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Abstract

Background: Methods for inference and comparison of biological networks are emerging as powerful tools for the
identification of groups of tightly connected genes whose activity may be altered during disease progression or
due to chemical perturbations. Connectivity-based comparisons help identify aggregate changes that would be
difficult to detect with differential analysis methods comparing individual genes.

Methods: In this study, we describe a pipeline for network comparison and its application to the analysis of gene
expression datasets from chemical perturbation experiments, with the goal of elucidating the modes of actions of
the profiled perturbations. We apply our pipeline to the analysis of the DrugMatrix and the TG-GATEs, two of the
largest toxicogenomics resources available, containing gene expression measurements for model organisms
exposed to hundreds of chemical compounds with varying carcinogenicity and genotoxicity.

Results: Starting from chemical-specific transcriptional networks inferred from these data, we show that the
proposed comparative analysis of their associated networks identifies groups of chemicals with similar functions
and similar carcinogenicity/genotoxicity profiles. We also show that the in-silico annotation by pathway enrichment
analysis of the gene modules with a significant gain or loss of connectivity for specific groups of compounds can
reveal molecular pathways significantly associated with the chemical perturbations and their likely modes of action.

Conclusions: The proposed pipeline for transcriptional network inference and comparison is highly reproducible
and allows grouping chemicals with similar functions and carcinogenicity/genotoxicity profiles. In the context of
drug discovery or drug repositioning, the methods presented here could help assign new functions to novel or
existing drugs, based on the similarity of their associated network with those built for other known compounds.
Additionally, the method has broad applicability beyond the uses here described and could be used as an
alternative or as a complement to standard approaches of differential gene expression analysis.
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Background
Network-based approaches to the analysis of social and
biological networks have provided scientists with powerful
tools for the intuitive visualization of complex processes
and for the principled integration of multiple data sources.
In genomics, network-based models – with genes repre-
sented by nodes and gene-gene interactions represented
by edges – are inferred from experimental data or re-
trieved from manually curated repositories available on-
line. Data-driven transcriptional networks, where a link
between two nodes denotes a strong association between
the corresponding gene expression profiles, are particu-
larly useful as they represent a snapshot of the gene co-
regulation in the experiment under study [1].
Within this context, scale free networks (SFN), in

which the degree of connection of the member nodes
follows a power law, have been widely used in the study
of protein interactions [2]. The construction of these
networks usually relies on the computation of gene-gene
correlations across replicate experiments, and on the
subsequent thresholding of the absolute correlation
values so as to define as connected only those genes
with correlation above a chosen threshold [3, 4]. Al-
though this approach has proven extremely useful in
identifying key hub genes in multiple biological condi-
tions [5], the high sensitivity of the obtained networks to
the choice of threshold raises questions about the repro-
ducibility of the obtained results, as well as about their
biological meaning [1, 4].
An alternative approach is to use Correlation Networks

(CN), where all pairwise gene associations are considered,
to avoid loss of information in those cases where the ana-
lysis focuses on the identification of groups of tightly con-
nected genes (modules), rather than on the identification
of single key nodes (hubs). While both types of graphs are
referred to as networks in the following manuscript, it
should be noted that the CN approach yields a fully inter-
connected (albeit weighted) graph, on which some of the
topological indices developed for “standard” networks
with sparse links are not applicable.
Regardless of the methodology used to infer the graph,

network-derived gene modules can be investigated experi-
mentally in order to gain insights into their biological
function, or with the help of gene and pathway annotation
resources. Additionally, the comparison of correlation net-
works from different conditions (e.g., different disease
stages, or perturbations with different chemicals) may help
identify modules whose connectivity is significantly altered
in the compared conditions [6]. Connectivity-based com-
parisons may thus help identify “aggregate changes” that
could be missed by standard methods of differential ana-
lysis comparing individual genes [7].
In this study, we describe the development of a

network-based analysis pipeline and its application to

gene expression datasets from chemical perturbation ex-
periments, with the goal of elucidating the modes of ac-
tions of the profiled perturbations. We apply our
pipeline to the analysis of the DrugMatrix dataset from
the National Toxicology Program (NTP) [8] and the
TG-GATEs dataset from the Japanese National Institute
of Biomedical Innovation [9], two of the largest toxico-
genomics datasets available, which contain organ-
specific gene expression measurements for model organ-
isms exposed to hundreds of chemical compounds with
varying carcinogenicity and genotoxicity.
Evidence accumulated to date has shown that machine

learning techniques can successfully be applied to infer
chemical carcinogenicity (or genotoxicity) from expression
profiles of in vitro and in vivo assays [10]. In our own pre-
vious work, we have shown that it is possible to infer
highly accurate predictive models of chemical-associated
long-term cancer risk from rat-based short-term toxicoge-
nomics data, and to identify genes significantly associated
with carcinogenesis [11]. Here, we aim to go beyond the
inference of predictive models and the identification of
single biomarker genes, towards the identification of gene
modules or pathways significantly associated with the pro-
filed chemical perturbations and the induced adverse phe-
notypes. We do so by comparing the connectivity of gene
modules in the networks derived from the control samples
(“Control network”) to those obtained from samples col-
lected after the exposure to specific chemical compounds.
To this end, we reconstruct chemical-specific transcrip-

tional networks, and show that by grouping chemicals
based on the similarity of their associated networks we
can identify groups of chemicals or drugs with similar
functions and similar carcinogenicity/genotoxicity profiles.
We also show that the in-silico annotation by pathway en-
richment analysis of the gene modules with a differential
connectivity (i.e. showing a gain or loss of connectivity for
specific groups of compounds) can point to the main mo-
lecular pathways induced by specific chemicals.
While network-based differential analysis of gene ex-

pression profiles is not new, the novelty of our approach
lies in the application of the approach to aggregate chem-
ical perturbations by their network similarity, in our appli-
cation of a bootstrapping-based statistical significance test,
and in the module-based meta-analysis of the differential
connectivity results across multiple perturbations. While
in this study we focused on chemical-induced carcinogen-
esis and genotoxicity as the adverse phenotypes of interest,
the approach we propose has broader applicability.

