uses only positive and unlabeled examples to predict RPIs.
Recently, Suresh et al. [11] employed SVM to predict
ncRNA-protein interactions (ncRPIs) by using the infor-
mation of sequences and predicted structural peculiarities
of proteins and RNAs, and Cheng et al. [12] proposed to
boost the performance of protein-RNA interaction pre-
diction by selecting high-quality negative samples.
In addition, there are some works that identify lncR-

PIs from the perspective of network. That is, to construct
networks by using known lncRPIs and PPIs as well as
lncRNA-lncRNA interactions. For example, Yang et al.
[13] first constructed a heterogeneous network of lncR-
NAs and proteins, and then employed HeteSim [14] —
a pair-wise random walk model that can evaluate n
between heterogeneous objects, to evaluate the con-
nection possibilities between lncRNAs and proteins in
the network, and thus identify new lncRPIs. However,
in their heterogeneous network, PPIs were represented
in 0/1 style. That is, if two involved proteins interact,
there is an edge between them with weight 1; Other-
wise there is no edge. Li et al. [15] proposed the LPIHN
method to infer new lncRPIs, which is roughly simi-
lar to the method above. They also constructed a het-
erogenous network of lncRNAs and proteins. But the
LPIHN method is different from the method of Yang
et al. [13] in three aspects: 1) lncRNA-lncRNA interac-
tions are considered in the heterogenous network; 2) PPIs
are represented by protein-protein similarity based on
the PPI confidence data from the STRING database; and
3) the random walk with restart model (instead of Het-
eSim) was used. One common point of these two works
is that the only used protein-related information was
PPI data
In this paper, to boost the performance of lncRPI predic-

tion we propose to fusemultiple protein-protein similarity
networks (PPSNs), and integrate the fused PPSN with
known lncRPIs to construct a more informative heteroge-
neous network, on which new lncRPIs are inferred. Con-
cretely, we first use protein sequences, protein domains,
GO terms and the STRING database respectively to
construct four PPSNs, then employ the similarity net-
work fusion (SNF) algorithm [16] to combine the four
PPSNs into a fused PPSN. Following that, a heterogeneous
lncRNA-protein network based on the fused PPSN and
known lncRPIs is built. Finally, the HeteSim algorithm
is performed on the heterogeneous lncRNA-protein net-
work to infer new lncPRIs. Extensive experiments show
that our approach outperforms not only the existing
method but also those using only one PPSN.

Methods
In this section, we introduce the lncRPI data used in our
study and present the details of our method.

Datasets
We extracted Homo sapiens ncRNA-protein interac-
tions from NPInter (v2.0) [17] and Homo sapiens
lncRNA from the ncRNA database NONCODE (v4.0)
[18]. Then we retrieved lncRNA-protein interactions
by manually filtering these interactions not involving
lncRNAs. We also gave up the lncRNAs that interacts
only one protein, because such interactions cannot be
validated by leave-one-out cross validation (LOOCV).
Finally, we got an lncRPI dataset that consists 4467
lncRPIs, involving 1050 unique lncRNAs and 84 unique
proteins.

Overview of our method
The pipeline of our method is shown in Fig. 1. The rect-
angles represent lncRNAs and circles represent proteins.
On the right side of figure, four squares mean different
protein-protein similarity networks (PPSNs) with differ-
ent similarity metrics. We use Similarity Network Fusion
(SNF) algorithm to fuse them to get a more informa-
tive PPSN. Then we construct a heterogenous lncRNA-
protein network based on known lncRPIs and the fused
PPSN. The green solid lines are known lncRPIs and red
solid lines are the similarity of proteins. Finally, we per-
form the HeteSim algorithm on the heterogenous network
to predict novel lncRPIs.
As most lncRNAs do not show the same pattern of

high interspecies conservation as protein-coding genes
[19]. To avoid difficulties caused by low conservation, we
predict lncRNA-protein interactions from the perspective
of interaction network. However, with a few lncRNAs’
crosstalk reported, our lncRNA-protein interaction net-
work considers of only a lncRNA-protein sub-network
and a protein-protein sub-network. We adopt the Het-
eSim [14] to predict novel lncRPIs on the heterogenous
network.

