
RESEARCH Open Access

Prediction of HIV-1 protease cleavage site
using a combination of sequence,
structural, and physicochemical features
Onkar Singh and Emily Chia-Yu Su*

From The 27th International Conference on Genome Informatics
Shanghai, China. 3-5 October 2016

Abstract

Background: The human immunodeficiency virus type 1 (HIV-1) aspartic protease is an important enzyme owing
to its imperative part in viral development and a causative agent of deadliest disease known as acquired immune
deficiency syndrome (AIDS). Development of HIV-1 protease inhibitors can help understand the specificity of
substrates which can restrain the replication of HIV-1, thus antagonize AIDS. However, experimental methods in
identification of HIV-1 protease cleavage sites are generally time-consuming and labor-intensive. Therefore, using
computational methods to predict cleavage sites has become highly desirable.

Results: In this study, we propose a prediction method in which sequence, structural, and physicochemical features
are incorporated in various machine learning algorithms. Then, a bidirectional stepwise selection algorithm is
incorporated in feature selection to identify discriminative features. Further, only the selected features are calculated
by various encoding schemes and used as input for decision trees, logistic regression, and artificial neural networks.
Moreover, a more rigorous three-way data split procedure is applied to evaluate the objective performance of cleavage
site prediction. Four benchmark datasets collected from previous studies are used to evaluate the predictive performance.

Conclusions: Experiment results showed that combinations of sequence, structure, and physicochemical features
performed better than single feature type for identification of HIV-1 protease cleavage sites. In addition, incorporation of
stepwise feature selection is effective to identify interpretable biological features to depict specificity of the substrates.
Moreover, artificial neural networks perform significantly better than the other two classifiers. Finally, the proposed
method achieved 80.0% ~ 97.4% in accuracy and 0.815 ~ 0.995 evaluated by independent test sets in a three-way data
split procedure.

Keywords: HIV-1 protease, Cleavage sites, Sequence features, Structural features, Physicochemical properties, Pseudo
amino acid composition, Machine learning

Background
Introduction
In early 1980’s, human immunodeficiency virus (HIV)
and acquired immune deficiency syndrome (AIDS) tran-
sition began in perishing modus with a leading cause of
death. AIDS is an advanced stage infection with the HIV
[1]. The first AIDS cases were reported in the United

States in June 1981 by Center for Disease Control
(CDC) [2]. Now it has been 35 years and still HIV is one
of the major global public health issues. According to
global HIV statistics, 36.9 million people had HIV and
1.2 million people died from AIDS-related illnesses
(UNAIDS, 2015). However, after the confrontation with
AIDS epidemic, unprecedented endeavors have been co-
ordinated towards the advancement of antiretroviral
treatments of AIDS that assault and repress the action
of HIV-1 protease (HIV-1 PR).
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HIV-1 protease is the principle etiologic agent of AIDS
discovered by Gallo and coworkers in 1984 [3]. It is able
to infect and destroy the human immune system, and al-
lows life threating infection. HIV-1 PR, a homodimeric
enzyme belonging to aspartate family also known as
aspartyl retropepsin, plays a crucial role in viral matur-
ation [4]. HIV constructs many of its protein in one long
piece consisting of several tandemly linked proteins.
HIV-1 PR has a responsibility to cleave Gag and Gag-Pol
polyproteins into their component proteins responsible
for the maturation of new virions, which can then infect
new cells [5]. Thus, an HIV-specific protease is neces-
sary for the HIV to make more functional viruses. With-
out HIV-1 PR, it is not possible for HIV to replicate due
to unavailability of infectious virion and it remains unin-
fected. HIV-1 protease specifically binds with a precur-
sor protein in octapeptide length, and cleaves it at the
scissile bond represented as P4-P3-P2-P1↓P1′-P2′-P3′-
P4′, where N-terminus as Pm (i.e., nonprime-side) and
C-terminus as Pm’ (i.e., prime-side) in perceived octa-
peptide arrangement, though “↓” signifies a nearness of a
scissile bond [5].