Results
Differential connectivity analysis of chemical
perturbations
As shown in Fig. 1, the network-based pipeline for dif-
ferential connectivity analysis starts by inferring
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chemical-specific Compound Networks, obtained from
samples collected after the exposure to specific chemical
compounds (Fig. 1.a), and a network from the control
samples, hereafter named “Control Network” (Fig. 1.b).
Groups of compounds are then identified based on the
similarity of their individual network structures. For
each group, a new “Aggregate Compound Network” is
inferred by pooling all the samples across the clustered
compounds (Fig. 1.c-e). Next, modules of tightly con-
nected genes are identified in each of the constructed
networks and compared between conditions (i.e., control
vs. compound group) in terms of Module Differential
Connectivity (MDC) (Fig. 1.f ). Given a module identified
in one of the two networks under comparison (e.g., the
aggregate compound network), the MDC score is com-
puted as the ratio of the average connectivity across all
the genes within the module in the aggregate network
(numerator) and in the control network (denominator).
This score represents changes of connectivity in the
Compound group with respect to the Control (see
Methods). MDC scores are computed for all modules in
the networks, and tests of statistical significance and
module specificity are performed to identify modules
that will be further investigated through enrichment

analysis based on pathway repositories and additional
annotation sources (Fig. 1.g-h).

Network comparison is sensitive to cross-dataset batch
effects
Before applying the described pipeline, we sought to
rigorously assess the reproducibility of the methodolo-
gies used. To this end, we carried out a systematic valid-
ation by comparing networks inferred from independent
sets of samples profiling the same experimental condi-
tions. This approach was used under the assumption
that networks derived from the same experimental con-
ditions should in theory yield very similar structures,
with differences in connectivity only due to sampling
variability. However, in practice many sources of “un-
wanted variation” can contribute to the measured differ-
ences, first among them differences due to non-
reproducible experimental settings (batch effects). For
this reason, we performed two types of validation experi-
ments, aimed at identifying network inference and com-
parison methods showing a high reproducibility and
robustness to possible batch effects.
First, networks derived from the control (i.e., unex-

posed) liver samples of two independently generated

a)

b)
f)

h)

c)

d)

e)

g)

Fig. 1 Analysis workflow. DrugMatrix liver samples are used to infer chemical-specific Compound Networks (a) and a Control Network (b). Similarity in
terms of network structure is evaluated to identify groups of compounds, whose samples are pooled to infer Aggregate Compound Networks (c-e).
Modules of tightly connected genes both in the Control network and in Compound Aggregate networks are identified and compared across conditions
in terms of Module Differential Connectivity (MDC) (f). Modules with a change in connectivity that is highly specific to each compound group are
investigated through pathway enrichment analysis (g-h)
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datasets (DrugMatrix and TG-GATEs) were compared
in terms of the composition of gene modules and their
observed changes in connectivity. For each of the mod-
ules identified from the TG-GATEs network, a
correspondent module (i.e., a module composed of a
highly overlapping set of genes) was found in the Drug-
Matrix network. The high significance of the overlap for
all the modules (Fisher test, p < 10-16) confirmed that the
two networks yielded the same structure and modules
composition. However, a systematic deviation of the dis-
tribution of differential connectivity values from one was
detected in multiple modules. A careful analysis showed
that MDC values different from 1 were mainly caused by a
difference in the distribution of correlation values between
the DrugMatrix and the TG-GATEs datasets (Additional
file 1: Figure S1.a). Furthermore, cross-dataset scaling or
normalization could not eliminate these differences. Our
evaluation points to the need for carefully assessing the
methodologies and samples used for network inference and
to adopt rigorous permutation-based statistical testing, in
order to avoid interpreting artifacts or batch effects as ac-
tual differences in modules’ connectivity.
Secondly, the inference and comparison methods were

evaluated on networks derived from independent sample
subsets extracted from the same dataset (by a resam-
pling approach, see Methods). In this case, we attained
more reproducible results, with the distribution of MDC
values correctly centered at 1, and with a lower variance
when using the correlation network (CN) approach ra-
ther than the Scale-Free Network (SFN) approach (Add-
itional file 1: Figure S1.b). An additional advantage of
the simpler CN approach is that it does not require the
selection of a threshold for the correlation values, a
choice that is highly sensitive to the samples analyzed
and strongly influences the subsequent calculation of
MDC values.
Based on these results, the subsequent analyses were all

based on a single dataset (the DrugMatrix, which includes
a higher number of compounds), and the CN approach
was selected as the network inference method of choice.

