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Abstract

Background: Drug Combination is one of the effective approaches for treating complex diseases. However, determining
combinative drug pairs in clinical trials is still costly. Thus, computational approaches are used to identify potential drug
pairs in advance. Existing computational approaches have the following shortcomings: (i) the lack of an effective integration
of heterogeneous features leads to a time-consuming training and even results in an over-fitted classifier; and (ii) the
narrow consideration of predicting potential drug combinations only among known drugs having known combinations
cannot meet the demand of realistic screenings, which pay more attention to potential combinative pairs among
newly-coming drugs that have no approved combination with other drugs at all.

Results: In this paper, to tackle the above two problems, we propose a novel drug-driven approach for predicting
potential combinative pairs on a large scale. We define four new features based on heterogeneous data and design an
efficient fusion scheme to integrate these feature. Moreover importantly, we elaborate appropriate cross-validations
towards realistic screening scenarios of drug combinations involving both known drugs and new drugs. In addition, we
perform an extra investigation to show how each kind of heterogeneous features is related to combinative drug pairs.
The investigation inspires the design of our approach. Experiments on real data demonstrate the effectiveness of our
fusion scheme for integrating heterogeneous features and its predicting power in three scenarios of realistic screening.
In terms of both AUC and AUPR, the prediction among known drugs achieves 0.954 and 0.821, that between known
drugs and new drugs achieves 0.909 and 0.635, and that among new drugs achieves 0.809 and 0.592 respectively.

Conclusions: Our approach provides not only an effective tool to integrate heterogeneous features but also the first
tool to predict potential combinative pairs among new drugs.

Background
The anomaly of the expression level of an individual gene
can cause a disease. Specific individual drugs are able to
treat the disease by activating or inhibiting the protein
regulating the expression of the disease-associated gene.
However, the vast number of diseases falls into complex
diseases, which cannot be treated by this individual-drug
treatment with an expected efficacy [1]. The underlying

reason is that complex diseases may involve numerous
genes, multiple metabolic pathways as well as diverse en-
vironmental factors.
As one of the multiple-target treatments, drug com-

bination has been applied in treating complex diseases
(e.g. HIV/AIDS [2] and colorectal cancer [3]) and dem-
onstrated its effectiveness in clinics. However, most ex-
perimental approaches of drug combination heavily
depend on clinical experience or the test-and-trial strat-
egy. Due to the high cost in both time and money, it is
impossible to screen an effective combination of individ-
ual drugs among all the possible pairwise combinations
on a large scale in wet lab.
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Fortunately, the number of available drug combina-
tions is increasing [4]. For example, Drug Combination
Database (DCDB) collected 1363 drug combinations
(including 330 approved, 1033 investigational, and 237
unsuccessful usages), which involves 904 individual
drugs. In addition, a large amount of heterogeneous in-
formation (e.g. drug-drug interactions, targets etc.)
about individual drugs can be exploited. Thus, it is
promising to develop computational approaches to
speed up the screening of combinative drug pairs for
the treatment of complex diseases [5–9].
Existing computational approaches can be roughly

grouped into two types, disease-driven and drug-driven.
Disease-driven approaches rely heavily on how well the
disease-associated genes or the disease-specific pathways
for a disease of interest are known [6, 8, 9]. Diverse as-
sumptions are adopted among them. For examples, (1)
two drugs can be combined if their targets are the same
or related in terms of the functional pathways of a given
disease [6]; (2) the optimum drug combinations can be
obtained by maximizing on-target coverage while min-
imizing off-target effects according to the drug-target
network related to the disease-associated genes [8]; and
(3) drugs sharing no target or independent signaling
mechanisms could be combined, if they have the active
functional targets, which are of high-degree and closely
connected in the disease-related protein interaction net-
work [9]. For specific diseases, disease-driven approaches
are able to predict multiple combinations among drugs.
However, it’s hard to integrate other information, such
as pharmacology or clinic phenotype, into existing
models of current approaches which only use genotype
information.
In contrast, focusing on drugs but not diseases, drug-

