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Abstract

Background: Time-Frequency (TF) analysis has been extensively used for the analysis of non-stationary numeric
signals in the past decade. At the same time, recent studies have statistically confirmed the non-stationarity of
genomic non-numeric sequences and suggested the use of non-stationary analysis for these sequences. The
conventional approach to analyze non-numeric genomic sequences using techniques specific to numerical data is to
convert non-numerical data into numerical values in some way and then apply time or transform domain signal
processing algorithms. Nevertheless, this approach raises questions regarding the relative magnitudes under numeric
transforms, which can potentially lead to spurious patterns or misinterpretation of results.
Results: In this paper, using the notion of interpretive signal processing (ISP) and by redefining correlation functions
for non-numeric sequences, a general class of TF transforms are extended and applied to non-numerical genomic
sequences. The technique has been successfully evaluated on synthetic and real DNA sequences.
Conclusion: The proposed framework is fairly generic and is believed to be useful for extracting quantitative and
visual information regarding local and global periodicity, symmetry, (non-) stationarity and spectral color of genomic
sequences. The notion of interpretive time-frequency analysis introduced in this work can be considered as the first
step towards the development of a rigorous mathematical construct for genomic signal processing.
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Background
The application of signal processing techniques in
genomics has found a great deal of attention and applica-
tions in the past decade [1–4]. Nevertheless, an important
class of analytical tools in signal processing that have not
been yet fully formulated in genomics is the class of joint
time-frequency (TF) distributions and transforms. These
are powerful mathematical tools with various applications
in signal processing [5, 6].
The major advantage of TF transforms and distribu-

tions over conventional Fourier analysis is to simulta-
neously retrieve the temporal (or spatial) and frequency
domain structure of non-stationary data. In other words,
while the temporal evolution of the frequency contents
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of a signal is lost in the conventional spectral estima-
tion using the Fourier analysis, the TF gives a detailed
view of such information for non-stationary signals. At
the same time, several studies have statistically confirmed
the non-stationarity of genomic sequences and suggested
the use of non-stationary analysis for these sequences
[7–9]. There could be many potential applications by
applying the TF transforms to genomic sequences. Nev-
ertheless, the first step in this line of work is to be
able to apply these transforms to non-numerical genomic
sequences.
The conventional approach to analyze genomic

sequences using techniques specific to numerical data is
to convert non-numerical genomic data into numerical
values in some way and then apply time or transform
domain signal processing algorithms to the resulting
numeric series [10, 11]. Despite the promising results
achieved by these methods, the procedure of converting
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genomic data into numerical data has been the bot-
tleneck for these techniques—there is no concrete
one-to-one map between non-numeric data and the
numeric domain. Moreover, the process of converting
non-numeric data to numeric values, can have misleading
outcomes. For instance, the genomic alphabet (A, G,
C and T) is not an ordered set. However, in mapping
this alphabet to real values, the sequence is implicitly
mapped to an ordered set, which raises expectations
regarding their relative magnitudes under numeric trans-
forms, resulting in misinterpretation of the processing
results.
In [12], we introduced the notion of interpretive signal

processing (ISP) as a novel approach for extending signal
processing algorithms to non-numerical data. ISP can be
seen as a subset of the general notion of sequential pattern
mining, which has become a prominent topic in sequence
data mining during recent years. In ISP, instead of cod-
ing non-numerical strings into numerical ones, the basic
idea is to use the interpretations of conventional signal
processing algorithms to reconstruct similar techniques
that are directly applicable to non-numerical data. The
notion of ISP is fairly general and may be used in various
applications.
In this study, we employ ISP for applying a general

class of TF transforms to analyze genomic sequences.
As in real valued signals, the advantage of TF analysis
over basic Fourier analysis is that it provides a means of
analyzing both local and global patterns within a non-
stationary sequence. Therefore, using TF transforms, local
(yet significant) events which are commonly dominated
by averaging in classical Fourier analysis can be identified
within a sequence. As a proof-of-principle, we use the ISP-
inspired TF analysis for detecting periodicities in coding
regions and also detecting repetitive sub-sequences, also
known as tandem repeats. The length and period of such
sequences have important biological implications and sev-
eral methods have been presented in the past for detecting
these sub-sequences [11, 13, 14].
The rest of the paper is organized as follows. We first

review the basics of a general class of time-frequency
transforms. Then the general idea of ISP is illustrated
with a simple example. The extension of time-frequency
transforms for non-numeric genomic data is presented
next, followed by some concluding remarks and future
perspective of the work.