Groups of similar chemicals can be inferred by network
analysis
Using the CN approach, we analyzed how different groups
of compounds affect the connectivity pattern of specific
gene modules. First, we inferred the network from the
non-treated liver samples, hereafter named “Control Net-
work”. The Control Network was clustered into 60 gene
modules, with sizes ranging from 21 to 551 genes.
Next, chemical-specific Compound Networks were in-

ferred for each of the 62 chemicals for which at least ten
replicate experiments (animals) were available. Although
a comparison of modules connectivity in Control and
Individual chemicals-related networks was carried out

(see Methods section and Additional file 1: Figure S3 a-
b), we aimed at identifying chemicals with similar net-
work structure, which were then grouped to infer “Ag-
gregate Compound Networks”. This step had two main
goals: i) to study how well groups of chemicals with
similar known features (e.g., similar mechanism of ac-
tion) can be identified through networks; and ii) to in-
crease the sample size available for network inference.
For the aggregation of the chemicals, the Compound
Networks were compared pairwise based on the similar-
ity of their respective modules as measured by the ad-
justed Rand index (aRI) [12]. The aRI is a score
specifically devised for the comparison of clustering re-
sults even when the two networks have different number
of clusters (i.e., modules). Hierarchical clustering was
then applied to the matrix of aRI’s to induce a
similarity-based partial ordering and grouping of the
chemicals (Fig. 2.a).
The aRI-based clustering yielded a clear separation be-

tween non-genotoxic carcinogens (left sub-dendrogram
in Fig. 2.b) and genotoxic non-carcinogens (right sub-
dendrogram). Of notice, genotoxic compounds were not
as well separated when we applied alternative, more
standard clustering approaches, such as one based on
the direct similarity of the chemicals’ expression profiles,
and one based on the chemicals’ shared interacting pro-
teins as annotated in public databases (Additional file 1:
Figure S2.a-b).
Dynamic tree cutting [13] was applied to the aRI-

based dendrogram with the parameters chosen so as to
yield clusters with adequate sample size and sufficiently
homogeneous sets of perturbations. By this procedure,
13 chemical groups were identified and analyzed to as-
sess their internal similarity as determined by multiple
criteria. According to DrugBank annotation, 11 of the 13
chemical groups showed a high overlap in the main
pharmacological action of their member chemicals as
annotated in the STITCH database [14] (Table 1). As an
example, group G3 includes only hypolipidemic drugs
classified as “Statins” present in the dataset, and it is
separated from group G5, which is mainly composed of
“Fibrates”, another class of antihyperlipidemic agents.
Remarkably, some of these groups were not identified by
standard gene expression-based analysis. These include
groups G1 and G8, whose chemicals were separated into
multiple clusters by Dynamic tree cutting of the dendro-
gram shown in Additional file 1: Figure S2.a, obtained by
gene expression similarity. Compounds within these two
groups were indeed significantly similar, as measured by
the overlap of their interacting proteins (Table 2). Overall,
a significant internal similarity was observed in 7 of the 12
groups for which protein annotations were available from
public databases (p < 0.01). High overlap of shared side ef-
fects was also observed, although only two compound
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groups showed statistical significance by the permutation-
based approach, due to a large number of side effects that
are common to most of the compounds available in the
SIDER database [15].
In summary, our analysis showed that the compari-

son of network modules by aRI yields groups of che-
micals with similar carcinogenicity-genotoxicity

profiles in terms of pharmacological action, interact-
ing proteins, and side effects.

Module differential connectivity highlights chemicals’
modes of action
Samples related to the 13 groups identified were used to
infer Aggregate Compound Networks, each representing

a)

b)

Fig. 2 Compounds aggregation. Similarity of 62 chemical compounds based on adjusted Rand Index (aRI). a. Heatmap of aRI and grouping of
compounds with similar networks structure. b. Zoom-in on the compounds grouping
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the partial correlation among genes across all replicate
experiments from the group of compounds considered.
As shown in Fig. 1, we aimed at comparing the Control
Network with multiple perturbations by analyzing the
changes in gene modules connectivity. This analysis was
repeated twice, first using the modules identified in the
Control Network, and then using the modules identified
in each of the Aggregate Compound Networks.

Control network-centered analysis
For each of the modules identified in the Control Net-
work, the MDC score was computed to measure the
change in connectivity (gain or loss) among the module’s
genes due to the action of each group of chemicals. Sig-
nificance of the MDC values was assessed by a bootstrap
approach, whereby a confidence interval for each MDC
is estimated by performing network inference on boot-
strapped (i.e., sampled with replacement) versions of the
original dataset, as detailed in Methods and in Add-
itional file 1: Figure S4. An alternative, permutation-
based significance testing procedure was also evaluated,
whereby p-values are obtained by computing MDC
values for random sets of genes, with sizes equal to each
module under study. However, this approach was not

Table 1 Compound groups. Main functions retrieved through
the STITCH database

Group ID - Main
Function

Compounds Functions

G1 - Solvents carbon tetrach cleaning agent

chloroform solvent

dimethylformamide solvent

allyl alcohol alcohol

1-naphthyl
isothiocyanate

preservative

lipo-polysaccharide endotoxin

G2 - Antifungals clotrimazole antifungal

fluconazole antifungal

miconazole antifungal

mifepristone steroid

G3 - Statins cerivastatin statin

fluvastatin statin

lovastatin statin

simvastatin statin

G4 - Estrogens diethylstilbestrol estrogen

beta-estradiol estrogen

ethinylestradiol estrogen

G5 - Fibrates aspirin anti-inflammatory

fenofibrate fibrate

gemfibrozil fibrate

bezafibrate fibrate

G6 - Steroids bithionol photosensitizer

norethisterone progestogens

progesterone progestogens

retinoic acid progestogens
regulator

G7 - n.c atorvastatin statin

econazole antifungal

raloxifene estrogen

phenothiazine antipsychotic

G8 - Anti-Cancer catechol benzenediols

azathioprine cancer drug

ifosfamide cancer drug

leflunomide antirheumatic

letrozole cancer drug

phenobarbital anticonvulsant

zomepirac antipyretic

diethylnitrosamine tumorigenic

G9 - Chemotherapeutics doxorubicin chemotherapeutic

procarbazine chemotherapeutic

promethazine neuroleptic

mitomycin C chemotherapeutic

Table 1 Compound groups. Main functions retrieved through
the STITCH database (Continued)

