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Abstract

Background: One goal of structural biology is to understand how a protein’s 3-dimensional conformation determines
its capacity to interact with potential ligands. In the case of small chemical ligands, deconstructing a static protein-
ligand complex into its constituent atom-atom interactions is typically sufficient to rapidly predict ligand affinity with
high accuracy (>70% correlation between predicted and experimentally-determined affinity), a fact that is exploited to
support structure-based drug design. We recently found that protein-DNA/RNA affinity can also be predicted with high
accuracy using extensions of existing techniques, but protein-protein affinity could not be predicted with >60%
correlation, even when the protein-protein complex was available.

Methods: X-ray and NMR structures of protein-protein complexes, their associated binding affinities and experimental
conditions were obtained from different binding affinity and structural databases. Statistical models were implemented
using a generalized linear model framework, including the experimental conditions as new model features. We evaluated
the potential for new features to improve affinity prediction models by calculating the Pearson correlation between
predicted and experimental binding affinities on the training and test data after model fitting and after cross-validation.
Differences in accuracy were assessed using two-sample t test and nonparametric Mann–Whitney U test.

Results: Here we evaluate a range of potential factors that may interfere with accurate protein-protein affinity prediction.
We find that X-ray crystal resolution has the strongest single effect on protein-protein affinity prediction. Limiting our
analyses to only high-resolution complexes (≤2.5 Å) increased the correlation between predicted and experimental
affinity from 54 to 68% (p = 4.32x10−3). In addition, incorporating information on the experimental conditions under
which affinities were measured (pH, temperature and binding assay) had significant effects on prediction accuracy. We
also highlight a number of potential errors in large structure-affinity databases, which could affect both model training
and accuracy assessment.

Conclusions: The results suggest that the accuracy of statistical models for protein-protein affinity prediction may be
limited by the information present in databases used to train new models. Improving our capacity to integrate large-
scale structural and functional information may be required to substantively advance our understanding of the general
principles by which a protein’s structure determines its function.
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Background
Proteins are involved in the majority of chemical reac-
tions that take place within living cells, making them es-
sential for all aspects of cellular function. Proteins never
work in isolation; their functional repertoire is deter-
mined by how they interact with various small-molecule,
DNA/RNA, protein or other ligands. Ligand affinity is
largely determined by a protein’s 3-dimensional struc-
ture, which determines the spatial conformation of
attractive and repulsive forces between the protein and a
potential ligand [1–3]. The affinity with which a protein
interacts with various ligands–typically expressed as the
dissociation constant (Kd or pKd = −log Kd)—provides
critical information about protein function and bioch-
emistry, and has been used for the discovery and
optimization of novel pharmaceuticals [4–6].
High-throughput prediction of protein-ligand affinity

is typically conducted using a fast statistical “scoring
function” that decomposes binding affinity into compo-
nent atom-atom interaction terms representing the at-
tractive and repulsive forces acting across the protein-
ligand complex [7, 8]. Although scoring functions can be
derived directly from physical chemistry principles [9],
the most effective approaches are usually “trained” using
large databases of structural complexes with associated
experimentally-determined binding affinities [10–12].
After training, a model’s expected predictive accuracy
can be gauged by correlating its predicted affinities with
experimentally-determined values across a novel dataset
not included in training [13, 14].
Many scoring functions are capable of using only the

atomic interactions extracted from crystal structures to
rapidly predict protein-small molecule affinities with >70%
correlation, which is commonly considered adequate to
support structure-based drug design [11, 15–21]. Recently,
we developed efficient statistical models capable of pre-
dicting protein-DNA/RNA affinities with similar accuracy
[22]. Our structure-based prediction models also revealed
that different combinations of atom-atom interactions are
important for predicting different types of protein-ligand
complexes. However, no statistical models we exam-
ined were capable of predicting protein-protein affin-
ity with >60% correlation, even under the ‘best case’
scenario in which the protein-protein complex was
known experimentally.
Accurate prediction of protein-protein interactions is a

major goal of computational structural biology, and many
approaches have been examined to improve the accuracy
of protein-protein affinity prediction [23]. The structural
basis of protein-protein interactions is typically more com-
plex and flexible than other protein-ligand interactions,
suggesting that entropic forces may be more important in
protein-protein interactions [24, 25]. Physics-based ap-
proaches such as molecular dynamics can model entropic

factors and produce highly-accurate affinity predictions
but are too computationally complex to support high-
throughput analyses [10–12, 17, 26, 27]. As an alternative
approach, smaller manually-curated affinity benchmarks
have been proposed to improve the accuracy of high-
throughput statistical affinity prediction [28]. However,
predictive accuracy on manually-curated datasets rarely
exceeds ~60% correlation [29], and accuracy achieved
using carefully curated datasets may not generalize well to
new data. Importantly, the specific factors that may influ-
ence statistical prediction of protein-protein affinity have
not been identified, making it difficult to devise reasonable
strategies to improve current methods.