Methods
Joint time-frequency analysis
We first review some general concepts of bilinear TF
analysis that are later extended to non-numerical data.
Correlation is a primary concept of great value in most

signal processing algorithms. The instantaneous cross-
correlation of the signals x(t) and y(t) is defined

rxy(t, τ) = x
(
t − τ

2

)
y∗ (

t + τ

2

)
(1)

which for real-valued signals is a simple measure of sim-
ilarity of x(t − τ/2) and y(t + τ/2). In fact, in (1), the
multiplication operator is used to measure the similarity
of its operands. We will later show how this product can
be replaced by the values of the similarity matrix of the
genomic “alphabets”.
By summing rxy(t, τ) (or integrating for continuous-

time signals), the cross-correlation function is achieved.

Rxy(τ ) =
∞∑

t=−∞
rxy(t, τ) (2)

This function is a measure of the average similarity of the
two signals with τ -samples of time lag. Alternatively, by
summing rxy(t, τ) over τ , a measure of signal symmetry is
achieved.

sxy(t) =
∞∑

τ=−∞
rxy(t, τ) (3)

Taking the Fourier transform of Rxy(τ ) with respect to
τ , results in the cross-spectrum.

Sxy(f ) = Fτ→f {Rxy(τ )} (4)

where F (·) represents the Fourier transform.
The cross-Wigner-Ville is the Fourier transforms of

rxy(t, τ) with respect to τ .

WVxy(t, f ) = Fτ→f {rxy(t, τ)} (5)

The Wigner-Ville (WV) transform can be interpreted
as the time-variant extension of (4), which is specifically
useful for the spectral study of non-stationary signals.
The last TF transform that we introduce is the ambigu-

ity function (AF), defined as follows

AFxy(η, τ) = Ft→η{rxy(t, τ)} (6)

The ambiguity function is basically a time-frequency cor-
relation with a maximum at the origin [5]. It has been
shown that the ambiguity function can be used to discrim-
inate signals with different spectral color and temporal
correlation [5]. The relationship between the instanta-
neous correlation and the other bilinear transforms is
summarized in Fig. 1.
Due to the bilinear form of the WV transform (contain-

ing the product of x(·) and y(·)), undesired cross-terms
appear in the time-frequency plane. The cross-terms can
be attenuated by filtering the WV transform using a TF
kernel φ(·, ·), which results in the following general form

ρxy(t, f ) = WVxy(t, f ) ∗ ∗φ(t, f ) (7)

where ∗∗ is the two-dimensional convolution operator.
Equation (5) is the most general form of a general class of
TF transforms (or TF distributions) known as the Cohen
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Fig. 1 Summary of bilinear Time-Frequency transforms inter-relationship

class [15]. The properties of these distributions are con-
trolled by φ(t, f ). According to Fig. 1, φ(t, f ) may also be
applied to the TF transform in the Ambiguity plane, where
it takes a multiplicative form rather than two-dimensional
convolution.
Equations (1)–(7) can be calculated for a single signal

by setting y(t) = x(t), which gives the similarity of a sig-
nal with its time-lagged variants in the time and frequency
domain.
To illustrate the application of the introduced TF trans-

forms, we consider a sample segment of the signal x(t) =
y(t) consisting of a chirp and two Gaussian signals [16],
shown in Fig. 2. The results of (1)–(6) calculated for this
signal are shown in Fig. 2. To understand the significance
of TF analysis, compare the spectrum of the signal in
Fig. 2g with the WV distribution of this signal in Fig. 2f.
As we can see, the evolution in time of the frequency
content of the signal is totally lost in Fig. 2g. However,
one can trace variations in the spectral content as a func-
tion of time (sample) in Fig. 2f. For example, the chirp is
represented by a relatively wide-band signal, whose (nor-
malized) frequency content is decreasing from 0.4 to 0.1
around time points 20 to 200.