driven approaches are able to predict the candidates of
pairwise combinations between individual drugs on a
large scale, by holding the underlying assumption that
combinative drug pairs are similar to each other and dif-
ferent from ineffective drug pairs. This kind of ap-
proaches first represents each drug pair as a feature
vector, which characterizes various attributes of the drug
pair [5, 7]. Then, varied computational models are built
by supervised learning (e.g. frequency-based lazy learn-
ing [5] and logistic regression [7]) to predict unknown
drug pairs. To achieve better performance, these ap-
proaches usually extract drug features from heteroge-
neous sources, such as ATC codes (drug classification
information) and side effects, and concatenate the het-
erogeneous features into a vector of very high dimension
straightforwardly. However, this concatenation leads to a
time-consuming training and even results in an over-
fitted classifier. More importantly, current drug-driven
approaches are narrowly applicable to the drugs having
one or more approved combinative drug pairs, but

ignore the need of screening potential combinations for
newly-coming drugs which have no approved combin-
ation at all (see also Fig. 1).
This work develops a novel drug-driven approach.

Firstly, we extract four features derived from pharma-
ceutical drug-drug interactions (DDI), ATC classification
codes, targets and side effects. Then, to tackle the above-
mentioned issues not addressed by former drug-driven
approaches, we first design a fusion scheme, which inte-
grates these four features. Then we elaborate appropriate
cross validations for three kinds of realistic screening
scenarios of drug combinations. Lastly, experiments on
real data demonstrate the effectiveness of our fusion
scheme for integrating heterogeneous features and its
predicting power for not only the drugs having approved
combinative partners but also newly-coming drugs that

Fig. 1 Three scenarios in predicting drug combination. Nodes are drugs,
among which known drugs are labeled by ‘A’ ~ ‘E’ and new drugs are
labeled by ‘x’ and ‘y’. Edges, represented by solid lines, denote approved
combinations between drug pairs. Dotted lines show the three scenarios
for prediction corresponding to S1, S2 and S3. The drugs involved in the
prediction, are filled with colors
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have no known combination. In addition, an extra inves-
tigation, inspiring the design of our approach, shows
how each kind of heterogeneous feature is related to
combinative drug pairs.

Methods
Problem formulation
Given a set of m known drugs D = {di} , i = 1 , 2 , … ,m,
our aim is to predict which drug pairs can be combined
together. The prediction of combinative drug pairs can
be modeled as a classification problem, by treating all
the drug pairs as instances, and known/approved com-
binative drug pairs as positives and other unknown drug
pairs as negatives. Suppose that di is represented as an
n-dimensional feature vector, fi = [fi , 1, fi , 2, … , fi , n]

T ∈
Rn × 1, the pair of di and dj is denoted as ci , j = (di, dj). We
believe that two combining drugs have balanced roles in
their combination, which is correlated with their syner-
gistic efficacy. Thus, the feature vector of ci , j can be de-
fined as

Fi; j ¼ f iþf j; ð1Þ

where the addition not only satisfies the symmetry that
ci , j = cj , i but also reflects the synergy of these two drugs.
After inputting Fi , j into a trained classifier, the confi-
dence score of ci , j being a potential drug pair, Scorei , j, is
just assigned with the probability of being a positive in-
stance (see also “Classifier”).

Feature extraction from heterogeneous sources
We considered four sources of information related to
drugs, including pharmacology, anatomy, genotype, and
clinical phenotype, which were characterized by drug-
drug interactions (DDI), ATC codes, drug-target interac-
tions (DTI) and side effects (SE) respectively.

Drug-drug interaction network
Since drug combinations are also called pharmacodyna-
mical or pharmacokinetic DDIs in some contexts. To
distinguish drug combinations from pharmaceutical
DDIs, DDI in this work only refers to pharmaceutical
DDIs, which are usually caused by physical or chemical
incompatibility among the co-prescribed drugs.
DDI should be avoided or at least under control if we

want to combine the drugs to form a combinative pair.
Thus, we extracted this feature based on the interaction
matrix between drugs as follows.
Define the adjacent matrix TDDI of drug-drug inter-

action network among m drugs, of which ti , j = 1 if di in-
teracts with dj, or ti , j = 0 if not. This interaction matrix
also represents a drug-drug interaction graph, in which
nodes are drugs and edges are their interactions. This

graph can be characterized by singular value decompos-
ition (SVD) as follows.

TDDI ¼ UΣUT : ð2Þ

Thus, based on SVD, we obtained the feature matrix

fDDI ¼ U
ffiffiffiffi

Σ
p

; ð3Þ

of which the i-th row fDDIi denotes the DDI-based fea-
ture vector of di.