Methods
Structural dataset curation
X-ray and NMR structures of protein-protein complexes
and their associated binding affinities (−log10-transformed
dissociation constants, pKds) were obtained from PDBbind
[30] and from the protein-protein affinity benchmark data-
base [28]. Complexes with ambiguous ligand information
were excluded, as were complexes with multiple ligands or
mulitimeric proteins, similar to previous approaches applied
for building refined protein-ligand data sets [11, 30, 31].
From each protein− protein complex, we extracted a suite
of non-redundant atom-atom interactions thought to po-
tentially correlate with ligand affinity. Details on how each
atom-atom interaction is defined and calculated are pre-
sented in our previous work [22]. We included only those
atomic interactions that could be determined entirely from
atomic coordinates and atom types in a standard PDB file.
For each protein-protein complex, we extracted add-

itional information on structure acquisition method,
temperature, pH, and crystal resolution from the Protein
Data Bank [32]. We constructed data sets of 569
protein-protein complexes with assigned temperature
data, 545 complexes with pH information and 622 com-
plexes with acquisition method and resolution informa-
tion. When several temperature values were available for
the same structure, we used the mean temperature. We
constructed filtered data sets based on structural reso-
lution and acquisition method, with 205 high-resolution
structures (≤2.5 Å) and 165 NMR structures.
For each complex, we extracted additional information

on binding assay pH, temperature, and methodology
from the protein-protein affinity benchmark database,
which is a nonredundant set of 144 protein-protein
complexes with detailed information on the experi-
mental methods used for measuring binding affinities
[28]. We extracted pH data for 127 complexes,
temperature data for 103 complexes and binding
assay technology for 136 complexes. Information
available for each protein-protein complex is provided
in Additional file 1: Table S1.
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Statistical modeling, model selection and cross-validation
We updated the original version of our protein-
protein affinity prediction model [22] by adding pa-
rameters for estimating hydrophobic surface tension
and hydrophobicity. The hydrophobicity algorithm
used is adapted from [33]. Each amino acid in the
surface has a pre-defined hydrophobicity score, modu-
lated by peptide endings and varying between ap-
proximately −1 (most hydrophilic) and +2 (most
hydrophobic). The surface tension parameter was cal-
culated by summing the atomic contributions of each
amino acid to the protein surface tension. These
atomic contribution scores were adapted from [34].
Other atom-atom interaction terms in the present
statistical model are identical to those defined and
evaluated in our previous work [22].
Statistical models were implemented using a general-

ized linear model framework (GLM, implemented in the
GLMULTI package in R), assuming a Gaussian error dis-
tribution with logarithmic link function. We used the
GLMULTI genetic algorithm to generate 500 candidate
models (default parameters, except population size =
500, level = 2, and marginality enabled) and selected the
best-fit model for each training dataset using the Akaike
information criterion (AIC).
We evaluated the potential for new features to im-

prove affinity prediction models by calculating the Pear-
son correlation (r2) between predicted and experimental
binding affinities on the training data after model fitting,
which represents the ‘best-case’ possible accuracy.
We then used cross-validation to estimate the ex-

pected accuracy of each trained statistical model
when applied to new data and to evaluate possible
model over-fitting to training data [13, 14]. For each
model, we performed 100 replicates of leave-one-out
cross-validation. For each replicate, we randomly par-
titioned the structural data into a testing data set of
size n = 1, with the remaining complexes used to train
the regression model. We calculated the Pearson cor-
relation (r2) and root mean squared deviation (RMSD)
between predicted and experimentally-determined
binding affinities on the unseen testing data and re-
port the average r2 and RMSD of each model over
the 100 replicates.
Differences in accuracy were assessed using the para-

metric two-tailed, two-sample t test, assuming unequal
variances, and the nonparametric Mann–Whitney U
test. For evaluating the effects of dataset subsampling on
predictive accuracy, we used Fisher’s z-transformation,
which incorporates a correction for comparing results
obtained on a subsample to results from the full dataset
(33). In addition, we performed 1000 replicates of ran-
dom subsampling to evaluate the expected effect of sub-
sampling on predictive accuracy.