Interpretive signal processing
All practical signal processing algorithms have some intu-
itive interpretation besides their mathematical formula-
tion. Let us illustrate the idea with a simple example: it
is well known that the inner product of discrete-time real
signals x(t) and y(t) is mathematically defined as follows

〈x(t), y(t)〉 =
∞∑

t=−∞
x(t)y(t) (8)

In (8), whenever x(t) and y(t) have the same sign (both
positive or negative), a positive value is added to the sum-
mation; while when they differ in sign a negative value
is added. Therefore, for zero-mean signals (which have
both positive and negative values), if the inner product

is close to zero, one can conclude that the two signals
do not have a similar pattern, while a great absolute
value of the inner product is an indication of average
“co-variance” or similarity of the two signals. In fact,
the multiplication operator in (8), provides a measure of
point-wise similarity, while the summation gives the aver-
age behavior of this similarity. This basic interpretation
has led to the definition of a hand full of other measures
of signal co-variance. For instance, one may subtract the
mean values of x(t) and y(t) to centralize the data (when
the mean values do not convey information), or to nor-
malize it by the square roots of the energies of x(t) and
y(t), in order tomake the inner product dimensionless and
to normalize it between -1 and +1. For certain applica-
tions, researchers have replaced the point-wise product of
x(t)y(t) by other measures of similarity, like sign(x(t)y(t))
(cf. [17]). We can see that while the “inner product as a
measure of signal similarity” is a common property of var-
ious forms of these definitions, employing the appropriate
form hinges on the application.
Herein, we refer to the procedure of reforming signal

processing algorithms based on their interpretation, as
interpretive signal processing (ISP). In [12], we used the
notion of ISP to apply matched filters in genomic signal
processing. We show how this procedure helps us refor-
mulate the Cohen class of time-frequency transforms for
genomic sequence data.

Extending the time-frequency analysis to genomic
sequences
As shown in Fig. 1, the core of all bilinear transforms is
the instantaneous cross- or auto-correlation. In order to
extend TF transforms to non-numeric genomic sequence
data, we propose to replace the product of x(·) and y(·)
in rxy(t, τ) with the similarity matrix entries of genomic
sequences. This idea is based on the interpretation of the
product as a measure of similarity. Since a DNA sequence
consists of four nucleotides, Adenine, Cytosine, Guanine,
and Thymine, denoted by A, C, G, and T, respectively,
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Fig. 2 a A sample signal x(t), b Sxx(t) showing the local symmetry of x(t), c the ambiguity plane, d the instantaneous auto-correlation, illustrating
the similarity of x(t) with its time lag e the auto-correlation function with its maximum peak at τ = 0 f the WV transform showing the spectral
properties of x(t) versus spatial samples g the spectrum of x(t)

a possible choice of the similarity matrix is the identity
matrix represented as

A C G T

S =
A
C
G
T

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

(9)

which indicates that each of the DNA nucleotides only
resembles itself. In practice, based on experimental statis-
tics, a bioinformatician may choose non-zero values for
the off-diagonal entries or values smaller than one for
the diagonal entries, indicating the probability of base-
pair mutation at a specific locus. Moreover, in order to
analyze a specific nucleotide and neglect others, all irrel-
evant entries of the matrix can be set to zero, which

results in selective frequency or selective pattern analysis
for DNA sequences. For proteins sequences, one may use
BLOSUM62 and PAM250 matrices [18].
Since all bilinear transforms contain the product of

two terms, the proposed approach is an indirect means
of mapping non-numeric sequences to numeric values,
which is guaranteed to serve as a similarity measure
(by definition), and does not suffer from the ordering
issue in previous mapping techniques (as noted in the
introduction).