ATC-based similarity matrix
ATC classification system divides drugs into a hierarch-
ical classification, according to the organ or system on
which they act and their therapeutic, pharmacological
and chemical properties [10]. We observed that individ-
ual drugs, if combined, tend to work on the same ana-
tomical part in the body (see also “Analysis on
heterogeneous features”). Since the first level of ATC
code reflects the anatomic properties of a drug and one
drug has one or more ATC codes, we calculated the
pairwise anatomy-based drug similarities by Tanimoto
coefficient as follows and organized them into a seman-
tic similarity matrix SATC,

sATCi;j ¼ Ai∩Aj

�

�

�

�

Ai∪Ajj j ;
ð4Þ

where Ai is the set of the first-level ATC codes of di and
|⋅| denotes the size of set.
For example, two drugs, Ondansetron (DrugBank ID:

DB00904) and Dexamethasone (DrugBank ID: DB01234),
have two sets of 5-level ATC codes {A.04.A.D.12} and
{A.01.A.C.02; C.05.A.A.09; D.07.A.B.19; D.07.C.B.04;
D.07.X.B.05; D.10.A.A.03; H.02.A.B.02; R.01.A.D.03;
R.01.A.D.53; S.01.B.A.01; S.01.C.A.01; S.01.C.B.01;
S.02.B.A.06; S.02.C.A.06; S.03.B.A.01; S.03.C.A.01} respect-
ively. Their first-level ATC codes are extracted as {A} and
{A, C, D, H, R, S} respectively. Thus, the similarity of these
two drugs is 1/6 according to the above equation.

DTI-based feature vectors
Former approaches have shown that two drugs can pos-
sibly be combined if they target similar proteins, which
could regulate the same or similar disease-associate
genes [6]. Denote p targets interacting with m drugs D

as T = {t1, t2, … , tp}, and the targets of drug di as Ti

¼ ti1; t
i
2;…; tipi

n o

, where tipi∈T , Ti T and pi ≤ p. We dir-

ectly used the target profiles of drugs as their feature

vector, fDTIi ¼ f i;1; ; f i;2;…; ; f i;p
h i

, where fi , p = 1 if drug

di interacts with target tp or fi , p = 0 if not.
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SE-based feature vectors
In clinic, a side effect of a drug is an unintended
effect, which could be therapeutic or adverse to the
host body [7]. Based on our observation that two
drugs could be combined if they have many side
effects belonging to the set of beneficial side effect
patterns (Analysis on heterogeneous features), we
adopted the same way as [7] to extract features for
drugs as follows. The occurrence of side effects
recorded in SIDER [11] can be used as SE features.
Thus, similar to DTI, di can be represented as a

binary vector fSEi ¼ f i;1; ; f i;2;…; ; f i;nSE

h i

, of which fi , p

reflects that di shows the p-th side effect if fi , p = 1,
otherwise di doesn’t show it.

Fusion of heterogeneous features
Drug features not only show the heterogeneity of informa-
tion source but also have distinct forms in terms of calcula-
tion. In details, fDDIi contains the real-valued features, both

fDTIi and fSEi are a set of binary, sparse, and high-
dimensional feature vectors, and sATCi;j is a form of semantic

similarity matrix between drugs. Concatenating all the het-
erogeneous features into one high-dimensional feature vec-
tor would generate computing issues, such as time-
consuming training as well as over-parameterized or over-
fitted classifier model. Consequently, in order to avoid these
issues, we designed a two-step fusion scheme to integrate
different drug features and similarity as follows (Fig. 2).
In the first step, the drug pair ci , j of di and dj was input

into three classifier models (logistic regression model here),
which were trained by three kinds of feature vectors of
drug pairs, generated by fDDI, fDTI and fSE, separately (see
also Formula 1). In the second step, its confidence scores
of being a potential drug pair, ScoreDDIi;j , ScoreDTIi;j and

ScoreSEi;j , reported by those classifiers. These scores were

further integrated with the ATC-based similarity entry
sATCi;j , which was directly regarded as a confidence score

because any similarity function, such as Tanimoto similar-
ity, can be viewed as the decision function of the simplest
distanced-based classifiers (e.g. the 1-nearest neighbor clas-
sifier) as long as the similarity values fall into [0,1].
According to multiple classifier system, different or same

types of classifiers can be integrated together by fusing their
output labels or probabilities under various rules. We adopted
the Mean rule of fusion to finally average these three scores
and one similarity entry to generate the final confidence score
of indicating how likely di and dj can be a drug pair.