Results
Statistical prediction of protein-protein binding affinity
relies on information extracted from large structure-
affinity databases [29, 35]. Accuracy and generalizability
of predictive models is therefore expected to depend on
the quantity and quality of information in the training
database as well as the particular types of information
available [36]. To evaluate how various aspects of struc-
ture-affinity databases affect the accuracy of protein-
protein affinity prediction, we examined 1577 protein-
protein complexes from the PDBbind database, a compre-
hensive collection of experimentally-determined affinity
measurements assigned to 3-dimensional structural com-
plexes, commonly used to evaluate affinity prediction
algorithms [30].
We found that nearly 2/3 of the protein-protein com-

plexes in PDBbind had ambiguous affinity measure-
ments or multiple ligands, making it difficult to
confidently assign affinity information to specific com-
ponents of the structural complex (see Additional file 1:
Text S1). We identified 955 ambiguous complexes, with
an additional 20 complexes removed due to missing co-
ordinates and/or steric clashes [37, 38]. Removing these
complexes resulted in a filtered training database of 622
protein-protein dimers.
Consistent with results from previous studies [11, 19, 35,

39, 40], we found that removing complexes with ambigu-
ous, missing or unreliable data was required to support ro-
bust training of affinity prediction models (see Additional
file 1: Figure S1 and associated text). Models trained using
either the complete PDBbind (1557 complexes) or the
filtered database of 622 dimers performed very poorly
when applied to the complete PDBbind dataset. For the re-
mainder of this study, we therefore focus our analyses on
the filtered PDBbind database of 622 dimers.

Incorporating additional structural features improves
protein-protein affinity prediction
We have previously developed statistical approaches for
predicting protein-protein affinity incorporating a wide
range of atom-atom interaction terms expected to im-
pact macromolecular interactions [22]. However, in
those analyses, protein-protein affinities could not be
predicted with >0.49 correlation, after cross-validation.
Applying these models to our filtered PDBbind dataset
resulted in a correlation between predicted and
experimentally-determined binding affinities of 0.44 in
cross-validation analyses (Fig. 1a).
We did find that including additional atom-atom inter-

action terms can improve the accuracy of affinity-
prediction models. For example, hydrophobicity [33] and
surface tension parameters [34] are weakly correlated with
binding affinity across the filtered PDBbind dataset (Spear-
man correlation >0.10, p < 7.48x10−3; Additional file 1:
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Figure S2A). Incorporating these parameters into the pre-
dictive model improved the correlation between predicted
and experimentally-determined affinities in cross-
validation analyses from 0.44 to 0.54 (one-tailed Fisher’s z
= 2.04, p = 0.0207; Fig. 1a).
We also evaluated the relationship between binding af-

finity and structural changes caused by protein-protein
binding by examining the change in conformational
entropy upon complex formation. This can be roughly
calculated by comparing the structure of the bound
complex (holo) to the unbound (apo) structures and has
been successfully applied for predicting binding affinity
in a small dataset of 17 protein-protein complexes [41].
We extracted 143 holo complexes with corresponding

apo structures from the protein-protein affinity bench-
mark database (Additional file 1: Table S2). Differences
between holo and the apo forms were characterized by
calculating root mean squared deviations (RMSDs) and
changes in the accessible-to-solvent surface area upon
complex formation. Although RMSD was not correlated
with experimental binding affinity (Spearman correl-
ation = 0.02, p = 0.73), we did observe a significant cor-
relation between binding affinity and the change in
accessible-to-solvent area caused by formation of the
protein-protein binding interface, suggesting that this
parameter may be useful for improving affinity pre-
diction (Spearman correlation = −0.28, p = 8.63x10−4,
Additional file 1: Figure S2B).