Challenges of HIV-1 protease identification
HIV-1 PR is the key target of the most effective anti-
viral drugs for the treatment of HIV-1 infection as it
processes the viral precursor Gag–Pol polyproteins,
and allows maturation of the immature virion to
make more functional viruses. However, the specificity
of HIV-1 PR is partially understood because viral
polyproteins do not share sequence homology and
binding motifs between various substrates [5]. At
present, researchers have partially succeeded to de-
velop HIV protease inhibitors that are accessible for
HIV treatment. However, they have conditional draw-
backs such as poor bioavailability and excruciating in-
fectiousness [6] that lead researchers to proceed with
their endeavors to create novel and more potent com-
pounds. Also, due to the tremendous amount of po-
tential peptides, it is difficult to discover inhibitors by
ordinary ways to deal with testing various types of
peptides one by one, which is more labor-intensive
and time-consuming.

Previous work in HIV-1 protease cleavage site prediction
To conquer the difficulties to identify HIV protease, re-
searchers are inclined towards in-silico approaches to
predict HIV-1 protease cleavage sites [7]. In the past few
years, several previous studies incorporated biological
features with machine learning algorithms and gained
better predictive performance compared to traditional
approaches. You et al. [8] incorporated machine learning
algorithms including artificial neural network (ANN)
and support vector machine (SVM) to examine the

specificity of an HIV-1 protease for the discovery and
development of effective protease inhibitors. Kontijevkis
et al. used an extensive dataset collected from HIV
proteome research, and designed a rule-based predictive
model on rough sets to analyze the specificity of HIV-1
protease [5]. Kim et al. organized their own datasets by
compiling peptide sequences, and used a combination of
neural networks and decompositional approaches to
generate symbolic rules [9]. Ogul et al. used variable
context markov chains (VCMC) to develop a generative
model for HIV-1 cleavage specificity, and suggested that
VCMC model is effective for prediction of cleavage sites
of all proteases [10]. Nanni et al. developed a robust and
reliable system in which genetic programming was used
to design encoding techniques, and they showed the
proposed ensemble method performed better than non-
optimized SVM with standard encoding by cross-valid-
ation [11]. Jaeger et al. proposed a new fusion tech-
nique in which they added several classifiers including
decision trees (DT), ANN, and SVM. They used
cross-validation for evaluation and reported that the
combined method achieved better performance than
using a single classifier [12]. Kim et al. introduced a
new feature selection method with multilayer percep-
tron (MLP) and used a decompositional approach to
trained MLP. Li et al. developed a theoretical frame-
work based on kernel methods to reduced dimension-
ality with linear support vector machine (LSVM)
classifiers [13]. Newell proposed a new cascade detec-
tion algorithm to study the specificity on two data-
sets, and reported that the proposed method is useful
in detection of multifactor synergies in several data-
sets [14]. Gök and Özcerit used OETMAP encoding
schemes based on amino acid features together with
linear classifiers. The encoding schemes improved
prediction performance compared to standard amino
acid encodings evaluated on two datasets by cross-
validation [15]. Song and coworkers developed a pro-
tease specificity prediction server to predict unique
substrates and their cleavage sites. They used support
vector regression and bi-profile Bayesian feature ex-
traction method to predict cleavage sites [16]. Niu et
al. studied protease specificity correlation-based fea-
ture subset (CfsSubset) selection method combined
with genetic algorithms [17]. Bozek et al. developed a
model for structure-based prediction of HIV tropism
and identification of important V3 loop properties for
coreceptor usage [18]. Rögnvaldsson et al. proposed a
method to combine linear support vector machine
with orthogonal encoding schemes. They claimed that
the model is effective for predicting cleavage sites by
HIV-1 protease [19]. Liu et al. used feed forward back
propagation neural network in their method along
with feature selection schemes [20].
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Specific aims of this study
The advancement of reasonable HIV protease inhibi-
tors can happen when we have a robust and suitable
technique for anticipating the cleavage sites in proteins
by HIV protease [7]. In this study, we propose a pre-
diction method in which sequence, structural, and
physicochemical features are incorporated in various
machine learning algorithms. For feature selection, a
bidirectional stepwise selection algorithm is incorpo-
rated to identify the discriminative features. Then the
features are encoded by various encoding schemes and
used as input for decision trees, logistic regression, and
artificial neural networks. Moreover, a more rigorous
three-way data split is applied to evaluate the objective
performance of cleavage site prediction. The proposed
HIV-1 protease specificity prediction method can fur-
ther help the development of more potential HIV-1
protease inhibitors.