gefitinib cancer drug

erlotinib cancer drug

tandutinib antineoplastic

balsalazide anti-inflammatory

G10 - Alkylating, Cancer altretamine. alkylating

lomustine cancer drug

imatinib cancer drug

G11 - n.c. chlorambucil cancer drug

enoxacin antibacterial

fluphenazine antipsychotic

G12 - Anti-Inflamm/
Fungal

dexamethasone anti-inflammatory

itraconazole anti-fungal

ketoconazole anti-fungal

meloxicam anti-inflammatory

sulindac anti-inflammatory

6-thioguanine anti-inflammatory/
cancer

G13 - Antiseptics,
Estrogens

clonazepam anxiolytic

cyproterone acetate estrogenic

estradiol benzoate estrogenic

safrole antiseptic

methyl salicylate antiseptic
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sufficiently stringent, yielding an excessively large num-
ber of likely false positive results (data not shown). The
bootstrap approach identified a more parsimonious set
of highly significant MDC values (Additional file 1: Fig-
ure S5). Figure 3 summarizes the Control Network-
centered results. Since the modules are defined in the
control network, hence are the same for each pairwise
comparison, the results can be represented as a matrix
and an associated color-coded heatmap, with each row
corresponding to a Control Network module, and each
column corresponding to a compound group. Several
modules manifest a remarkable change of connectivity,
as captured by their MDC scores, and as confirmed by
their estimated q-values (Additional file 1: Figure S4).
Of notice, the “turquoise” module was the only group

showing a highly significant gain of connectivity for all
the groups of compounds analyzed. This result can be
explained by the remarkably high number of genes in-
cluded in this module (551), if compared to the median
size of all the modules, equal to 93. Since chemical per-
turbations induced a global increase of the connectivity
of the entire network (Additional file 2: Table S1), large
size modules are more likely to show the same pattern,
i.e. a gain in the connectivity when compared to the
Control Network. Moreover, biological annotation of
this module showed a variety of different pathways, sug-
gesting that compounds with diverse function could
have an effect on this group of genes.
In order to focus on compound-specific effects, we

computed a “Specificity Score” for each Control module

[16]. The specificity score quantifies the uniqueness of a
gain or loss of connectivity to a given compound group.
Briefly, for a given group of compounds and a given
module, the differences in MDC between that group of
compounds and all the other groups are computed. Spe-
cificity is then defined as the sum of all the differences,
with higher values identifying modules with a high MDC
absolute value relative to all the others. Modules with
scores exceeding a top percentile of the distribution of
Specificity values were subject to enrichment analysis
and significant pathways were selected with FDR-
corrected p-values. Additional file 3: Table S2 shows en-
richment analysis results of the best-ranked specific
modules for each compound group, and a bipartite
graph in Fig. 4 is used to graphically represent the ob-
tained associations between compound groups and
enriched gene sets. All groups except one (G10) showed
at least one top specific module significantly enriched
for Hallmarks gene sets (Enrichment FDR-corrected p-
value < 0.25).

Aggregate network-centered analysis
Taking an approach complementary to the one adopted
in the control network-centered analysis, here a set of
gene modules is defined for each of the aggregate com-
pound networks. That is, for each aggregate network, a
set of densely connected modules is identified, and their
change of connectivity with respect to the control net-
work is calculated by MDC. Since a potentially distinct
set of modules is identified in each aggregate network,
this precludes the representation of the differential con-
nectivity analysis results across the aggregate networks
in matrix form.
In this analysis, we first identified high frequency

(HF) modules as those modules for which similar
grouping of genes (i.e., similar composition) was
found across multiple aggregate networks (Fisher test,
p < 0.01). A Specificity Score was then computed to
highlight those with MDC values specific to a particu-
lar compound group. We next identified, low fre-
quency (LF) modules, i.e., modules whose composition
was unique to only one or few Aggregate Networks.
Both HF and LF modules are reported in Additional
file 4: Table S3, and graphically represented in Fig. 5,
where Hallmarks gene sets have been used to investi-
gate their biological function. Taken together, the
findings described below confirm that the approach is
capable of identifying known modes of action [10],
and of grouping compounds based on their coordi-
nated effect on molecular pathways.
In addition, a comparison of our network-based ana-

lysis results with those from standard differential expres-
sion analysis highlighted the complementarity of the two
approaches. Differentially expressed genes identified as

Table 2 Groups’ internal similarity by multiple criteria

Group Function Significance of
interacting proteins

Significance of
common side effects

G1 Solvents 6.61E-33 * NA

G2 Antifungals 4.45E-19 * 8.47E-11

G3 Statins 1.69E-33 * 1.29E-145 *

G4 Estrogens NA NA

G5 Fibrates 1.02E-56 * 6.60E-20

G6 Steroids 1.56E-06 * NA

G7 n.c. (estrogens,
antifungals)