Protein-protein similarity computation
Many sources are available to evaluate the similarity
between proteins. In this paper, we calculate protein-
protein similarity by using protein sequences, protein
domains, protein functional annotations (or GO terms),
and PPI confidence data from the STRING database v10.0
[20]. As protein sequences, domains and GO terms are
different types of data with different biological impli-
cations, we employ different methods to compute the
similarity between any pair of such data items. The com-
putation results in four similarity matrices, denoted as
Seqs, Pfam, Go and STRING, corresponding to four
protein-protein similarity networks (PPSNs).

Sequence similarity (Seqs)
Protein sequences are obtained from the UniProt database
[21]. We compute the sequence similarity between



The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):420 Page 13 of 131

Fig. 1 The pipeline of our method

two proteins using a normalized version of Smith-
Waterman score [22]. The normalized Smith-Waterman
score between proteins pi and pj is nsw(pi, pj) =

sw(pi,pj)√
sw(pi,pi)

√
sw(pj ,pj)

where sw(.,.) means the original Smith-
Waterman score. By applying this operation to any protein
pair of pi and pj, we can obtain their sequence similarity
as SS(pi, pj) = (nsw(pi, pj) + nsw(pj, pi))/2.

Functional annotation semantic similarity (Go)
GO annotations are downloaded from the GO database
[23]. Semantic similarity between any pair of proteins is
calculated based on the overlap of the GO terms asso-
ciated with the two proteins [24]. All three types of
GO are used in the computation as similar RNAs are
expected to interact with proteins that act in similar bio-
logical processes, or have similar molecular functions or
reside in similar cell compartments. We compute the Jac-
card value [25] with respect to the GO terms of each
pair of proteins as their similarity. The Jaccard score
between two term sets ti and tj of proteins pi and pj
is defined as |ti∩tj|

|ti∪tj| , which is the ratio of the number of
common terms between proteins pi and pj to the total
number of terms of pi and pj, which is used as the func-
tional annotation semantic similarity FS(pi, pj) of proteins
pi and pj.

Protein domain similarity (Pfam)
Protein domains are extracted from the Pfam database
[26]. Each protein is represented by a domain fingerprint
(binary vector) whose elements encode the presence or

absence of each retained Pfam domain by 1 or 0, respec-
tively. We compute the Jaccard value of any two proteins
pi and pj with their domain fingerprints as their similarity
DS(pi, pj).

STRING similarity (String)
STRING is a database of known and predicted interac-
tions which currently covers 9643763 proteins from 2031
organisms [20]. It provides a confidence score for the
interaction of any two interacting proteins, and the high-
est score is 999. We use the confidence scores to evaluate
the similarities between interacting proteins. Formally,
for proteins pi and pj, their similarity is String(pi, pj) =
confidence_score(pi, pj)/999.

Fusing protein-protein similarity networks
As each protein-protein similarity matrix (network) com-
puted above may contain noise, here we fuse these four
matrices (network) to get a more informative and reli-
able matrix (or network). The similarity network fusion
(SNF) algorithm [16] is employed. SNF can derive useful
information even from a small number of samples, and is
robust to noise and data heterogeneity. It is a nonlinear
message-passing based method that iteratively updates
each network and makes it more and more similar to the
other networks.
A PPSN can be represented as a graphG = (V ,E)where

V={v1, v2, · · · , vn} corresponds to the set of proteins in the
network and E corresponds to the set of edges, each of
which has a similarity weight. We denote the correspond-
ing similarity matrix as W where W (i, j) is the similarity
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between proteins vi and vj. To compute the fused matrix
(network) from the four protein similarity matrices, we
define a full and sparse kernel on each matrix. The full
kernel is a normalized weight matrix P = D−1W , D
is a diagonal matrix and D(i, i) = ∑

j W (i, j). To avoid
numerical instability since P involves self-similarities on
the diagonal entries of W , a better normalization is as
follows [16]:

P(i, j) =

⎧
⎪⎨

⎪⎩

W (i, j)
2

∑
k �=iW (i, k)

, j �= i

1/2, j = i
(1)

We denote protein vi’s neighbours as Ni and use k
nearest neighbors (kNN) to measure the local affinity as
follows:

S(i, j) =

⎧
⎪⎨

⎪⎩

W (i, j)
∑

k∈Ni W (i, k)
, j ∈ Ni

0, otherwise
(2)

We think that the similarities between a protein and
its neighbours are more reliable than the similarities
between the protein with remote ones. Through graph
diffusion, the similarities can be disseminated to remote
proteins. Matrix P carries all information of the protein-
protein similarity network and S carries local similarity
information of the network. Then, we can do iterative
computation as follows:

P(i)
t = S(i) ×

(∑
k �=i P

(k)
t−1

m − 1

)

× (S(i))T , i = 1, 2, 3, 4, (3)

where P(i)
t is the ith similarity matrix (network) after t

(≥0) iterations, S(i) is the kNN matrix of the ith similar-
ity matrix (network). m is the number of PPSNs used,
here m=4. As S is the kNN neighbour matrix of P, it
contains the most important information of P and also
alleviates the noise effect in P. At each iteration, each sim-
ilarity matrix (network) can get reliable information from
the other similarity matrices (networks) and also updates
itself with the other similarity matrices (networks). After
t iterations, the fused matrix (network) is computed as
follows:

P =
( m∑

i=1
P(i)
t

)

/m. (4)

Note that we normalize matrix Pt after each iteration
to ensure the matrix is full rank and each protein is more
similar to itself than the other proteins.

Evaluating relevance score in a lncrna-protein network
With the known lncRPIs and the fused protein-protein
similarity network, we build a lncRNA-protein heteroge-
nous network, on which a random walk model HeteSim

[14] is employed to infer new lncRPIs. HeteSim is to eval-
uate the relevance between a pair of lncRNA and protein,
and a large relevance score means a high possibility that
the lncRNA and protein interacts.
Given a schema S = (A,R) where A is a set of object

types and R is a set of relationships. A lncRNA-protein
network is defined as a directed graph G = (V,E) with
an object-type mapping function φ : V → A and a edge-
relationship mapping function ψ : E → R. Each object
v ∈ V belongs to one particular object type φ(v) ∈ A,
and each link e ∈ E belongs to a particular relation-
ship ψ(e) ∈ R. The schema S depicts the object types
and the relationships existing among object types. For
example, a relationship existing from type A to type B,
denoted as A R−→ B, A and B are termed the source type
and target type of relationship R. In this paper, there are
two object types: lncRNA and protein, and three pos-
sible relationships: lncRNA-protein, protein-protein, and
lncRNA-lncRNA. Here, we consider only the former two
relationships. An object may be a concrete protein or
lncRNA, and two objects can be connected via different
paths that have different meanings.
In the heterogeneous network, a relevance path along a

sequence of object types A1,A2, · · · ,Al+1 can be denoted
as A1

R1−→ A2
R2−→ · · · Rl−→ Al+1, the composite relationship

between A1 and Al+1 is denoted as R = R1 ◦ R2 ◦ · · · ◦
Rl where ◦ denotes the relationship between two object
types. For two objects o1 and o2 with a composite relation-
ship R = R1 ◦ R2 ◦ · · · ◦ Rl, HeteSim iteratively evaluates
the relevance score between them as follows:

HeteSim(o1, o2|R1 ◦ R2 ◦ · · · ◦ Rl) = 1
|O(o1|R1)||I(o2|Rl)|

|O(o1|R1)|∑

i=1

|I(o2|Rl)|∑

j=1
HeteSim(Oi(o1|R1), Ij(o2|Rl)|R2 ◦ · · · ◦ Rl−1),

(5)

where O(o1|R1) is the out-neighbours of o1 based on rela-
tionship R1, I(o2|Rl) is the in-neighbours of o2 based on
relationship Rl, Oi(o1|R1) / Ij(o2|Rl) indicate the ith / jth
object in O(o1|R1) / I(o2|Rl), | · | means the size of a set.
As we consider only lncRNA-protein relationship (lp in

short) and protein-protein relationship (pp in short), so we
have

HeteSim(lncRNAi, pj|lp) =
{
1 if they interact with each other;
0 otherwise.

(6)

HeteSim(pi, pj|pp) = sim(pi, pj). (7)

For relationship A R−→ B, we define UAB is a normal-
ized adjacent matrix along the row vector between type
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A and type B based on relationship R. What is more, VAB
is the normalized matrix along the column vector, which
is the transition probability matrix of B −→ A based on
inverse relationship R−1. So, we can get UAB = V ′

BA and
VAB = U ′

BA [14], where V ′
BA is the transpose of VBA.

Given a relevance path P = A1A2 · · ·Al+1. The reachable
probability matrix PM for path P is defined as PMP =
UA1A2UA2A3 · · ·UAlAl+1 (PM in short). PM(i, j) represents
the probability of object i ∈ A1 reaching object j ∈ Al+1
based on path P. So the relevance between objects in A1
and Al+1 based on the relevance path P is:

HeteSim(A1,Al+1|P)

= HeteSim(A1,Al+1|PLPR)
= UA1A2 · · ·UAmid−1MVMAmid+1 · · ·VAlAl+1

= UA1A2 · · ·UAmid−1MU
′
Amid+1AM · · ·U ′

Al+1Al

= UA1A2 · · ·UAmid−1M(UAl+1Al · · ·UAmid+1AM )
′

= PMPLPM
′
P−1
R

(8)

whereM is the middle position node type of A1 and Al+1.
So above equation shows the inner product of matrices of
two probability distributions that A1 reaches M and Al+1
reachesM.
For two instances o1 and o2 of type A1 and type Al+1, we

can get their normalized relevance score:

HeteSim(o1, o2|P) =
PMPL (o1, :)PM

′
P−1
R

(o2, :)
√

‖PMPL(o1, :)‖‖PM′
P−1
R

(o2, :)‖
(9)

where PMPL(o1, :) is the row that object o1 lies in the
matrix PMPL [14].

Results and discussion
In our experiments, the leave-one-out cross validation
(LOOCV) is used to evaluate the proposed method.
The baseline is the method proposed by Yang et al.
[13] where PPIs were modeled as a binary network.
As for our method, there are 15 settings: 4 settings of
using only one similarity matrix, Seqs, Pfam, Go and
STRING, respectively; 6 settings of fusing two simi-
larity matrices, corresponding to Seqs+Pfam, Seqs+Go,
Seqs+String, Pfam+Go, Pfam+String, and Go+String;
4 settings of fusing three similarity matrices, includ-
ing Seqs+Pfam+Go, Seqs+Pfam+String, Seqs+Go+String,
and Pfam+Go+String; and 1 setting of fusing the four
similarity matrices, i.e., Seqs+Pfam+Go+String. For refer-
ence simplicity, we denote the baseline method as Binary,
and denote our method under different settings by the
setting names, such Seqs, Seqs+Pfam, Seqs+Pfam+Go,
Seqs+Pfam+Go+String, etc. Actually, the String case of

our method is roughly similar to the LPIHM method
[15]. So essentially we compare our method with both the
method in [13] and the LPHIM method in [15]. Because
HeteSim is a path-constrained relevance measure, the
selection of path is very important. In Yang et al.’s work,
they chose lncRNA-protein-protein (LPP) as their rele-
vance path and achieved better performance than other
pathes. In our work, we also choose it as the relevance
path.
To evaluate the prediction performance, the receiver