Methods
Datasets
In the present study, four benchmark datasets organized
by Rögnvaldsson et al. [19] were used in our proposed
method. The benchmark datasets are collections of octa-
mers containing cleavage and non-cleavage sites as
shown in Table 1. The 746, 1625, Schilling, and Impens
datasets contain 746 (401 cleaved and 345 non-cleaved),
1625 (374 cleaved and 1251 non-cleaved), Schilling (434
cleaved and 2838 non-cleaved), and Impens (149 cleaved
and 798 non-cleaved) octamers, respectively. The data-
sets are available in the supplementary material [Add-
itional files 1, 2, 3 and 4].

Feature extraction
Amino acids are the essential components of peptides
and proteins, and each of 20 amino acids has unique
but different properties. The combination of the proper-
ties of various residues within a protein can influence
diversification and characteristics of the protein struc-
ture and function. The aim of the study is to develop
a better prediction model using various combinations of
features that can predict the HIV-1 protease cleavage
sites. The present investigation involved extraction of
three different kinds of features based on sequence,

structure, and physicochemical properties. Several fea-
ture extraction methods in propy 1.0 software package
[11] were employed to extract sequence-based and
physicochemical-based features. For structure-based
feature extraction, NetSurfP [21] web server was used.
Besides, we considered AAindex [22] database for phys-
icochemical properties. This database contains numer-
ical indices which represent several physicochemical
and biochemical properties of amino acids and amino
acid pairs.

Sequence-based features
Sequence-based features include the composition of
amino acids which contains 20 factors with each repre-
senting the occurrence frequency of one native amino
acid in a given peptide. The selected sequence based fea-
tures are amino acid composition (AAC), dipeptide
composition (DipC), pseudo amino acid composition
(PseAAC) [23]. AAC and its variations have been demon-
strated that they are influential in predicting HIV-1 pro-
tease cleavage sites. Besides, protease has a preference
for some amino acid compositions at their cleavage sites.
For example, trypsin recognizes essential amino acid ly-
sine and arginine and cleaves at carboxyl terminal. After-
ward, the DipC was selected to represent occurrence
frequencies of amino acid pairs in peptides. At last, the
important point about PseAAC is that it is endowed
with the information about AAC and also contains infor-
mation beyond it, and hence can better reflect the fea-
tures of peptides through a discrete model. In our study,
20 and 400 variables are used to represent AAC and
DipC, respectively. Another 25 variables were utilized
for PseAAC by propy 1.0 package.

Structure-based features
Structure-based features are important to study the sub-
strate specificity of the HIV-1 protease with the aim of
obtaining a better differentiation between cleavage and
non-cleavage sites. Also, it was stated in statistics for
structural and sequence comparisons of protein pairs
that the structural comparison can explore almost
double as many different relationships as sequence com-
parison [24]. In this work, two structure-based features
including solvent accessibility (SA) and secondary struc-
ture elements (SSE) were selected. Through solvent ac-
cessibility, we can depict the exposed surface of the
entire protein or individual amino acid. The significance
of proper surface presentation of cleavage sites in the
solvent-exposed region for efficient proteolysis is well
evidenced. We thus predicted solvent accessibility using
NetSurfP web server, and three columns were selected
to represent the accessibility of a peptide, including bur-
ied or exposed (B/E) class, relative solvent accessibility
(RSA), and absolute surface accessibility (ASA) for each

Table 1 Four benchmark datasets for HIV-1 cleavage site
prediction

Datasets Octamers Cleavage sites Non-cleavage sites

746 746 401 345

1625 1625 374 1251

Schilling 3272 434 2838

Impens 947 149 798
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residue in a peptide. Another structure-based feature we
used in this study was the secondary structure which is
characterized by folding of a peptide chain into the α-
helixes, β-sheets, or random coils. The caspase substrate
analysis indicated the considerable proportion of the
cleavage sites located in α-helixes and β-sheets [16]. Net-
SurfP web server [21] was used for the secondary struc-
ture prediction, and generated three columns of
probabilities for α-helix, β-sheet, and random coil for
each residue in a peptide.

