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Abstract

Background: Deconvolution is a mathematical process of resolving an observed function into its constituent
elements. In the field of biomedical research, deconvolution analysis is applied to obtain single cell-type or tissue
specific signatures from a mixed signal and most of them follow the linearity assumption. Although recent
development of next generation sequencing technology suggests RNA-seq as a fast and accurate method for
obtaining transcriptomic profiles, few studies have been conducted to investigate best RNA-seq quantification
methods that yield the optimum linear space for deconvolution analysis.

Results: Using a benchmark RNA-seq dataset, we investigated the linearity of abundance estimated from seven most
popular RNA-seq quantification methods both at the gene and isoform levels. Linearity is evaluated through
parameter estimation, concordance analysis and residual analysis based on a multiple linear regression model. Results
show that count data gives poor parameter estimations, large intercepts and high inter-sample variability; while TPM
value from Kallisto and Salmon shows high linearity in all analyses.

Conclusions: Salmon and Kallisto TPM data gives the best fit to the linear model studied. This suggests that TPM
values estimated from Salmon and Kallisto are the ideal RNA-seq measurements for deconvolution studies.

Keywords: RNA-seq, Deconvolution, Linearity

Background

Next-generation sequencing based technology for RNA
profiling (RNA-seq) has become the predominant method
to quantify the transcript abundance in cells. Compared to
microarray technology, RNA-seq offers broader quantifi-
cation range and enables the detection of novel transcripts
[1]. However, due to the fragmentation of sequencing
material, there is greater complexity in quantification and
analysis of RNA-seq data [2]. Current state-of-the-art
quantification tools for RNA-seq data can be divided into
two major categories [3]: alignment-based and alignment-
free. Alignment-based quantification methods will first
map each sequenced reads to a reference genome or tran-
scriptome and then estimate the abundance of transcripts
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based on the alignment. Alignment-free quantification
methods rely on light-weight pseudo-alignment in k-mer
space to quantify the transcript abundance. An analytic
challenge raised from these quantification methods is that
different method generates abundance measurements in
different units, including counts, FPKM (Fragments Per
Kilobase of transcript per Million mapped reads), RPKM
(Reads Per Kilobase of transcript per Million mapped
reads), and TPM (Transcripts Per Million) [4]. Further-
more, various transformation strategies can be applied to
quantification values in purpose of specific downstream
analysis like differential gene expression analyses [5] or
novel splicing site detection [6]. Although several studies
have provided assessment of analysis tools for RNA-seq
data, little consensus on the optimal analysis pipeline is
obtained [4, 6-9].
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Deconvolution is a mathematical process used to extract
constituent elements from a mixture of multiple signals
[10]. In the field of biomedical research, deconvolution is
widely applied to retrieve cell-type or tissue specific gene
expression profiles from heterogeneous tissue samples.
Most deconvolution algorithms in the literature assume
a linear model [10-17], in which the expression signal of
the mixture is a weighted sum of the expression for its
constitutive cell types. Previous analysis has shown the
necessity of using anti-log expression microarray data to
avoid unwanted bias introduced by non-linear transfor-
mation [18]. However, no study has assessed the linearity
of transcript abundance in RNA-seq data. Therefore, in
this study, we conducted a comprehensive comparison
of seven RNA-seq quantification methods on the linear-
ity of the estimated abundance using a deep sequencing
dataset where RNA samples were mixed at known propor-
tions. Our results will provide a good recommendation to
researchers considering deconvolution on RNA-seq data.

Results

Data

We employed the benchmark dataset used to assess RNA-
seq measurement performance in different application
sites and platforms from the Sequencing Quality Control
(SEQC) project [19]. In order to have minimal inter-
sample variability in the linearity evaluation analyses, we
included samples from the same platform (Illumina HiSeq
2000) and same sequencing center (NVS). Specifically, raw
sequenced reads for four biological replicates of four types
of samples (A, B, C, D) were obtained; where sample A
is derived from universal human reference RNA, sample
B is derived from human brain reference RNA, sample C
is obtained by mixing A and B in ratio 3:1, and sample
D is obtained by mixing A and B in ratio 1:3. Out of 12
samples from A, B and C, nine samples have about eighty
million pairs of raw reads and three samples have dou-
ble the depth. Overall, the mappability of all the samples
is around 70—80%. A brief summary about the samples is
given in Additional file 6: Table S1.