0.0002 1.77E-05

G8 Anti-Cancer 1.69E-06 * 7.91E-16

G9 Chemoterapeutics 9.79E-05 1.78E-32 *

G10 Alkylating, Cancer 0.0001 2.79E-07

G11 n.c (anti-cancer,
estrogens)

0.0012 4.80E-15

G12 Anti-Inflamm/
Fungal

1.28E-18 * 2.91E-18

G13 Antiseptics,
Estrogens

0.0004 NA

NA = no annotations were found in CTD or in SIDER. * = lower p-value cannot
be obtained by chance (permutations)
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belonging to the “Perturbational transcriptome” in our
previous study [11], and their correspondent enriched
Hallmarks, were evaluated in terms of their overlap with
genes and gene sets identified by the present approach.
First, each of the Control and Compounds-related mod-
ules shown in Additional file 3: Table S2 and Additional
file 4: Table S3 was scored for its enrichment in terms of
differentially expressed genes. As expected, a majority of
the modules (26 out of 32) were significantly enriched for
differentially expressed genes (Fisher test, p < 0.01). Add-
itional file 5: Table S4 shows a summary of this analysis

where all genes contained in at least one of the modules
identified are compared with the Perturbational transcrip-
tome. Despite the significant overlap yielded by the two
approaches, a considerable number of genes were identi-
fied only by one of the methods, pointing to the comple-
mentarity of the approaches. Interestingly, many of the
genes and Hallmarks identified only with the network-
based approach were associated to pathways previously
implicated in mediation to chemical responses, and
described in the following section, including Heme
Metabolism, Myc targets, and inflammation signaling.

Fig. 3 Gain and loss of connectivity of Control modules. Differential connectivity of 60 Control modules (rows) induced by 13 groups of
compounds (columns). The heatmap is color-coded according to the MDC values, with blue and red indicating a loss and a gain of
connectivity, respectively
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Discussion
The following sections aim to discuss the main bio-
logical findings resulting from both Control-centered
and Compounds-centered analyses.

Alcohol-induced liver inflammation
As shown in Fig. 4, G1 has a specific effect on a high
number of pathways, mostly associated with inflamma-
tion and tumorigenesis. Given that liver samples have
been considered in this study, the significant impact of
this group on the entire pathway set could be explained
by the high number of alcohols included in group G1. In
fact, alcohol-mediated activation of inflammation signal-
ing pathways in the liver is known to increase tumori-
genesis in mice and to activate pro-inflammatory
cytokine, such as tumor necrosis factor alpha (TNF-α),
interleukin 6 (IL-6), and nuclear factor kappa B (NFκB)
[17]. This liver damage response has been reported for
several members of the “G1-Solvents” group, including
allyl alcohol [18], Lipopolysaccaride, known as an endo-
toxin, [17], and chloroform [19]. In particular, chloro-
form has been associated to an anti-inflammatory
action, possibly explaining the loss of connectivity of

module “coral1” in Additional file 4: Table S3. Concor-
dantly, TNF-α has been reported as showing a remark-
able functional duality, being strongly engaged both in
tissue regeneration/expansion and destruction [20].

Hypolipidemic compounds induce cholesterol metabolism
and inflammation
Groups G3 (Statins) and G5 (Fibrates), both including
hypolipidemic compounds, show a specific alteration of
modules related to cholesterol and fatty acid metabol-
ism. In particular, the highest Specificity score in Add-
itional file 3: Table S2 is obtained by the Fibrates on
module “thistle1”, enriched for Fatty Acid Metabolism.
The MDC values color-coded in Fig. 3 show that while
all the other groups of chemicals cause a LOC of the
“thistle1” module, groups G5 and G3 are the only ones
to produce a GOC, with a higher MDC obtained by
Fibrates. Statins have a more significant effect on the
module “honeydew”, enriched for cholesterol homeosta-
sis (Additional file 4: Table S3), which has not a high
specificity ranking for the Fibrates, confirming different
actions of those two distinct classes of drugs. Statins are
also associated with stress response pathways, including

Fig. 4 Enrichment of specific Control modules. Bipartite graph representing associations between compound groups and enriched Hallmarks
gene set corresponding to specifically altered modules extracted from the Control Network
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oxidative phosphorylation, UV response and activation
of TNF-α in both Control (Fig. 4) and compounds-
related modules (Fig. 5). While hypoxia-inducible factors
were found to play a role in the inhibition of cholesterol
synthesis [21], an inflammatory response of the liver has
not been clearly reported in the literature. However, the
indication of liver damage as a rare side effect by FDA
might suggest that tissue-specific network analysis could
capture most of the possible mechanisms induced by
drugs exposure.

Effect of estrogens, steroids and cancer drugs on cellular
replication
Both modules related to estrogens and to cancer treat-
ment have an effect on the connectivity of module “ma-
roon”, enriched for pathways related to cellular
replication. While this module is gaining connectivity as
an effect of proliferation-inducing drugs contained in
group G4 (estrogens), a loss of connectivity is observed
for G9 (chemotherapeutics) and G11, pointing to the
disruption of the cellular replication machinery caused
by anti-cancer drugs. The gain of connectivity of G2M
checkpoint induced by G10 (Alkylating-cancer) and p53

pathway in the compound-related modules (Fig. 5) also
confirms known mechanisms in the treatment of tumors
and DNA damage [22].
The loss of connectivity of inflammation-related path-

ways observed on G6 perturbation could be explained
by the known action of some steroids-related com-
pounds. In particular, a negative correlation with retinol
and liver fibrosis has been previously reported [23, 24].
Another interesting effect of one of the steroid com-

pounds is revealed by enrichment analysis of modules al-
tered by group G2, mainly composed of antifungals. Our
results show an effect of this group on coagulation path-
ways, observed in the Control modules and supported by
the literature [25], as well as an effect on regeneration-
related pathways, observed in the Compounds-related
modules. Remarkably, this group also contains mifepris-
tone, a steroid compound that was also shown to have an
effect on heme pathways. In addition, significantly lower
effects on coagulation pathways were shown for other
steroid compounds with pharmacological action similar to
mifepristone [26]. This finding highlights a similar action
of the compounds included in G2, despite being assigned
to different pharmacological classes.