Physicochemical property features
Each peptide and proteins are the combinations of
twenty amino acid components. These amino acids have
common constituents of the amine groups, carboxyl
groups, and side chains which have several functional
groups, and these functional groups are responsible for
distinct physical properties of each amino acid. In the
study, we selected six physicochemical properties includ-
ing hydrophobicity, polarizability, steric property, iso-
electric point, volume, and polarity. Hydrophobicity is a
physical property of amino acids representing the ten-
dency of water to exclude non-polar molecules. Moreover,
as stated earlier in previous studies, the hydrophobic na-
ture of cleavage sites can efficiently bind with the sub-
strates by Van der Waals interaction and help identify
cleavage and non-cleavage sites in peptides [17]. The abil-
ity to form instant dipoles known as polarizability,
through which the dynamical response of the closed sys-
tem to external fields can be determined, and provide per-
ception about a molecule’s internal structure can also be
made [25]. Steric properties can be appraised by the attri-
butes of an atom within the molecule. The overlapping
electron clouds lead to the repulsion when the atoms are
brought close to each other. A steric property encom-
passes various effects such as steric hindrance, steric
shielding, steric attractions, chain crossing, and steric in-
hibition of resonance. These properties are largely respon-
sible for the shapes (i.e., conformation) of molecules and
also reactivity [26]. The isoelectric point can be defined as
the pH at which amino acid is neutral [27]. Volume, a
standard feature of native protein structures, is the dense
packing of amino acid residues within interior regions,
and a key parameter in understanding packing is the vol-
ume that individual amino acid residue occupies in differ-
ent environments [28]. Polarity confers molecules and
compounds with distinctive features regarding the struc-
ture and chemical interaction with other molecules. Due
to this property, polar amino acids are exposed on the sur-
face of proteins [29].

Machine learning algorithms
In this study, three algorithms have been applied to pre-
dict the HIV-1 protease specificity, including DT, ANN,

and logistic regression (LR). The sequence, structural, and
physicochemical features are incorporated as inputs for
DT, ANN, and LR to investigate discriminative biological
features and construct an accurate predictive model. The
descriptive and predictive modeling provides insights that
drive better decision-making. Keeping this in mind, our
research group was motivated to use SAS Enterprise
Miner Workstation 13.2, having the suite of machine
learning algorithms that enables to create accurate pre-
dictive and descriptive model. It also allowed us to com-
pare several predictive models simultaneously. ANN, a
machine learning approach resembling the biological
neural network especially human brain, is fabricated to
mimic the structure and function of our nervous sys-
tem. It scores over the conventional rule-based pro-
gramming owing to its broad applicability for the
various tasks such as classification, sequence recogni-
tion, and novelty detection [24]. The important aspect
about ANN is a non-parametric model while most
statistical methods are parametric models that need
the higher background of statistics. Moreover, ANN
generates models to detect non-linear interactions be-
tween dependent and independent variables. DT is a
simple yet effective machine learning algorithm to
yield interpretable results with numerous conceivable
results. It orders examples by shorting them down the
tree from the root hub to leaf hub to arranging the
cases [30]. There is a distinct advantage of applying
decision trees to classify biomedical problems that
make DT better predictors among others. The best
characteristic of using trees is very intuitive and easy
to explain. In addition, variable nonlinearity usually re-
sults in poor predictive performance while using other
classifiers such as simple regressions. Another advan-
tage of DT is that nonlinearity property in data does
not influence the predictive performance of DT.
Therefore, DT predictors can be applicable to data
with nonlinear relationships. On the other hand, LR is
a machine learning algorithm where the dependent
variable is categorical. It calculates the probability of
categorical dependent variable and other independent
variables. The most important point of LR is that the
expected values of response variables are modeled
based on the combination of values taken by the pre-
dictors [31]. Our motivation to use LR is a white-box
model that allows an interpretation of model parame-
ters. It gives real probabilities of predicted class unlike
DT and SVM and it is easier to update the model to
take in new data with the help of online gradient des-
cendent method.