Cross-validation analysis confirmed that including
changes in the accessible-to-solvent area as an explanatory
variable improved affinity prediction accuracy, both on
the Affinity Benchmark database (r2 = 0.41 vs. 0.55;
William’s test p = 2.3x10−3) and the filtered PDBBind data-
base (r2 = 0.46 vs. 0.49; William’s test p = 2.6x10−3;
Fig. 1b).
Scoring functions that exhibit a Pearson correlation

>0.72 and an RMSD <2 Å between predicted and experi-
mental binding affinity in cross-validation analyses are
commonly characterized as providing robust affinity in-
ferences [11, 40, 42–44]. While our results do suggest
that incorporating additional structural information can
improve protein-protein affinity prediction, the improve-
ments in accuracy we observed were generally incre-
mental, and even best-case accuracy currently remains
too low to support robust affinity inferences.
Existing studies of protein-protein affinity prediction

have occasionally identified models capable of accurately
predicting affinities on carefully curated small datasets,
but accurate prediction of protein-protein affinity across
large structure-affinity databases has remained unobtain-
able [23]. This could be due to lack of generalizability,
possibly because curation of small datasets may inad-
vertently select for a subset of the structural features
present in large-scale databases. Alternatively, the quality
of both structural and affinity data in large databases
could be highly variable, making some complexes more

A B

Fig. 1 Including additional structural features improves prediction of protein-protein binding affinity. In addition to the atom-atom interaction
terms evaluated in our previous study [22] we extracted additional features from protein-protein complexes in our filtered training datasets from
PDBbind and the Binding Affinity Benchmark and performed cross-validation to evaluate the expected accuracy of affinity-prediction models
trained using these features, when applied to new data (see Methods). We plot the Pearson correlation between predicted and experimentally-
determined binding affinities for the original model (white) and the model including additional features (gray). Bars indicate standard errors. a
Hydrophobicity and surface tension parameters were extracted from structural data and incorporated into the prediction model. b We calculated the
root mean squared deviation (RMSD) between unbound and bound forms of the components of each protein-protein complex as well as differences
in the area of each protein accessible to solvent (see Methods). These features were incorporated into prediction models. For complexes in the
PDBbind database, we simulated the unbound forms by using homology modeling
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‘difficult’ to accurately predict than others and poten-
tially misleading model training procedures. Currently,
almost nothing is known about how variation in charac-
teristics of the structural and experimental data in
structure-affinity databases might impact protein-protein
affinity prediction. We examine this potential issue for
the remainder of this study.

Crystal resolution affects protein-protein affinity prediction
accuracy
Crystallographic resolution is proportional to the preci-
sion of the 3-dimensional coordinates of the atoms in
the structure. Typically, high-resolution structures
(<2.5 Å) exhibit correct folding, have very small num-
bers of incorrect rotamers and present accurate surface
loops. In contrast, low-resolution structures (>3.5 Å) are
more likely to result in folding errors or incorrectly-
modeled surface loops [45, 46]. We hypothesized that
high-resolution structures would produce more reliable
atom-atom interaction calculations and result in more
accurate binding affinity predictions.
We did observe a weak but significant correlation be-

tween crystal resolution and the difference between pre-
dicted and experimental binding affinities (r2 = 0.11, p =
5.26x10−3; Additional file 1: Figure S3A). However, in-
cluding crystal resolution as a parameter in the affinity
prediction model did not improve the correlation be-
tween predicted and experimental affinities, even across
complexes included in the training dataset (r2 = 0.64 vs.
0.65; Fisher one-tailed z = 0.16, p = 0.87; Fig. 2a). These
results suggest that using crystal resolution as an ex-
planatory variable in the model is unlikely to improve af-
finity prediction accuracy, even in the ‘best case’
scenario in which new data ‘look’ exactly like the data
used for training.
However, constraining our training dataset to only in-

clude high-resolution structures (<2.5 Å, resulting in 205
protein-protein complexes) improved the correlation be-
tween predicted and experimental affinities on training
data from 0.64 to 0.85 (Fisher one-tailed z = 6.14, p =
7.97x10−10; Fig. 2b). Furthermore, cross-validation ana-
lysis using only high-resolution structures resulted in in-
creased predictive accuracy when applied to new data
not included in training (r2 = 0.54 vs. 0.68; Fisher two-
tailed z = 2.85, p = 4.32x10−3; Fig. 2c,d).
Although Fisher’s z-transformation incorporates a cor-

rection for comparing results obtained on a subsample
to results from the full dataset [47], we were con-
cerned that selecting a subsample of the original test-
ing data could lead to a spurious improvement in
predictive accuracy, irrespective of the effects of
higher crystal resolution. However, when we randomly
selected subsets of equivalent size, accuracy never

improved to the extent observed for the high-
resolution dataset (p < 4x10−3; Fig. 2b).
Although these results suggest that training protein-