Classifier
Logistic regression has been applied in many biological
areas, such as combinative drug prediction [7], rare dis-
ease variants analysis [12], and disease-gene identification

[13]. Predicting potential combinative drug pairs is mod-
eled as a binary classification problem here. Let C be the
label variable of a drug pair. The label denotes a positive if
C = 1, otherwise a negative. The logistic model is defined
as follows

log
p fð Þ

1−p fð Þ ¼ wT f þ b; ð5Þ

where f is the feature vector, and w is the coefficient
vector The decision boundary separating positives and
negatives is the solution of wTf + b = 0 on the training
set of drug pairs.
For a given testing drug pair dpx and its feature vector

fx, its posterior probability of being a positive (a com-
binative pair) is defined as,

p C ¼ 1jfx;w; bð Þ ¼ exp wT fx þ bð Þ
exp wT fx þ bð Þ þ 1

¼ 1
1þ exp −wT fx−bð Þ : ð6Þ

Once the classifier outputs the posterior probability, it
is directly regarded as the score indicating how likely a
drug pair is a combinative pair. Different features (e.g.
DDI, DTI and SE) generate different scores, which are

Fig. 2 The flowchart of predicting drug combination by integrating
heterogeneous sources of drugs. The pair of dx and dy is input into three
classifier models, which are trained by three kinds of features of drug
pairs, including DDI, DTI and SE. The confidence scores of the pair being
a potential drug pair are reported by those classifiers and are further
integrated with its ATC-based similarity entry. The average of these scores
is taken as the final confidence score of indicating how likely the pair
can be a combinative drug pair
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further used to measure the performance of prediction
in experiments.

Cross-validation strategies for realistic scenarios
In the screening, one wants to find potential pairwise
drug combinations between (S1) between known
drugs, (S2) between new drugs and known drugs, and
(S3) between new drugs. Here, for short, the drugs
having one or more combinations are called known
drugs, while the drugs having no combination at all
are called new drugs. Three realistic scenarios are il-
lustrated in Fig. 1.
Cross-validation (CV) is the well-established approach

to validate the power of generalization of the supervised
algorithm in Pattern Recognition. Corresponding to the
predicting scenarios (Fig. 1), we designed three strategies
(denoted as S1, S2, and S3) of k-fold cross validation
(CV) respectively (k = 10 in our experiments). This is
important because the appropriate strategies of CV can
prevent the computational approaches from reporting
the over-optimistic results.
In detail, for the drugs having known combinations,

the first CV tries to assess the scenario of predicting
new potential combinations among them (S1). For the
given drugs having NO known combination at all, the
second CV attempts to assess the scenario of predicting
new potential combinations between them and those
drugs having known combinations (S2). For the given
drugs having NO known combination at all, the third
CV attempts to assess the scenario of predicting new po-
tential combinations among these given drugs (S3).
Thus, though the dataset only consists of drugs that
have shown combination with some other drugs, the
second and the third CV are still able to indicate how
well our predicting approach infers the potential combi-
nations for the new drugs having no combination in
practice.
In each round of CV, different scenarios require tech-

nically different sets of both training instances and test-
ing instances as follows.

� In S1, we randomly removed 1/k drug pairs out of
all the given pairs among drugs as the testing
instances and selected the remaining pairs as the
training instances.

� In S2, we randomly removed 1/k drugs out of all the
given drugs as the testing drugs and selected the
remaining drugs as the training drugs. The pairs
among the training drugs were selected as the
training instances. Regarding the testing drugs as
new drugs, we only selected the pairs between the
testing drugs and the training drugs as the testing
instances.

� In S3, the training drugs, the testing drugs and the
training instances were determined by the same
procedure as that in S2. Distinctively, we only
selected the pairs among the testing drugs as the
testing instances.

In the k-fold CV, the above procedures were repeated
k times and the average of predicting performance in all
rounds of CV was taken as the final performance. Two
measures were adopted to assess the predicting perform-
ance, including the area under the receiver operating
characteristic curve (AUC) and the area under the
precision-recall curve (AUPR).