System architecture
The system architecture of our proposed method for
predicting cleavage sites in HIV-1 protease is illustrated
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in Fig. 1. The analysis workflow involves several steps,
including query protein peptide input, feature extraction,
feature selection, machine learning algorithms, and the
prediction results. First, octamers are extracted from
query protein sequences by a sliding window of size
eight. Then, the sequence features, structural features,
and physicochemical properties were extracted and
encoded with the aid of propy 1.0 software package. Fur-
ther, a bidirectional stepwise selection algorithm is in-
corporated to select only the discriminative biological
features as input to be submitted to machine learning al-
gorithms for prediction. At last, examination of all
models was made, and the execution of prediction
model was illustrated. The proposed method is named
as ProCleSSP (Protease Cleavage site prediction based
on Sequence, Structural, and Physicochemical features).

Evaluation measures
Model assessment is critical in regards to measuring the
nature of predictions. In our experiments, we incorpo-
rated a three-way data split procedure to avoid overfitting
and overestimation, and randomly divide our raw data
into 90% as the training set, 5% as the validation set, and
5% as the test set. The training set is used to train a

predictive model. The validation dataset is applied for
feature selection and parameter tuning. The test dataset
is incorporated as an independent set only to evaluate
the real performance of a prediction method. As for the
evaluation measures, we used accuracy and area under
the receiver operating characteristics (ROC) curve to
compare with other previous studies. The accuracy
(Acc.) of a prediction method is calculated as the sum-
mation of true positives and true negatives divided by
the total number of data. In addition, the area under
the ROC curve (AUC) is used to assess performance
during parameter selection, and is one of the most ap-
propriate measures of performance as it is non-
parametric and threshold independent. It is calculated
from ROC curve which is a fundamental tool for diag-
nostic test evaluation. In an ROC curve, the true posi-
tive rate (i.e., sensitivity) is plotted in function of the
false positive rate (i.e., 1-specificity) for different cutoff
points of a parameter. In our study, we use AUC as an
evaluation measure to select a combination of effective
features and classifiers. Other metrics are also com-
puted to allow more comprehensive evaluation of pre-
dictive performance. Sensitivity (Sen.) and specificity
(Spe.) measure how well a classifier detects cleavage

Fig. 1 System architecture of the proposed method
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sites as cleavage sites and non-cleavage sites as non-
cleavage sites, respectively. The following equations de-
fine these statistics, where TP, TN, FP, and FN denote
the numbers of true positives, true negatives, false posi-
tives, and false negatives, respectively.

Sen: ¼ TP
TP þ FN

Spe: ¼ TN
TN þ FP

Acc: ¼ TP þ TN
TP þ TN þ FP þ FN

Results and discussion
In ProCleSSP, the biological features are extracted from
sequence-based, structure-based, and physicochemical
properties. Then the extracted biological features from
the four benchmark datasets (i.e., 746, 1625, Schilling,
and Impens) are used as input features to three machine
learning algorithms (i.e., ANN, DT, and LR), and pre-
dictive performance are optimized by AUC based on the
validation set instead of the test set to avoid overfitting.
Here, to compare the effects of various biological fea-
tures, the predictive performance is analyzed by single
feature type prediction and hybrid feature type predic-
tion. For single feature type prediction, the performance
of sequence-based features, structure-based features,
and physicochemical properties are compared. In
addition, the hybrid feature type prediction are con-
ducted by the combination of various feature types, in-
cluding sequence and structure features, sequence and
physicochemical features, structure and physicochemi-
cal features, and all three types of features.

Prediction performance based on single feature types
In our experiment, the effects of different biological fea-
tures are compared individually. The prediction perform-
ance based on sequence features, structural features, and
physicochemical features are detailed in the following
sections.