protein affinity prediction using high-resolution struc-
tures may improve predictive accuracy, different types of
complexes are likely to crystalize at different resolutions.
If complexes whose affinities are more difficult to pre-
dict for inherent reasons also tend to crystalize at lower
resolution, the effects of resolution on predictive accur-
acy may be indirect.
To address this issue, we grouped protein-protein

complexes into clusters based on 90% sequence identity.
Within each cluster of similar complexes, we calculated
the correlation between crystal resolution and affinity
prediction accuracy (Additional file 1: Table S3). Al-
though there were only 21 clusters with >3 similar com-
plexes in our dataset, we did find that all the clusters
exhibiting a significant correlation between resolution
and affinity prediction were consistent with the expect-
ation that higher-resolution structures produced more
accurate affinity predictions. While it is not possible to
generalize from such limited data, these results do sug-
gest that higher resolution structures may improve affin-
ity prediction accuracy across at least some groups of
similar protein-protein complexes.
Restricting training and testing data to either high-

resolution or NMR data also resulted in a reduction of
root-mean squared deviation (RMSD) between predicted
and experimental affinities, compared to the original
dataset (high-resolution and NMR RMSDs = 1.79 and
1.56, respectively, vs. 1.90 for the original dataset, t-test
p < 0.03, Mann–Whitney p < 0.01; Fig. 2d). Together,
these results suggest that training statistical models
using high-resolution crystal structures or NMR data
may improve affinity prediction accuracy when trained
models are applied to new data.
It is interesting that restricting training data to NMR

structures also improved predictive accuracy (see Fig. 2),
as the resolution of NMR structures is typically lower
than X-ray crystal structures. However, NMR structures
are determined from proteins in solution, which may
more accurately reflect the native functional environ-
ment of the protein [48, 49]. The capacity to capture
protein-protein interactions in solution may contribute
to the improved predictive accuracy of models trained
using NMR data, particularly for cases in which the crys-
tallographic process might introduce structural artifacts.
Experimental conditions such as temperature and pH

are critical for the formation and stability of a protein
crystal [50]. However, the optimal conditions for
crystallization may differ from those used for measuring
binding affinity, potentially creating a mismatch between
a crystalized protein-protein complex and that same
complex in experimental solution. To examine the
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Fig. 2 (See legend on next page.)
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potential effects of crystallization conditions on protein-
protein affinity prediction, we extracted temperature and
pH information from the Protein Data Bank [51] for the
complexes in our training dataset and evaluated the ef-
fect of including this information on predictive accuracy.
Although both crystallization temperature and pH were
weakly negatively correlated with experimental binding
affinity (r2 = −0.26, p = 4.91x10−10 and r2 = −0.16, p =
1.96x10−4 for temperature and pH, respectively.
Additional file 1: Figure S3B), we observed no improve-
ment in predictive accuracy when these parameters were
incorporated into the statistical model (Fisher one-tailed
z < 0.1, p > 0.92; Fig. 2a).
Overall, these results suggest that the quality of struc-

tural data can affect the accuracy of statistical affinity
prediction, and that training models using high-quality
structures may be one avenue available to improve
protein-protein and other affinity predictions. While
limiting training data to high-resolution structures was
not required for accurate prediction of protein-small
molecule or protein-DNA/RNA affinities in our previous
analysis [22], protein-protein complexes typically have
larger numbers of atoms at the protein-ligand interface
and may be more sensitive to potential errors induced
by lower crystal resolution. Differences in crystal reso-
lution across protein-small molecule, protein-DNA/RNA
and protein-protein training datasets may also contrib-
ute to differences in affinity prediction accuracy.

Lack of information on binding assay conditions impairs
protein-protein affinity prediction
In addition to crystallographic conditions or resolution,
variation in the experimental conditions and assays used
to measure binding affinity could affect prediction accur-
acy. Different proteins can have dramatically different
activities across temperature, pH and concentration of
ions or cofactors [52, 53], and assay conditions have
been shown to strongly affect reaction rates [54–56].