Results and discussion
Dataset
We adopted the dataset built in [7] as the benchmark,
which was collected from Drug Combination Database
(DCDB) [4] and FDA orange book [5]. The dataset has
245 drugs containing 239 approved drug pairs (the total
number possible pairs is 29,890). These drug pairs are
labeled as positives, others are assumed to be negatives
for our study.
Four kinds of drug attributes, including ATC codes,

target groups, drug-drug interactions, side effects, were
utilized to extract the drug features to be used in our ap-
proach (see Methods). The first three were collected
from DrugBank [14], while the last one originally ex-
tracted from SIDER [11] by [7] was directly used.
For those 245 drugs, we firstly extracted their ATC

codes. Out of 245 drugs, 150 have one or more ATC
codes, of which the codes in the first level were used to
calculate drug features. We also applied the ATC pre-
dictor, SPACE [15] and are able to obtain predicted ATC
codes for 88 drugs having no ATC code. In total, 238
drugs have ATC codes.
Then, we extracted the interactions with targets and

other drugs. As a result, 174 drugs out of 245 show 718
interactions with 357 targets, which are given in Drug-
Bank. On the other hand, there are 614 DDIs among the
drugs in our dataset, and there exist 8764 DDIs between
the drugs in our dataset and 992 extra drugs in Drug-
Bank. After that, we considered 7888 side effects re-
corded in SIDER for our drugs.
To validate whether the fusion scheme of heteroge-

neous features, we only picked the drugs having all of
ATC, DDI, DTI, and SE features and the drug pairs in
which they participate. Finally, our dataset contains 159
drugs as well as 1904 drug pairs, of which 132 known
combinative drug pairs are positives and 1772 remaining
pairs are negatives.
We adopted logistic regression as the classifier in all

experiments and used 10-fold cross validation to assess
the predicting performance.
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Feature processing – reducing dimensions
As described in Feature extraction from heterogeneous
sources, we generated a set of drug feature vectors. The
ATC-based similarity matrix SATC was kept in its ori-
ginal form. We further process the other three kinds of
feature vectors as follow. The high dimension of feature
vector and the redundancy between features would
cause two computational issues: time-consuming train-
ing and over-fitted training.
To solve these problems, when calculating fDDI by

SVD, we discarded the features having the values less
than 10−6 and obtained 93-dimensional (−d) feature vec-
tors. Since fDTI contains 357-d feature vectors, we ap-
plied Principal Component Analysis (PCA) to reduce the
redundancy between features, so as to reduce its dimen-
sion into 131. Similarly, fSE contains 7888-d feature vec-
tors, we applied PCA again to obtain 234-d fSEPCA .
Because the importance of singular values (SVs) and
principal components (PCs) is arranged in descending,
we just select the first 25 SVs or PCs. Consequently,
each feature vector in fDDIPCA , f

DTI
PCA and fSEPCA contains 25

entries finally.
The significant advantage of reducing the redundancy

between features and the high dimension of feature is
the improvement of predicting performance. As an illus-
tration, we compared the results of using 7888-d fSE and
234-d fSEPCA in three predicting scenarios respectively
(Fig. 3). In terms of AUC and AUPR, the results ob-
tained by fSEPCA is significantly superior to those obtained
by fSE.

Prediction in different scenarios
We first used four types of features (denoted as DDI,
DTI, SE and ATC respectively) to predict drug combin-
ation individually, then, upon their predicted scored, we
applied the proposed fusion scheme (denoted as Average
in Table 1) to achieve the better performance. All results

are listed in Table 1. In general, SE wins the best feature
among four kinds of features, DDI is approximate to
ATC, and DTI shows the worst performance. As ex-
pected, with the advantage of having low-dimensional
features, the fusion scheme under the average rule wins
the best performance, and shows a significant improve-
ment, compared to individual features.
Since the average rule in the fusion step is actually an