Sequence-based features
Three types of sequence-based features (i.e., AAC, DipC,
and PseAAC) are used to depict the effect of using se-
quence patterns to distinguish cleavage sites from non-
cleavage sites. The predictive performance based on se-
quence features for the four benchmark datasets is
shown in Table 2. We compare the accuracy and AUC
of different algorithms based on AAC, DipC, PseAAC,
and the combination of all three compositions. Experi-
ment results show that incorporation of DipC performed
better than using AAC or PseAAC itself. This suggests
that DipC could be a better indicator to predict HIV-1
protease cleavage sites due to its capability to consider

pairwise amino acid pair relationships. For the machine
learning algorithms, ANN achieved better predictive per-
formance except for the AUC of the Schilling dataset.

Structure-based features
Two structure-based features, SA and SSE, were incor-
porated individually or combined together to identify
cleavage sites in our study. For solvent accessibility, we
used three descriptors, including solvent accessibility
class (i.e., exposed or buried), RSA, and ASA. For sec-
ondary structure, the probability of α-helix, β-sheet, and
random coil are predicted by the NetSurfP web server.
An octapeptide generates 24 descriptors for each of solv-
ent accessibility and secondary structure features. The
predictive performance using structural features for the
four benchmark data sets is shown in Table 3. The re-
sults indicate that SA usually performed better than SSE
when it is used individually or combined with SSE. This
lends support on our assumption that the cleavage sites
usually occur on the surface of a molecule and thus SA
serves as an effective factor to identify cleavage sites in
HIV-1 protease. When we compare machine learning
algorithms, ANN also performed better than the others.

Table 2 Predictive performance of sequence features for the
four benchmark dataset

Features DT LR ANN

Acc.(%) AUC Acc.(%) AUC Acc.(%) AUC

746 Dataset

AAC 83.7 0.897 86.4 0.938 81.0 0.935

DipC 75.6 0.793 86.4 0.865 91.9 0.974

PseAAC 78.3 0.787 86.4 0.938 81.0 0.885

Seq_All 78.3 0.831 86.4 0.847 91.9 0.979*

1625 Dataset

AAC 91.4 0.908 84.1 0.904 91.4 0.952

DipC 92.6 0.861 96.3 0.972 98.7 0.987

PseAAC 90.2 0.822 87.8 0.921 87.8 0.945

Seq_All 92.6 0.882 96.3 0.958 98.7 0.984

Schilling Dataset

AAC 87.7 0.664 86.5 0.856 88.9 0.858

DipC 87.7 0.526 87.1 0.806 89.5 0.790

PseAAC 87.1 0.500 86.5 0.864 88.3 0.858

Seq_All 87.7 0.611 87.7 0.802 87.1 0.821

Impens Dataset

AAC 85.1 0.500 80.8 0.857 89.3 0.886

DipC 85.1 0.500 82.9 0.579 93.6 0.893

PseAAC 87.2 0.721 78.7 0.814 87.2 0.868

Seq_All 87.2 0.802 85.1 0.696 89.3 0.875
*The best accuracy and AUC in each dataset are underlined
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Physicochemical features
In physicochemical properties, six properties including
hydrophobicity, polarizability, steric properties, isoelec-
tric point, volume, and polarity are incorporated to de-
tect cleavage sites. Each property was encoded as 25
descriptors by PseAAC using propy 1.0 software pack-
age. The physicochemical properties were examined in-
dividually as well as in combinations. The predictive
performance based on physicochemical properties for
the benchmark datasets is shown in Table 4.

Prediction performance based on hybrid feature types
In our study, the prediction performance based on hy-
brid features is undertaken. Hybrid features denote the
combinations of sequence, structure, and physicochemi-
cal features. The combinations of such features could
contain more extensive information than the single fea-
ture types. In this section, four distinct combinations are
used to explore the impact of the properties in protease
cleavage site prediction. First, sequence and structure
features are combined together to check whether these
properties influenced the cleavage sites. The number of
features obtained for this combination is 493 (i.e., 445
for sequence and 48 for structure features). Secondly, se-
quence and physicochemical features were consolidated,
a total of 595 features were combined (i.e., 445 for se-
quence features and 150 physicochemical properties).
Thirdly, structure and physicochemical features are
combined and generated 198 features (i.e., 48 for

structure and 150 for physicochemical features). The last
combination is to combine all three feature types to-
gether, and yields a total of 643 features. The predictive
performance of the four combinations for the bench-
mark dataset is illustrated in Table 5. For the feature
combinations, it is frequently observed that combining
multiple features together can compensate the properties
of various biological features and further improve the
predictive performance in terms of both accuracy and
AUC. The only exception is the Impens dataset in which