Quantification methods

We performed a literature survey and selected seven
prevalent quantification methods for comparison. To
increase the comparability of the estimated transcript
abundance, all the alignment-based quantification
methods were applied on mappings processed with
Tophat2 [20]. HTSeq-count [21] provides the number of
reads/fragments mapped unambiguously to a single fea-
ture, referred as count. Cufflinks [22] , which is also the
most popular quantification method, uses comparative
algorithm assembly to produce minimal set of transcript
supported by the transcript alignment. The resulting
transcript abundance is measured in FPKM. EdgeR [5]
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models count data based on an overdisposed Poisson
model and uses an empirical Bayes procedure to moder-
ate the degree of overdispersion across genes, which is
intended for downstream gene expression analysis. RSEM
[3] uses a generative model of RNA-Seq reads and the
expectation-maximization (EM) algorithm to estimate
abundances of transcript feature. The two alignment-free
based quantification methods, Kallisto [23] and Salmon
[24] apply pseudo-alignment to find potential transcript
origins of RNA-seq reads.

Data distribution

To our surprise, the distribution of the estimated abun-
dance from each quantification method results in distinct
distribution at both the gene level (Fig. 1a) and isoform
level (Fig. 1b). Except Cufflinks FPKM, all distributions
contain two sharp peaks for abundance at gene level
(Fig. 1a). While count values are normalized to TPM
or FPKM, the second peak is weakened and results in
a smoother curve. Although the scaling/normalization
factors based on library size and gene length used in
TPM and FPKM will explain the reduced range of the
quantifications, it cannot explain the reduced height and
smoothened second peak in the distribution. For example,
logarithm transformation reduces the range of HT-Count
quantifications in scale, without weakening the second
peak (Fig. 1a). The sharpness of the second peak observed
at the gene level diminished at isoform level for all quan-
tification methods (Fig. 1b). Nevertheless, the distribution
pattern at both gene and isoform levels remains consistent
for the same quantification method.

Assessment of linearity

To evaluate the linearity of the RNA-seq data produced by
different quantification methods, we used a multiple lin-
ear regression model: C ~ m x A + n x B + €. Since
sample C is derived by mixing sample A and B at ratio
of 3:1, the expected values for the parameters m, n, and
€ should be 0.75, 0.25, and zero respectively. We reason
that if the RNA-seq data are linear, the fitted multiple lin-
ear regression model will provide precise estimation for
the parameters m, n, and €. Since there are four biologi-
cal replicates for each sample types (4, B, C or A, B, D),
there is a total of 64 possible models to be fitted. We
fitted all 64 models and studied the performance based
on the average of the parameters and predicted values.
As shown in Fig. 2, the true value of C is linearly corre-
lated to the fitted values from models with known mixture
proportion 0.75 and 0.25 as parameters in all quantifi-
cation methods. The linear relationships are especially
pronounced at the gene level (Fig. 2a). Although there are
more data points away from the diagonal at the isoform
level (Fig. 2b), the high density along the diagonal repre-
sents strong linear relationships. Results on the estimated
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Fig. 1 Distribution of quantifications at gene level (a) and isoform level (b)

coefficients and intercepts from the 64 models show that
count data produce large intercept values at both the gene
level and isoform level (Fig. 3, top panel). The intercept
values are also sensitive to the counts data from different
samples fitted, resulted in highly variable results across
models of different samples. FPKM values from Cufflinks
give the largest variation in estimated m and n among
all non-count quantifications. Overall, TPM and FPKM
quantifications reported by Salmon, Kallisto and RSEM
resulted in the best estimate of coefficients with small 95%
confidence intervals. Similar analyses on isoform level
abundance give the same results as observed in gene level
data (Fig. 3b, middle and bottom panel).