equal weighting rule, we also investigated whether or
not an unequal weighting of those scores can improve
the prediction. Two ways to assign weights were
adopted. Firstly, the weights of different features were
directly assigned according to their values of AUC
achieved by performing the prediction individually (de-
noted as Direct in Table 1). Secondly, a greedy search in
the scope of [0, 1] with the step of 0.1 were performed
to obtain the best weights (denoted as Greedy in Table
1). In S1, S2 and S3, the sets of the best weights for
DDI, DTI, SE and ATC are {0.4, 0.3, 0.7, 0.4}, {0.3, 0.3,
0.8, 0.6} and {0.6, 0.1, 0.3, 0.5} respectively. Though the
unequal weighing is better than the average rule and the
greedy search wins the best prediction, they do not out-
perform the average rule significantly. Thus, the average
rule is still an effective approach in practice when inte-
grating various features.
In addition, we investigated the predicting perform-

ance by using Support Vector Machines (SVM), in
which the kernel function was set with linear function
and radial basis function (RBF) respectively. The com-
parison of using Logistic Regression (LR) and SVM
shows LR achieves the approximate performance to
SVM-RBF in all the scenarios (Table 2). Besides, LR has
an additional advantage of no need to tune parameters.
Finally, we compared our approach with two existing

approaches [16] and [7], of which both model the pre-
diction of drug combination as a classification problem.
Considering the concatenation of three kinds of drug
features, including chemical interactions between drugs,

Fig. 3 Comparison of the original SE feature vectors and the PCA-processed SE feature vectors. a The values of AUC and (b) the values of AUPR
in three scenarios. Left bars and right bars are the results generated by the original SE feature and the PCA-processed SE feature
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protein interactions between drugs’ targets and target-
enriched pathways, Ref [16] utilizes two techniques of
feature selection to choose fewer feature entries and ap-
plies Random Forest to predict drug combination. Ref
[7] considers two sources of side effects as drug features,
including SIDER and OFFSIDES, and directly apply lo-
gistic regression on their concatenation to predict drug
combination.
However, they do not handle predicting Scenarios S2

and S3. We compared our approach with them in S1
only. Our results are better than [16] (AUC = 0.8803 as
stated) and are comparable to the best known results [7]
(AUC = 0.92, AUPR = 0.86 as stated in [7]).
The technical difference of our approach to [16] and

[7] focuses mainly on two points. Firstly, our fusion
scheme provides an efficient framework to integrate het-
erogeneous features in parallel, so as to enable that the
classifiers w.r.t different features are trained simultan-
eously. Moreover importantly, our approach elaborates
appropriate cross-validations towards realistic screening
scenarios of drug combinations involving new drugs es-
pecially, except for known drugs.

Analysis on heterogeneous features
In this section, we provided a detailed analysis on how
each type of heterogeneous data is related to positive
drug pairs. We investigated how well the positive pairs

can be separated from the negative pairs when using
heterogeneous features (Table 3). In other words, we es-
timated the separability between positives and negatives.
If separability =1, they can be perfect separated, and if
separability =0 cannot be separated at all. The detailed
investigation is as follows.
Firstly, we built a DDI graph, of which nodes are drugs

and edges are their interactions, then applied Flody algo-
rithm [17] to calculate the shortest distance (steps in
a graph) between two drugs. The results show that the
majority (73.73%) of positive pairs contains the individ-
ual drug members apart from 2 steps, whereas only the
minority (42.01%) of negative pairs contains the individ-
ual drug members apart from 2 steps. Then, we simply
estimated the separability between positives and nega-
tives by 0.7373/(0.7373 + 0.4201) =0.6370. In addition,
no positive pair has the member drugs are > = 5 steps
from each other and very few of positive pairs have the
member drugs interacting with each other. This brings
the first observation that two drugs do not tend to inter-
act with each other but are usually close to each other in
DDI graph if they are combinative. Thus, we used SVD
to characterize the DDI graph and extracted the DDI-
based feature vectors (see also Drug-drug interaction
network).
Secondly, since the ATC-based similarity matrix was

calculated directly, we counted the positive pairs, of
which its individual drugs share one or more ATC
codes, and the negative pairs, of which its individual
drugs share no ATC code. The ratio of the former to all
the positive pairs (120/132) and the ratio of the latter to
all the negative pairs (947/1772) were averaged to esti-
mate the separability (0.7218). This result also brings the
second observation that individual drugs in a combina-
tive drug pair tend to act on the same anatomical part
in the body.
Thirdly, in terms of the occurring frequencies of indi-

vidual SE features, we made a statistics on the difference
between positives and negatives respectively. It shows
that 942 out of 7888 features appear neither in positives
nor in negatives, 1344 features occur more frequently in
positive, and 5602 features occur more frequently in
negative. According to the frequency difference, we may
roughly discriminate positive pairs and negative pairs
with the separability 0.8065, which is equal to 5602/
(5602 + 1344). The statistic shows there are feature pat-
terns to distinguish combinative drug pairs from other
drug pairs significantly. Those 1344 features occurring