Fig. 5 Enrichment of specific Compounds-related modules. Bipartite graph representing associations between compound groups and enriched
Hallmark gene sets corresponding to specifically altered modules extracted from each Aggregate Compound Network
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Non-homogeneous groups of compounds have known
common effects
Interesting results can be observed for non-homogeneous
groups of compounds for which a predominant pharma-
cological action could not be assigned. In particular, group
G13 (Antiseptics-Estrogens) shows a double effect, clearly
visible in Fig. 4, by acting on inflammation-related path-
ways and on mitosis gene sets. Possible key players of this
group are Safrole, which has been shown to induce liver
DNA damage (explaining the action on stress response
pathways) [27] andMethyl salicylate, shown to have an es-
trogenic potential [28], thus increasing the coordinated ac-
tivity of genes related to cellular replication pathways.
Another interesting example is group G7, containing four
chemicals with apparently different functions. As sug-
gested by the specific loss of connectivity induced on
module “coral1”, related to inflammatory response, the
majority of compounds included in this group have anti-
oxidant properties [29–31]. Among these, Atorvastatin is
a compound belonging to the class of Statins, which was
not grouped with the other Statins in G3. Interestingly, no
other statins except for one were demonstrated to have
antioxidant effects in vitro, confirming the grouping of
compounds found with aRI [21, 31].

Methods
Data sources
The DrugMatrix [8], available through the Gene Expres-
sion Omnibus (GEO) with the accession number
GSE57822, contains gene expression profiles from male
rat primary tissues (liver, kidney, heart and thigh muscle)
and cultured rat hepatocytes, corresponding to treat-
ments with 376 chemicals, and including 994 control
samples from rats kept in matched conditions. Each
compound was administered at multiple doses and dura-
tions (6 h - 7 days), and each combination of tissue,
compound, time and dose was profiled in triplicate. Of
the 376 chemicals tested, 255 were annotated with either
carcinogenicity or genotoxicity information in the Car-
cinogenic Potency Database (CPDB) [11], corresponding
to 3448 profiles. In our study, only the samples from
liver were considered, both for controls (279 samples)
and for chemical perturbations represented by at least
10 samples and including all doses and durations avail-
able. The average sample size used for network inference
was of 18 samples, ranging from a minimum of 11 to a
maximum of 38 samples, with the corresponding power
to detect absolute correlation values of 0.5 with signifi-
cance below 0.05 ranging from 0.49 to 0.95, respectively.
The Toxicogenomics Project-Genomics Assisted Tox-

icity Evaluation system (TG-GATEs) [9], is available
through ArrayExpress (E-MTAB-800) and includes
21,385 samples of male rat primary liver and kidney tis-
sues, and cultured hepatocytes. TG-GATEs tested 131

chemical compounds. In our validation, only the samples
from liver control were used, for a total of 1572 samples
used to infer a gene network.

Data processing
Both Affymetrix datasets were normalized using the R
Bioconductor package frma and frmaTools [32]. The
Median Absolute Deviation (MAD) was used as the vari-
ation filter to select the 7000 best-ranked probes whose
expression was then considered for inference of tran-
scriptional networks. Data normalization, gene selection,
network inference and other analyses were performed
with custom scripts developed using the programming
languages R, and several Bioconductor packages.

Network inference and modules analysis
Transcriptional network inference starts by defining an
adjacency matrix A = {aij}, with weight aij denoting the
strength of the relation of genes i and j in the expression
data. Scale-free transformations (thresholding) can then
be applied to the correlation measurements to achieve a
scale-free topology typical of biological networks, char-
acterized by relatively few highly connected nodes (hubs)
among a larger number of sparsely connected neighbors
[1]. In this work, we explored both the direct use of
non-transformed correlation networks (CN) as well as of
scale-free transformed networks (SFN).
In order to obtain a correlation matrix, Pearson correl-

ation measures between all pairs of gene expression pro-
files were computed. In the CN approach, the
correlation matrix was directly used as the adjacency
matrix A. Conversely, in the SFN approach two add-
itional steps were required: i) only those edges with cor-
relation values exceeding a specific threshold were
retained, with the threshold selected so that the resulting
distribution of connectivities fitted a scale-free topology;
and ii) the adjacency matrix A was computed by trans-
forming the thresholded correlation values into a topo-
logical overlap matrix (TOM), which takes into account
the indirect interactions between each couple of genes
in the network [1]. In both approaches, hierarchical clus-
tering with Ward’s method was then applied to the ob-
tained adjacency matrix, and a dynamic tree cutting
algorithm was applied to determine the number and
composition of gene clusters, henceforth referred to as
gene modules. We used the R package cutreeDy-
namic with minimum cluster size set to 10 genes,
method set to “hybrid” and “deepSplit” parameter set to
4, which allows a higher number of more homogeneous
clusters if compared to other parameter settings. Finally,
a Module Differential Connectivity score (MDC) was
used to compare the connectivity of gene modules be-
tween networks [6]. For a specific module composed of
N genes and an edge set EN, the MDC measures the
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ratio of the weighted cardinalities of EN in the two net-
work, i.e.:

MDC X;Yð Þ ¼ ENXj j
ENY jj ð1Þ

where |ENX| and |ENY| denote the average connectivi-
ties aij

X and aij
Y among the module’s genes within net-

works X and Y. MDC values below 1 represent a loss of
connectivity of the module in X with respect to Y, while
values exceeding 1 indicate a gain of connectivity.