Even though experimental conditions can be critical
for evaluating affinity measurements, this information is
not available in the major structure-affinity databases
used for training statistical predictors [30, 57]. Detailed
experimental information is available for a small
protein-protein affinity benchmark database [28]. After
excluding complexes with missing data, we obtained 127
protein-protein complexes with data indicating the pH of
the binding affinity experiment and 103 complexes with
temperature information (Additional file 1: Table S2).
We found no significant increase in the correlation be-

tween predicted and experimental affinities when bind-
ing experiment pH was included as an explanatory
variable, even across data used to train the model (r2 =
0.67 vs. 0.69, William’s t = 0.43, p = 0.34; Fig. 3a). Al-
though pH has been shown to affect binding affinity
measurements in some systems [58–60], the effect of pH
on pKd may depend on particular properties of the spe-
cific interacting proteins. We did observe a small,
marginally-significant increase in correlation when in-
cluding temperature in the model (r2 = 0.70 vs. 0.76,
William’s t = −1.81, p = 0.04; Fig. 3a). Cross-validation
analysis confirmed that binding assay temperature has
the capacity to improve affinity prediction accuracy
when applied to unseen testing data (r2 = 0.46 vs. 0.52;
William’s t = −29.84, p = 9.03x10−188; Fig. 3b).
Although the dataset examined in this analysis was

small, compared to the training data available in the
filtered PDBbind data set (~100 vs. ~600 complexes),
these results suggest that incorporating parameters
describing the experimental conditions used to meas-
ure protein-protein binding affinity may be important
for training affinity-prediction models. The lack of in-
formation describing binding assay conditions in large
structure-affinity databases may impose a limit on the
accuracy of statistical models constructed from these
databases.
Protein-protein affinity can be measured by a variety

of approaches, some of which may more strongly impact

(See figure on previous page.)
Fig. 2 High-resolution structural information improves protein-protein binding affinity prediction. a We plot the Pearson correlation between
predicted and experimentally-determined binding affinities (pKds) for the original affinity-prediction model incorporating only biochemical structural
data (see Methods) and three models incorporating crystallographic features (temperature, pH and resolution) as additional parameters. See Methods
for model training details. Bars indicate standard errors. b We trained affinity prediction models using high-resolution crystallographic data (≤2.5 Å),
NMR structures or both high-resolution and NMR data. We plot the correlation between predicted and experimentally-determined affinities (pKds) for
models trained using each type of filtered data set (white series) and compare results to models trained using the complete database of 622 protein-
protein dimers (black) and models trained using randomly-selected subsets of the original data set of equal size to the high-resolution training data
(gray). Bars indicate standard errors. c We performed leave-one-out cross-validation to evaluate the expected accuracy of affinity-prediction models
applied to new data (see Methods). We plot the predicted vs. experimentally-determined binding affinities (pKds) of each cross-validated structural
complex for models trained using the complete data set of 622 protein-protein dimers (gray), high-resolution crystallographic data (205 complexes
with resolution ≤2.5 Å, red), 165 NMR complexes (orange) and the combined high-resolution + NMR data (370 complexes, blue). We report the best-fit
regression line and its standard error as well as the Pearson correlation between predicted and experimentally-determined affinities (r2) and the RMSD
between predicted and experimental affinities. d plots the Pearson correlation and RMSD, respectively, for models trained using each type of filtered
data set, with bars indicating standard errors
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affinity prediction than others. Common technologies
used in the protein-protein affinity benchmark database
[28] are Isothermal Titration Calorimetry (ITC [61]),
surface plasmon resonance (SPR [62]), and inhibition as-
says [63–66].
We observed a weak but significant correlation be-

tween the use of inhibition assays and experimentally-
determined affinity values (Spearman correlation = 0.33,
p = 1.16x10−4), whereas ITC was weakly negatively corre-
lated with affinity (Spearman correlation = −0.36, p =
1.84x10−5; Additional file 1: Figure S3C). These results
suggest that reported affinity measurements are some-
what dependent on the type of assay used: inhibition as-
says typically result in higher affinities, whereas ITC
tends to produce lower affinity values. It is not clear
whether this “assay effect” represents a general bias in
one or more of the methodologies used to assess binding
affinity, or if different methodologies tend to be applied
to complexes with higher vs. lower biological affinities.
When we included experimental assay method as an

explanatory variable in the statistical model, we observed
a strong increase in predictive accuracy, assessed by
cross-validation (r2 = 0.35 vs. 0.65; William’s t = −29.84,
p = 9.03x10−188; Fig. 3b). In addition, there was no sig-
nificant difference between training and cross-validation
correlation results (Fisher’s z = 1.22, p = 0.11; Fig. 3a,b),
suggesting that the optimized statistical model—includ-
ing assay method—exhibits minimum over-fitting.
Incorporating binding assay conditions in our statis-