Table 1 Comparison when using individual features and fusion
schemes

S1 S2 S3

AUC AUPR AUC AUPR AUC AUPR

DDI 0.816 0.621 0.694 0.343 0.706 0.382

DTI 0.727 0.539 0.737 0.275 0.609 0.210

SE 0.871 0.717 0.818 0.542 0.707 0.411

ATC 0.792 0.393 0.773 0.378 0.708 0.422

Average* 0.954 0.821 0.909 0.635 0.809 0.592

Direct* 0.955 0.830 0.910 0.644 0.809 0.592

Greedy* 0.955 0.837 0.916 0.669 0.834 0.605

The marks * denote three schemes of fusion. The bold entries highlight the
results achieved by the fusion schemes

Table 2 Predicting performance with different classifiers

S1 S2 S3

AUC AUPR AUC AUPR AUC AUPR

LR 0.954 0.821 0.909 0.635 0.809 0.592

SVM_Linear 0.904 0.639 0.856 0.470 0.720 0.373

SVM_RBF 0.938 0.821 0.904 0.638 0.833 0.609

LR is logistic regression, SVM_Linear and SVM_RBF are the SVMs with linear
kernel and RBF kernel respectively. The cost parameter is fixed with 100 and
the sharp parameter γ of RBF are assigned with 0.02, 0.05 and 0.001 in S1, S2
and S3 respectively when training SVM. The bold entries highlight the
best results

Table 3 Estimated Separability of positive and negative
instances using different features

DDI ATC SE DTI

Separability 0.6370 0.7218 0.8065 0.5822
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frequently in combinative drug pairs are possibly benefi-
cial to diseases, whereas 5602 features occurring fre-
quently in other drug pairs are possibly adverse to
diseases. Thus, the third observation is that two drugs
could be combined if they have many side effects be-
longing to the set of 1344 beneficial side effects.
Lastly, for DTI data, we found that very few drugs

pairs (121 out of 1904) share common targets. In details,
only 13 out 132 positive drug pairs and 108 out of 1772
negative drug pairs show common targets respectively.
Thus, whether or not drugs share common targets, can-
not separate positive and negative drug pairs signifi-
cantly. Considering that all the targets possibly reflect
the disease-related pathways, we also made a similar sta-
tistics of DTI as that of SE to dig out possible target pat-
terns. The result shows that 53 out of 357 DTI features
appear neither in positives nor in negatives, 127 features
(positive target patterns) occur more frequently in posi-
tives, and 177 features (negative target patterns) occur
more frequently in negatives. According to the frequency
difference, we may roughly estimate the separability
0.5822, which is equal to 177/(177 + 127). The results
reveal the fourth observation that common targets of
two drugs are trivial to determine their combination, but
these two drugs could be combined if they interact with
many positive targets as well as few negative targets.

Conclusions
Predicting drug combination for complex diseases re-
mains a challenging computational problem. In this
paper, we have addressed two issues not solved yet by
existing approaches, including an effective integration
method for heterogeneous features and the prediction
for new drugs (drugs were not used in any drug combin-
ation before).
We have proposed four kinds of heterogeneous fea-

tures (e.g. DDI, ATC, DTI, and SE), in particular, DDI
was not considered by existing approaches and we have
also presented a new interpretation for the other three
remaining features. Based on our four observations, we
have provided a clear insight on how these features are
related to drug combination. We believe that these ob-
servations are beneficial to guide drug combination. Se-
quentially, we have introduced a fusion scheme to
integrate these heterogeneous features with the advan-
tage of low-dimension features used in classifiers.
More importantly, our approach is able to predict po-

tential combinative drug pairs in three realistic screening
scenarios involving not only known drugs but also new
drugs. Our evaluation results show that the approach is
promising. One of the future work would be applying a
similar technique to predict more than two drugs that
can be combined together.
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