Results
Case studies
Before applying the method to real DNA and protein
sequences, let us consider a synthetic sequence for illus-
tration.
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A synthetic DNA sequence
For illustration, consider the following synthetic periodic
DNA sequence, with period 4 (ACGT) and length 1000.

x0[ n]= · · ·ACGTACGTACGTACGT · · · (10)

Real DNA sequences are never fully periodic. In order
to make the sequencemore realistic, we add some random
changes (noise) to the sequence, by random substitutions
of some nucleotides.

x[ n]= · · ·AGGTTCGTACGAACCT · · · (11)

Using the trivial similarity matrix in (9), Eqs. (2)–(6) can
be calculated for this nucleotide sequence using (1). The
results are summarized in Fig. 3.
Part (e) in Fig. 3 shows the WV plane for the noisy

synthetic sequence in (11). We can clearly see that the
pseudo-periodicity of the sequence has led into a horizon-
tal line at 0.25 (normalized frequency) in this figure, which

is equivalent to a periodicity of 1/0.25 = 4 samples. Also,
this pseudo-periodicity causes a peak in part (f ), which
shows the global spectral properties of the signal. It has
been shown that for stationary and temporally correlated
signals (i.e., a colored spectrum), most of the ambiguity
function’s energy is spread in the τ direction around η = 0
[5]. This explains the ambiguity function form of our syn-
thetic periodic sequence, which is stationary over time.
More examples will be shown for real sequences in the
next section. The effect of the correlation lag τ is seen in
Fig. 3c, where we can see that due to the periodicity of our
synthetic sequence, correlations exist between near (small
τ ) and far samples (large τ ).

A real DNA sequence case study
The proposed framework has been tested on several DNA
sequences. As a first case study, we apply the method to
a real DNA sequence adopted from the National Center
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Fig. 3 Results of (1)–(6) for the synthetic DNA sequence in (11). a The symmetry function using (3). b The ambiguity function using (6), showing the
stationarity and spectral color of the sequence. c The instantaneous auto-correlation using (1), representing the similarity of the sequence with its
time lag nucleotides. d The auto-correlation of the sequence using (2), with a maximum peak at τ = 0. e The WV transform using (5), indicating the
time-frequency properties of the sequence. f The spectrum using (4), which shows the global spectral properties for the sequence
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for Biotechnology Information (NCBI) with the accession
number FJ807392.1 [19]. Figure 4 illustrates Eqs. (1)–(6)
for this real DNA sequence as well as a randomly gener-
ated DNA sequence.
For comparison, the results in Fig. 4A can be compared

with similar results obtained from a totally random syn-
thetic DNA sequence of the same length in Fig. 4B. It
is seen that there is no specific structure in the time-
frequency transforms of the random sequence, while there
are clear structures indicating local periodicities, nonsta-
tionarities and spectral color in the real DNA sequence.
According to NCBI, FJ807392.1 is a Helice tientsi-

nensis microsatellite TJH03 sequence, which is a repetitive
sequence with 282 base nucleotide pairs. Figure 5 is a
zoom-in of the WV plane for this sequence, from which
its repetitive sub-sequences can be well seen and detected
at 0.25 and 0.02 normalized frequencies, corresponding
to both short term and long term periodicities in the
sequence.
Moreover, due to the repetitive structure of this

sequence, it can be considered a stationary and colored
sequence, which explains the ambiguity plane structure
in Fig. 4A part b, which is concentrated around η = 0

and spread in the direction of τ . Therefore, the proposed
ambiguity plane can be used to study the spectral and sta-
tionarity properties of DNA sequences. This is especially
useful for feature extraction and classification of DNA and
protein sequences.

Identification of protein coding DNA regions
As a second case study, the proposed method is compared
with a well known method called indicator sequences,
for analyzing DNA sequences [1, 20]. Accordingly, indi-
cator sequences of a DNA sequence are four binary
sequences corresponding to the four different nucleotides.
Each sample in the indicator sequence specifies the pres-
ence of the nucleotide at that position. The following
is an example of a DNA sequence and its indicator
sequences:

DNA sequence: A G C C T G A
Indicator sequence uA[ n] : 1 0 0 0 0 0 1
Indicator sequence uC[ n] : 0 0 1 1 0 0 0
Indicator sequence uG[ n] : 0 1 0 0 0 1 0
Indicator sequence uT [ n] : 0 0 0 0 1 0 0