tical model also resulted in a significant decrease in
RMSD between predicted and experimentally-
determined affinities (Fig. 3c). Adding binding assay pH

to the statistical model reduced RMSD from 2.28 to 1.98
(t-test t = −7.61, p = 2.09x10−12; Mann–Whitney w =
2272, p = 2.66x10−11). Similarly, RMSD decreased from
2.40 to 2.10 when temperature was incorporated (t-test
t = −5.80, p = 4.41x10−8; Mann–Whitney w = 3221, p =
1.39x10−5). Finally, RMSD decreased from 2.36 to 1.65
when binding assay method was included as a model
parameter (t-test t = −15.58, p = 2.80x10−30; Mann–
Whitney w = 383, p = 1.65x10−29).
Overall, these results suggest that incorporating infor-

mation about the experimental conditions used to meas-
ure protein-protein affinity can have a strong effect on
the predictive accuracy of statistical models. Detailed ex-
perimental conditions are generally not incorporated
into large-scale structure-affinity databases, which may
place a practical upper bound on the accuracy of statis-
tical affinity prediction.

Could database errors limit predictive accuracy?
Manual examination of specific examples in the protein-
protein affinity benchmark database [28] revealed that,
in some cases, the conditions of the crystalized complex
are so different from the conditions of the binding assay
that it is not clear they are biochemically comparable.
For example, the crystal structure of Nuclease A (NucA)
in complex with intracellular inhibitor NuiA is a D121A
mutant (PDB ID 2O3B), whereas the affinity assay was
performed using the wild-type NuiA [67]. This particular
complex was the 3rd worst prediction made by our stat-
istical model, with a predicted pKd based on the mutant
structure of 7.06 vs. an experimental pKd of the wild-
type protein of 11.49. It is not clear whether this mis-

A B C

Fig. 3 Incorporating information about binding assay conditions improves protein-protein affinity prediction. a We plot the Pearson correlation
between predicted and experimentally-determined binding affinities (pKd) using models with (white) and without (gray) three features describing
the conditions under which binding affinities were measured experimentally (temperature, pH and the assay method). b We plot the correlation
between predicted and experimentally-determined binding affinities for the same models examined in (a), using unseen testing data generated
by leave-one-out cross validation (see Methods). c We plot the RMSD between predicted and experimentally-determined binding affinities for the
same models in (a and b), using leave-one-out cross-validation. In each panel, bars indicate standard errors
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prediction is due to a poor statistical fit to this complex
or to differences between the binding affinities of the
mutant vs. wild-type proteins.
To evaluate the potential effects of this mismatch on

predicted binding affinity accuracy, we generated the
wild-type structure of NuiA using homology modeling
[68] and re-estimated the binding affinity using the
trained statistical model. Modeling the wild-type NuiA
in complex with NucA increased the predicted pKd from
7.06 (mutant NuiA) to 7.49, decreasing the difference
between predicted and experimentally-determined affin-
ity somewhat, possibly because the D121A mutation dis-
rupted a hydrogen bond between wild-type NuiA’s D121
and NucA’s E24 (Fig. 4).
Although the significance of the improvement in this

single ‘case study’ cannot be evaluated statistically—and
is likely to depend on the specific scientific question be-
ing considered—this result does suggest that small dif-
ferences between the crystalized protein-protein
complex and the complex whose binding affinity is mea-
sured—in this case a single amino acid mutation—may
have a measurably negative affect on the accuracy of af-
finity prediction. The extent of similar errors in large-
scale structure-affinity databases is unknown.
Missing information about key affinity-determining

factors from either the crystallization or affinity experi-
ments could also affect affinity prediction accuracy. In
one example, the crystal structure of GTP-Bound
Rab4Q67L GTPase in complex with the central Rab
binding domain of Rabenosyn-5 (PDB ID 1Z0K) has an
additional cofactor, 2-(N-morpholino)-ethanesulfonic

acid or MES, which was not present in the binding assay
[69]. This complex was the 4th worst prediction made by
the statistical model (predicted pKd = 9.14; experimental
pKd = 5.11). Although the extent to which the presence/
absence of the MES cofactor may have affected affinity
prediction is unclear, that the crystalized complex does
not correspond to the complex assayed in the experi-
mental affinity measurement raises concerns about the
accuracy of this database entry.
Other examples of missing information likely to affect