Validation of inference methods
The reproducibility of the network inference procedure
was evaluated by two approaches, under the assumption
that networks derived from the same experimental con-
ditions should yield very similar structures, with minimal
differences in connectivity only due to sampling variabil-
ity. In the first validation, networks derived from the
control (i.e., unexposed) liver samples of two independ-
ent datasets, the DrugMatrix (n = 279) and the TG-
GATEs (n = 1572), were constructed and compared. The
significance of the overlap between modules extracted
from the two networks was assessed by means of the
Fisher exact test.
In the second validation, a resampling approach was

adopted, whereby the control liver samples from the lar-
ger TG-GATEs dataset was randomly split into two
equally sized datasets, and corresponding networks were
derived and compared, with the procedure repeated 50
times. In both validations, the distributions of MDCs ob-
tained by the two inference approaches (CN and SFN)
were computed and compared.

Inference of Compound and Aggregate Compound
Networks
The inference approach (CN) showing the best validation
results was used to analyze how different compounds (or
groups of compounds) affect the connectivity patterns of
specific gene modules. All non-treated liver samples avail-
able were used to construct the Control Network, while
for the treatment-related networks we relied only on
chemical compounds for which at least ten replicate
experiments (animals) were available, obtaining 62
Compound Networks.
In order to build Aggregate Networks representing

multiple chemical compounds, the similarity of Com-
pound Networks based on their module composition
was measured by the adjusted Rand index (aRI) [8]. The
aRI is a well-accepted measure that allows for the com-
parison of clustering results even when these yield differ-
ent numbers of clusters. Groups of chemical compounds
were then identified by applying dynamic tree cutting
(cutreeDynamic hybrid, minimum cluster size set to 3

compounds, “deepSplit” set to 4) to the hierarchical tree
obtained by merging compounds, with the Ward
method, based on their aRI similarity. For each of the 13
groups detected, an aggregate network was built using
partial correlation, in place of simple correlation, as the
adjacency measure, so as to control for the potential
confounding effect of the chemicals grouped. The sam-
ple sizes of these groups ranged from 41 to 154, with an
average of 86 samples used to infer correlation values.
Internal similarity of compounds in each group was
assessed by evaluating the overlap of their interacting
proteins, as retrieved through the CTD database [33], by
means of the Fisher exact test. Specifically, a p-value was
obtained for each pair of compounds in a group and the
median p-value was used as the score of internal similar-
ity among the aggregated set of compounds. The signifi-
cance of these measures was assessed by randomly
selecting equally sized groups of compounds from the
CTD database and computing their internal similarity,
with the procedure repeated 1000 times. The same
permutation-based approach was used to compute the
significance of side effects similarity, this time consider-
ing SIDER [15] as a knowledge source to retrieve
compound-related information.

Comparison with other clustering approaches
The grouping obtained with the network-based approach
was compared to two alternative methodologies, based
on: i) standard clustering methods which do not take ad-
vantage of the network structure; ii) information from
available network-based knowledge sources.
The first approach starts by defining an average ex-

pression profile Mi = (vi), for each compound Ci, with
values vi obtained as mean expression values for each
gene j across all samples related to Ci. Pairwise distances
between compounds Ci and Ck were thus estimated by
computing the Euclidean distance of the correspondent
profiles Mi and Mk.
In the second approach, chemical-protein associations

were retrieved through STITCH, a widely adopted public
repository of chemical-related networks [14]. STITCH
contains multiple evidences of associations, with experi-
mental evidences being one of the most reliable types of
recorded interactions. A network with all chemicals and
their associated proteins was thus obtained by consider-
ing only associations coming from experimental evi-
dences. Subsequently, a distance measure for
compounds Ci and Ck was estimated as 1-J, J being the
Jaccard Index of their set of associated proteins Pi and
Pk,: J = Pi∩Pk/Pi∪Pk.
In both approaches, the pairwise distances computed

were used as input to Hierarchical Clustering (Ward’s
method) to obtain compounds groupings.
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Selection and annotation of significant modules
For each Control Network-specific module, a confidence
interval for the value of the corresponding MDC with
respect to each Aggregate Network (or Individual Com-
pounds network) was computed by randomly selecting
with replacement the same number of samples from the
replicates of non-treated samples. After 1000 iterations,
the standard value of each log-transformed MDC was
compared with the obtained estimates of MDC confi-
dence interval. The resulting p-values assess the signifi-
cance of the deviation of the MDC from 1 (with 1
denoting lack of differential connectivity).
The same bootstrap procedure was adopted for mod-

ules extracted from each Aggregate Network (or Individ-
ual Compounds network), this time by randomly
selecting with replacement the same number of samples
from the entire set of perturbations.
In order to rank the control modules most specifically

altered by each compound group, the changes in con-
nectivity of each module m measured for a compound
group gi with respect to the Control Network c were
compared to those obtained for the other compound
groups [16]. First, the absolute value of the difference in
the MDC scores between two groups of compounds gi
and gj was computed for each module m as:

Δmgi;gj ¼ logMDCm gi; c
� �

− logMDCm gj; c
� ����

���

ð2Þ

This was used to compute the specificity of module m
to compound group gi, as:

Sp mð Þgi ¼
X

k¼1

N
Δmgi;gk ð3Þ

where N denotes the total number of compound
groups different from gi. For each compound group,
modules with score exceeding the top 5th percentile of
the overall distribution of specificity scores were selected
for enrichment analysis.
Specificity of modules inferred from the Aggregate

Compounds Networks was assessed based on two alter-
native criteria, depending on the frequency of observa-
tion of the same module (or a highly overlapping
module, Fisher test p-value < 0.01) in the networks.
Modules identified in more than 50% of the aggregate
networks were labeled as “high frequency” and a score
Sp(m)gi for module m to compound group gi, was com-
puted as described for the Control Network modules
(Eqs. 2 and 3). The Specificity score was obtained as
Sp mð Þgi.

Ntot where Ntot denotes the total number of

compound groups. For each compound group, modules
with score exceeding the top 5th percentile of the overall

distribution of specificity scores were selected as “high
frequency” specific modules.
Modules identified in less than 50% of the networks

were labelled as “low frequency” and selected based on
significance of their correspondent MDC values (p < 0.01).
Both Control Network-derived and Aggregate

Network-derived (low and high frequency) specific mod-
ules were annotated by enrichment of the hallmark gene
sets part of the MSigDB compendium [34]. Significance
of pathway enrichment was computed using a hyper-
geometric distribution-based test and corrected for mul-
tiple hypothesis testing across multiple pathway gene
sets via the false discovery rate (FDR) estimation. Hall-
mark pathways with FDR ≤ 0.25 was reported for each
specific gene module in both Control Networks and Ag-
gregate Networks.
Selected genes and Hallmark gene sets were compared

with the “Perturbational Transcriptome”, a list of genes
identified as significantly differentially expressed (with
respect to matched controls) in at least five compounds
[11]. Each module was tested for enrichment of genes
included in the Perturbational Transcriptome by a
hyper-geometric test.

Computational requirements
The pipeline was run on a Linux node with two eight-
core 2.6 GHz Intel Xeon processors, and 128 GB RAM.
Several R scripts implementing the main steps illustrated
in Fig. 1 were run sequentially on the node. Network in-
ference and modules identification (Fig. 1a-b) required
approximately 17 s for the Control Network and 9 s for
an Individual Compound Network inferred from 20
samples. Pairwise similarity of 62 networks and grouping
with the aRI (Fig. 1.c-d) took approximately 15 s. The
run time for modules identification and differential con-
nectivity analysis (Fig. 1.e-f ) between a 60-module Con-
trol Network and a 68-module Aggregate Compound
Network was about 6 s, with 0.02 s needed for MDC
computation of a module of 100 genes. Similar run times
were required for each of the Aggregate Compound Net-
works. The most computationally intensive part of the
pipeline was the significance testing based on bootstrap-
ping, which required repeating correlation and MDC
computation 1000 times for each module (Fig. 1.g). Con-
sidering an Aggregate Network inferred from 68 sam-
ples, this step took on average 1.7 s/iteration, with a
total of 28 min required for the complete assessment of
MDC q-values, composed of 1000 repetitions. Similarly,
significance analysis of Compounds-related modules
took 1.8 s/iteration, with a total run time of 30 min
needed for q-values estimation. In summary, the Control
Network-centered analysis took on average 26.24 min
and the Aggregate Network-centered analysis for a single
group of chemicals took an average of 28.03 min. It
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should be noted that once the Control and Aggregate
Networks are inferred, the statistical significance tests
for the Control Network-centered and each of the Ag-
gregate Network-centered analyses are independent of
each other and can thus be executed in parallel.

Conclusions
We have presented a pipeline for transcriptional network in-
ference and comparison that was primarily designed for the
analysis of chemical perturbations from high-throughput
transcriptional screening experiments. Here, we applied it to
the analysis of gene expression profiles from rat-based
chemical exposure experiments. We show that groups of
chemicals with similar functions and carcinogenicity/geno-
toxicity profiles can be identified through our proposed
pipeline. In addition, modules with altered connectivity due
to the action of specific compounds were enriched for path-
ways actually related to the chemicals’ action. These findings
highlight potential advantages in the application of this
network-based approach. In the context of drug discovery
(or repositioning), the methods presented here could help
assign new functions to novel (or existing) drugs, based on
the similarity of their associated network with those built for
other known compounds. Additionally, networks with pa-
tients as nodes could be compared with the same tools in
order to identify groups with a similar response to a set of
drugs. In fact, the proposed methodology has broad applic-
ability beyond the uses here described and could be used as
an alternative or as a complement to standard approaches
of differential gene expression analysis.
As currently implemented, the pipeline identifies mod-

ules with differential connectivity irrespective of link dir-
ectionality. An extension of the method possibly worth
investigating would be the modeling of directional links,
e.g., obtained by distinguishing between positively and
negatively correlated gene pairs. This would require a
modification of the connectivity score here adopted, and
could potentially highlight modules for which a specific
perturbation is able to change the direction of nodes
connectivity with respect to a reference condition. On
the other hand, the obtained results would likely become
more difficult to interpret and annotate.
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