(12)
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Fig. 4 Results of (1)–(6) for A the DNA sequence with the accession number FJ807392.1 and B a totally random synthetic DNA sequence. The
identity matrix is used as the similarity matrix for computing these functions. In each figure: a The symmetry function from (3). b The ambiguity
function from (6) showing the stationarity and spectral color of the sequence. c The instantaneous auto-correlation using (1) representing the
similarity of the sequence with its time lag nucleotides. d The auto-correlation function of the sequence using (2), with a maximum peak at τ = 0. e
The WV transform using (5), indicating the time-frequency properties of the sequence. f The spectrum using (4), which shows the global spectral
properties for the sequence
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Fig. 5 The WV transform for the DNA sequence in Fig. 4A and its corresponding DNA sub-sequence. Note the local repetitive structure in the DNA
sequence and its corresponding pattern in the WV plane

According to [20], the indicator sequence can be used to
define the DNA spectrum, as follows:

S[ k]= |UA[ k] |2 + |UC[ k] |2 + |UG[ k] |2 + |UT [ k] |2
(13)

where Ui[ k] is the discrete Fourier transform (DFT) of
ui[ n] (i = {A,C,G,T}). In [20], it has been empirically
shown that for a coding region within a DNA sequence
(a region that can be converted to a protein), Eq. (13) has
a clear peak at k = N/3 where N is the DNA sequence

length. While this observation has been referred to in var-
ious studies, to the authors’ knowledge, no mathematical
explanation has yet been presented for it. However, using
our proposed machinery, one observes a similar period-
icity by using the identity similarity matrix (9) and by
calculating the spectral function (4). The results of this
comparison are shown in Fig. 6.
To illustrate this, we take a DNA sequence with the

NCBI accession number NM_001244612.1. This DNA
sequence with 4165 base pairs is known to be a cod-
ing region for human proteins. Figure 6 shows the
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Fig. 6 A comparison between Tiwari’s method [20] and the DFT of (3) for a DNA sequence with the accession number NM_001244612.1. Both
signals have a peak at k = N/3 (for better illustration one of the signals has been shifted up)
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DNA spectrum calculated from indicator sequences. The
second signal in Fig. 6 is the Fourier transform of the pro-
posed symmetry function (3). The peak for the Fourier
transform of (3) reports a periodicity at N/3.

Discussion
In our experiments, we show that by defining the instanta-
neous auto-correlation of DNA sequences using similarity
matrices, local and global periodicities in the sequences
can be detected by the WV transform in (5). Symmet-
ric sub-sequences can be determined by the symmetry
function (3) and the stationarity and spectral properties
of sequences can be recognized by the ambiguity func-
tion (6). Also, the global spectrum of the sequences can be
calculated by the spectrum of the sequences (4) and the
global correlation of the sequences can be found by the
auto-correlation function (2).
The major advantage of ISP per se is to process the

non-numerical symbols directly (instead of converting the
symbols into numerical values). This property simplifies
the interpretation of the output of signal processing algo-
rithms when applied to non-numerical symbols. However,
ISP is not always trivial, since the interpretation of math-
ematical equations is not always straightforward. More-
over, the interpretation of signal processing algorithms
is not necessarily unique and in some cases unfeasible.
Therefore, in practice ISP can result in algorithms that are
only partially applicable to non-numerical data while the
remaining parts are left unchanged—as in the TF trans-
forms presented in this work, in which only the instan-
taneous auto-correlation function was replaced with the
similarity matrix of genomic sequences.

Conclusion
In this study, using the notion of interpretive signal pro-
cessing (ISP), the conventional time-frequency transforms
have been extended to analyze non-numerical genomic
sequences. Applications of the proposed machinery in
determining genome periodicity and detecting tandem
repeats were presented using synthetic and real DNA
sequences. The results show that the proposed ISP-
inspired TF transforms (to which we refer as the inter-
pretive TF analysis) can be useful to analyze genomic
sequences.
Other aspects of the proposed interpretive TF anal-

ysis that require further work are: 1) investigating
other biologically-inspired applications of the proposed
machinery; 2) studying different choices of similarity
matrices in various applications such as DNA or protein
sequence alignment; 3) integrating the proposed machin-
ery in existing sequence analysis toolboxes for extracting
further quantitative and visual information from genomic
sequences; 4) using the TF representations as features (as
an image) and using image classification and clustering

techniques for classifying unknown genomic sequences;
and 5) extending the hereby proposed notion to higher
order spectra (HOS) and higher order time-frequency
analysis. These contributions can be considered as a step
towards the development of a rigorous mathematical con-
struct for genomic sequence signal processing.
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