affinity prediction could be manually identified from the
affinity benchmark database [28], many of which appear
to have had a negative impact on affinity predictions made
by our statistical model (see Additional file 1: Text S2).
Overall, we found 4 of the 10 worst predictions made by
the statistical model were for complexes with obvious mis-
matches between crystallization and binding assay condi-
tions or cases in which information potentially impacting
affinity measurement or crystallization was missing from
the database (Additional file 1: Table S4).
These potential database errors were identifiable

due to the amount of detail provided in small curated
databases like the protein-protein affinity benchmark
[28]. However, we expect similar potential issues exist
in large-scale databases like PDBbind and BindingDB,
which together contain >10,000 protein-ligand struc-
tures [30, 57]. Many of the entries in these large
structure-affinity databases lack information concern-
ing binding assay and/or crystallization conditions.
Our results suggest that this information may be crit-
ical for supporting accurate, high-throughput affinity

Fig. 4 Database errors may interfere with affinity prediction accuracy. We predicted the binding affinities of mutant D121A intracellular inhibitor
NuiA (NuiA; yellow) and wild-type NuiA (purple) in complex with Nuclease A (nucA; gray) using the trained statistical affinity-prediction model. The
wild-type NuiA structure was inferred by homology modeling, using the mutant structure as a template. We plot the structure of each complex
and report predicted and experimentally-determined binding affinities (pKds). Inset displays a close-up of the D121A mutation, showing an inferred
hydrogen bond between D121 and E24 of NucA (dashed line)
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prediction and also important for identifying potential
database errors.
We also identified a handful of cases in which binding

affinity values were incorrectly entered in the PDBbind
database. For example, the binding affinity (pKd) assigned
to Human prolactin (hPRL) in complex with its receptor
is 0.67 in PDBbind, whereas the experimentally-
determined binding affinity from the literature is >5.65,
depending on pH [70]. Similarly, the prolactin and prolac-
tin receptor mutant complex has an assigned pKd of 1.03
in PDBbind, whereas the affinity from the literature is 6.14
[70]. Although these particular cases were manually cor-
rected in the filtered dataset used for this study, the extent
to which various errors are present in large structure-
affinity databases remains unknown, making it difficult to
characterize the potential effects of database errors on af-
finity prediction.

Discussion
The accuracy of machine learning and other statistical
prediction methods depends on having a large quan-
tity of high-quality training data. Errors in the train-
ing data can impair the inferred model’s predictive
performance [71], whereas a too-small training dataset
can interfere with generalizability to new data [72].
Our results suggest that curation errors, lack of infor-
mation about experimental conditions and low-quality
data present in large structure-affinity databases could
reduce the maximum achievable accuracy of protein-
protein affinity prediction models developed from
these databases.
We have shown that limiting training data to high-

resolution crystal structures—easily extracted from
structural information—can dramatically improve affin-
ity prediction. However, we are cautious that the result-
ing reduction in breadth of training data may limit the
generalizability of inferred models to new problems, par-
ticularly complex structural interactions that may not
crystalize at high resolution due to inherent flexibility.
We have also shown that incorporating information

about the experimental conditions used to measure
binding affinity may be important for producing accur-
ate affinity predictions from structural data, probably
due to their effects on resulting affinity measurements.
Unfortunately, most large structure-affinity databases do
not include detailed experimental information, and data-
bases that do include this information appear to have at
least some examples of dramatic mismatches between
crystallographic and affinity-measurement conditions.
The extent to which these types of potential errors are
present in large-scale databases is not known, making it
difficult to assess the general impact of these potential
problems on affinity prediction.

Conclusion
Although careful manual curation can be used to de-
velop high-quality structure-affinity databases, this ap-
proach is unlikely to scale up to the number of
structures required for training robust, generalizable
predictive models. A possible computational approach to
building high-quality, large-scale structure-affinity data-
bases would be to extract detailed information about
crystallographic and affinity-measurement conditions
directly from scientific literature using text-mining ap-
proaches [73–75], although errors in text-mining could
then potentially propagate to training databases. Alterna-
tively, authors could be encouraged to directly supply
the required information as part of a database submis-
sion policy associated with scientific publication. This
approach has been successfully used to develop the Pro-
tein Data Bank [32], Genbank [76] and similar commu-
nity resources. Ultimately, it may be up to the
community of researchers to develop the standards and
practices necessary to support large-scale investigations
of the general structural basis for protein-protein
interactions.
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