Table 3 Predictive performance of structural features for the
four benchmark datasets

Features DT LR ANN

Acc.(%) AUC Acc.(%) AUC Acc.(%) AUC

746 Dataset

SSE 62.1 0.626 59.4 0.715 78.3 0.838

SA 83.7 0.791 78.4 0.771 81.0 0.771

Str_All 83.7 0.791 70.2 0.806 78.4 0.897*

1625 Dataset

SSE 81.7 0.756 76.8 0.673 85.3 0.742

SA 91.4 0.920 89.0 0.961 96.3 0.977

Str_All 91.5 0.920 85.4 0.936 89.0 0.935

Schilling Dataset

SSE 87.1 0.500 88.3 0.775 88.3 0.800

SA 89.5 0.788 84.0 0.828 87.1 0.840

Str_All 89.5 0.788 83.4 0.824 85.8 0.843

Impens Dataset

SSE 85.1 0.500 85.1 0.729 87.2 0.761

SA 89.3 0.736 89.3 0.918 95.7 0.950

Str_All 87.2 0.571 89.3 0.857 89.3 0.914
*The best accuracy and AUC in each dataset are underlined

Table 4 Predictive performance of physicochemical property
features for the four benchmark datasets

Features DT LR ANN

Acc.(%) AUC Acc.(%) AUC Acc.(%) AUC

746 Dataset

Hydrophobicity 75.6 0.735 83.7 0.956 89.1 0.968*

Steric property 89.1 0.929 86.4 0.941 81.0 0.932

Polarizability 81.0 0.815 83.7 0.953 83.7 0.947

Isoelectric point 81.0 0.865 86.4 0.953 83.7 0.953

Polarity 83.7 0.838 83.7 0.912 86.4 0.909

Volume 83.7 0.838 54.0 0.500 54.0 0.500

Phy_All 84.9 0.882 93.6 0.885 97.3 0.953

1625 Dataset

Hydrophobicity 87.8 0.849 84.1 0.896 86.5 0.874

Steric property 91.4 0.897 85.3 0.896 91.4 0.934

Polarizability 93.9 0.914 87.8 0.936 96.3 0.957

Isoelectric point 91.4 0.918 82.9 0.914 93.9 0.968

Polarity 86.5 0.847 87.8 0.904 89.0 0.919

Volume 92.6 0.896 89.0 0.933 93.9 0.974

Phy_All 92.7 0.882 92.7 0.921 92.7 0.944

Schilling Dataset

Hydrophobicity 87.7 0.708 89.5 0.862 89.5 0.863

Steric property 88.3 0.721 86.5 0.837 88.3 0.843

Polarizability 89.5 0.683 89.5 0.854 90.8 0.853

Isoelectric point 88.3 0.733 87.7 0.858 89.5 0.860

Polarity 87.1 0.500 87.1 0.860 88.3 0.865

Volume 88.9 0.622 88.3 0.847 88.3 0.810

Phy_All 88.9 0.593 89.5 0.876 85.2 0.863

Impens Dataset

Hydrophobicity 85.1 0.500 80.8 0.686 87.2 0.886

Steric property 89.3 0.845 82.9 0.825 89.3 0.893

Polarizability 85.1 0.500 85.1 0.864 89.3 0.943

Isoelectric point 85.1 0.500 78.7 0.850 93.6 0.982

Polarity 85.1 0.500 85.1 0.743 82.9 0.682

Volume 85.1 0.500 85.1 0.736 80.8 0.500

Phy_All 91.5 0.839 82.9 0.796 87.2 0.839
*The best accuracy and AUC in each dataset are underlined
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incorporation of solvent accessibility performed slightly
better than any combination from Table 5. In addition, it
is also interesting to observe that ANN and LR perform
significantly better than DT when different types of fea-
tures are combined as input for prediction of cleavage
sites. This suggests that incorporation of more advanced
machine learning algorithms, such as ANN, could be a
better choice to identify discriminative features from
heterogeneous data.