We observed that the estimation of m resulted in two
clusters from count data (Fig. 3, middle panel): one close
to true value of 0.75 and another center around 0.4. We
found that this phenomenon is due to the library size dif-
ference between samples. Specifically, results from cluster
close to 0.75 are from 16 combinations with the second
replicate of sample A. From Additional file 6: Table S1, we
can find that the second replicate of A is the only sam-
ple among the four replicates to have similar library size
with other samples of C and B. From this result, we could
conclude that normalization of quantified abundance is

essential to eliminate the inter-sample variability to meet
the linear assumption of deconvolution analysis. To fur-
ther assess the linearity of the RNA-seq quantifications,
we evaluated the fitted model’s prediction through three
analyses: 1) a concordance analysis between measured
C and fitted value é’, 2) a receiver operating character-
istic (ROC) curve-like analysis on the absolute residual
values, and 3) residual analysis for rescaled model. Sim-
ilar to parameter estimation analysis mentioned above,
linear regression is performed on 64 models, which is con-
structed upon combinations of 4 replicates in each sample,
then estimated value C and residuals are averaged for final
analysis.

In the concordance analysis, we evaluated if the rank of
genes from the fitted value C is consistent with the rank
from the true observed C. Plots of the rank of C against the
rank of C in Fig. 4a demonstrate that count data provide
the best concordance while the Cufflink’s FPKM result
in the worst concordance. In addition, the log transfor-
mation of count data induces a slight underestimation.
Furthermore, the concordance of abundance estimated
from Kallisto and Salmon enhanced tremendously as the
expression level increases. Although good concordance

is observed in abundances quantified by some methods
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Fig. 2 Concordant analysis between rank of quantifications of 0.75 x A+ 025 x B(Constructed Value) and C (Measured Value) at gene level (@) and
isoform level (b). Rankes were normalized by the number of quantifications in each plot

at gene level (Fig. 4a), concordance of abundance at iso-
form levels is poor in all methods (Fig. 4b). The poor
concordance of isoform level data might due to the bias
introduced by isoform abundance quantification meth-
ods. Moreover, the concordance analysis (Fig. 2a) on mea-
sured C against constructed C based on ground truth
(0.75 x A + 0.25 x B)represents consistent result to the
concordance analysis between C against C (Fig. 4a). In the
ROC-like analysis of absolute residual values, we evalu-
ated the proportions of genes or isoforms with residual
at a given threshold level t. Results on the abundance at
the gene level show that all studied methods, except for
log transformation of count, result in reasonable perfor-
mance. Among which, TPM from Salmon and Kallisto
perform the best (Fig. 5a). Similarly, TPM from Salmon
and Kallisto gives the best performance at isoform level
and count data perform poorly in general (Fig. 5b)

In the residual analysis, in order to make the resid-
ual comparable across quantification methods in different

ranges, we rescaled quantifications and use the model
C%é‘c ~ m X A;”A +nx B;“B + € to conduct mul-
tiple linear regression. From the residual plots, we could
observe that all the methods except for Cufflinks and log
transformation resulted in small residuals across fitted

values (Fig. 6a).

Discussion

From the results in Fig. 3, we observed that the perfor-
mance of linear model on count data is largely affected
by the library size of samples fitted. Therefore, we suggest
normalization as a compulsory preprocess step prior the
deconvolution analysis. The poor estimation of isoform
based data (Figs. 2, 3, 4, 5 and 6) might due to the chal-
lenge of isoform abundance quantification. In addition to
the analyses presented in the “Results” section above, we
also conducted the same set of analyses on sample D, using
the model D ~ m x A + n x B + €. Since D is made up
of A and B with proportion 1:3, the expected value for m
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Fig. 3 Jitter boxplot of estimated coefficients and intercepts from linear model C ~ m x A+ n x B + € at gene level (a) and isoform level (b). Red

and # is 0.25 and 0.75 respectively in this D-based model.
All of the results from the D-based model are consis-
tent with the findings observed from the C-based model
discussed (Additional file 1: Figure S1, Additional file 2:
Figure S2, Additional file 3: Figure S3, Additional file 4:
Figure S4 and Additional file 5: Figure S5). Therefore, we
can conclude that the evaluation of linearity of quantifica-
tion data is not affected by the specific proportion of the
original mixture. In summary, the main objective of this
study is to provide reference to the researcher considering
deconvolution as downstream analysis of RNA-Seq data.
Although linear assumption is the priority of deconvolu-
tion analysis, it does not guarantee the performance. For
future study, assessment of deconvolution performance is
still required.