operating characteristic (ROC) curve is generated for each
experimental setting, and AUC (the area under the ROC
curve) is calculated, which is widely used in assessing pre-
diction performance and its value falls between 0 and 1.
The maximum value 1 means a perfect prediction, and 0.5
means a random guess.
We first compare our method with only one similarity

matrix to the baseline method Binary, the results are pre-
sented in Fig.2. The black solid line is the ROC curve of
Binary and the other colored lines are the ROC curves
of our method with different similarity matrices. In Fig.2,
we can see that the performance of String is better than
that of Binary, which shows that weighted PPI network
is more helpful than binary PPI network. Moreover, the
results of Go, Pfam and Seqs are all better than that of
String. This may be because String is less reliable than the
other similarity networks.
We then compare the performance of ourmethod under

different experimental settings, the results are shown in
Figs. 3, 4 and 5.
First, we consider the cases of fusing two different

similarity matrices, their corresponding ROC curves are
presented in Fig. 3. Each color curve indicates the ROC
curve of our method of fusing two specific similarity
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Fig. 3 ROC curves of our method when fusing two different matrices

matrices. We can see that fusing the String similarity
matrix with any other similarity matrix can achieve better
performance than fusing any other two similarity matri-
ces. This may be because STRING database has many
PPIs that contain much complementary information to
the other similarity matrices. We achieve the best perfor-
mance when fusing the Pfam similarity matrix and the
String similarity matrix.
Then, we check the cases that fuse three different simi-

larity matrices, their ROC curves are shown in Fig. 4. We
get the best performance when fusing Go, Pfam and String
similarity matrices. Similar to Fig. 3, we can see that the
performance when fusing the String similarity matrix with
any two other similarity matrices is better than that of
Go+Pfam+Seqs.
Finally, we consider the case that fuses all four similar-

ity matrices, and present its ROC curve in Fig. 5. For the
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Fig. 4 ROC curves of our method when fusing three different matrices
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Fig. 5 ROC curves of the best performance when using one matrix
and fusing two, three and four matrices, respectively

convenience of comparison, in Fig. 5 we also plot the best
results when using one similarity matrix, and fusing two
and three different similarity matrices. It can be seen that
the performance of Go+Pfam+Seqs+String is better than
the performance of the other settings (Go, Pfam+String,
Go+Pfam+String). This illustrates that network fusion can
really extract complementary information from different
networks to achieve better prediction performance.
To more clearly compare the baseline method Binary

and our method under different settings, we give all of
their AUC values in Fig. 6. Here, the bars of similar
color means using the same number of similarity matri-
ces. We can see that 1) all the AUC values of our method
under different settings are larger than that of using a
binary PPI network; 2) As more matrices are fused, the
AUC value becomes larger. For example, the AUC value
of Go+Pfam+String is 0.9066, which is bigger than the
AUC values of Go+Pfam, Go+String and Pfam+String.
And when fusing all the four matrices, the correspond-
ing AUC value is the largest (0.9068). This shows that by
fusing multiple matrices we can get a more reliable and
informative matrix or network.

Conclusion
In this paper, we proposed a new approach to predict-
ing lncRPIs by fusing four protein-protein similarity net-
works, which were computed with protein sequences,
protein domains, protein functional annotations of GO,
and the PPI confidence scores from the STRING database.
The similarity network fusion (SNF) algorithm and the
random walk on heterogeneous network model HeteSim
were employed. Our experimental results show that the
proposed method outperforms the existing method and
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Fig. 6 The AUC values of the baseline method and our method under different settings

those cases when using only one protein-protein similar-
ity network. For future work, on the one hand, we will
explore other advanced network fusion methods to fuse
more available data sources for further boosting the per-
formance of lncRPI prediction; On the other hand, we
will include the lncRNA-lncRNA interactions into the
prediction procedure.
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