Conclusions

We conducted a comprehensive study to assess the
linearity of gene and isoform abundance reported by
different RNA-seq quantification methods based on the

performance how these quantifications fitted in a multiple
regression linear model. From our analysis, we observed
that abundance at both the gene and isoform level
from different quantification methods exhibit distinct
distribution patterns and thus give diverse results. Abun-
dance reported in the units of counts gave poor linearity,
demonstrated from the worst estimated parameters and
intercept values of the model. This indicates the necessity
of normalizing the abundance data prior the deconvo-
lution analysis. In total, TPM reported by Salmon and
Kallisto is the best abundance data for linear models
as the estimated parameters are close to true mixture
proportions and the fitted values are tightly linearly cor-
related to the sample’s measured abundance. Moreover,
when comparing within the same quantification method
at both gene and isoform levels, the correlation between
the measured and models’ fitted values is lower at iso-
form level compared to gene level while the performance
on estimating parameters of linear models are similar in
both levels.
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Methods
Dataset

The dataset used in this study is the RNA-seq data
generated by the Sequencing Quality Control (SEQC)
project. Raw data in fastq format were obtained from
GEO website with accession number GSE47774. List of

downloaded samples and their details is specified in
Additional file 6: Table S1.

Data quantification and analysis

Raw sequence reads from multiple lanes were first merged
into one for each replicate of each sample. To prepare
sequence map files for alignment-based quantification
methods, the merged sequenced reads were mapped to
human reference genome (hgl9) using Tophat2 (ver-
sion 2.1.0) with default parameters. The mapped files
were then used by quantification methods HTSeq (ver-
sion 0.6.1) to obtain count data, Cufflinks (versin 2.1.1)
to obtain FPKM data. RSEM (version 1.2.31) will first
mapped the raw reads using its default aligner Botwtie2
(version 2.1.0) onto human genome (hg19) and then esti-
mate count, FPKM, and TPM. EdgeR (version 3.12.1) is
used for count data transformation. Alignment-free quan-
tification methods Kallisto (version 0.42.5) and Salmon

(version 0.6.0) estimate the count and TPM data based
on index built from human transcriptome (GRCh37). All
the quantification methods were run at both the gene and
isoform levels. All the statistical analysis and plots were
carried out in R environment (version 3.2.3).

Additional files

Additional file 1: Figure S1. Concordant analysis between rank of
quantifications of 0.25 x A 4 0.75 x B(Constructed Value) and D (Measured
Value) at gene level (a) and isoform level (b). Rankes were normalized by
the number of quantifications in each plot. (PDF 6230 kb)

Additional file 2: Figure S2. Jitter boxplot of estimated coefficients and

intercepts from linear model D ~ m x A+ n x B+ € at gene level (a) and
isoform level (b). Red line indicates expected estimates if D, A and B satisfy
linear assumption. (PDF 1520 kb)

Additional file 3: Figure S3. Concordant analysis between rank of
estimated quantifications and rank of measured abundance value at gene
level (a) and isoform level (b). The fitted value in the y-axis is estimated
from model D ~ m x A+ n x B+ €. Ranks were normalized by the
number of quantifications in each plot. (PDF 5950 kb)

Additional file 4: Figure S4. ROC-like curve evaluating linearity of
quantified abundance at gene level (a) and isoform level (b) based on
residuals from model D ~ m x A+ n x B+ €. Proportion of variables with

residuals smaller than a threshold is computed. (PDF 1160 kb)
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Additional file 5: Figure S5. Residual plot for rescaled model

D— A B— .

# ~mx = X % + € at gene level (a) and isoform level (b).
(PDF 2990 kb)

Additional file 6: Table S1. Column 1 and 2 show the sample type and
replicates index; Column 3 shows total read pairs, column 4-7 show the
mapping rate from different quantification methods (Tophat, RSEM, Kallisto
and Salmon). (XLS 61 kb)
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