Best combinations of features and algorithms for each
dataset
In our experiment, we used the AUC of the validation
dataset to select a best combination of features and algo-
rithms for each dataset, and then incorporated the test
set to show the objective performance of cleavage site
prediction in HIV-1 protease. The best combinations of
features and algorithms for each dataset are listed in
Table 6 and the ROC plots are shown in Figure S1–S4
of the supplementary material [Additional file 5]. Experi-
ment results show that ProCleSSP achieved AUC of
0.994, 0.992, 0.895, and 0.950 based on validation sets
for the 746, 1625, Schilling, and Impens datasets, respect-
ively. We also attain accurate prediction accuracy of

94.5%, 95.1%, 91.4%, and 95.7% for the 746, 1625, Schil-
ling, and Impens datasets, respectively. The sensitivity and
specificity range from 57.1% ~ 100% and 88.2% ~ 100% for
the validation sets, respectively. This suggests that imbal-
anced datasets for cleavage site identification could result
in the observation that our method achieves higher speci-
ficity compared to sensitivity. However, if an independent
test set, which has not been used to construct the classifier
or tune features and parameters, is incorporated to evalu-
ate the most objective performance of the prediction
method, our results demonstrated that the performance
could often be overestimated. For the feature selection,
our method suggested that the best feature set is the com-
bination of sequence and structural features together for
the 746 and 1625 datasets. For the largest Schilling data-
set, incorporation of all sequence, structural, and physico-
chemical features performed the best. For the Impens
dataset, our validation results select SA as the best set of
feature. However, it is interesting to notice that there is a
large difference between validation and test performance.
This might be resulted from the fact that the number of
SA features is much smaller than others and thus this in-
stability could lead to inadequate for prediction. On the
other hand, ANN performed consistently better than the
other two machine learning algorithms for prediction of
HIV-1 protease cleavage sites. We incorporated a rigorous
three-way data split procedure to prevent overfitting in
our experiments, while most previous studies incorpo-
rated internal validation or cross-validation for perform-
ance evaluation. For example, ProCleSSP achieved slightly
better performance (i.e., 95.1% in accuracy and 0.992 in
AUC) in the 1625 dataset compared to performance (i.e.,
93.0% in accuracy and 0.940 in AUC) in Kontijevskis et al.
In addition, when compared with state-of-the-art method
by Rögnvaldsson et al., their approach performed better
than our method. Although ProCleSSP only attains com-
parable or slightly better performance compared with
other approaches, a more objective performance of cleav-
age site prediction is illustrated in the proposed method.

Interpretable biological features for cleavage site
identification
In the proposed method, we incorporated several ma-
chine learning algorithms to predict cleavage sites. Al-
though it has been demonstrated that ANN achieved the
best predictive performance, discriminative biological
features for cleavage sites can be interpretable by algo-
rithms such as DT or LR. The interpretable models give
a closed form of approximation of variables where the
importance of each variable is explicit. Here, we draw at-
tention to the decision tree model and variable import-
ance for each dataset. In Fig. 2, the decision tree model
for the 746 dataset based on Seq + Str features repre-
sents a hierarchal segmentation of the data. The original

Table 5 Predictive performance of hybrid features for the four
benchmark datasets

Features DT LR ANN

Acc.(%) AUC Acc.(%) AUC Acc.(%) AUC

746 Dataset

Seq + Str 78.3 0.788 91.8 0.982 94.5 0.994*

Seq + Phy 83.7 0.838 86.4 0.968 94.5 0.976

Phy + Str 83.7 0.810 78.3 0.860 91.8 0.982

Seq + Str + Phy 75.6 0.841 97.2 0.991 97.2 0.988

1625 Dataset

Seq + Str 89.0 0.910 96.3 0.980 95.1 0.992

Seq + Phy 89.0 0.785 97.5 0.958 98.7 0.990

Phy + Str 91.4 0.940 86.5 0.810 93.9 0.985

Seq + Str + Phy 91.4 0.956 95.1 0.980 97.5 0.990

Schilling Dataset

Seq + Str 90.8 0.845 86.5 0.865 92.0 0.873

Seq + Phy 87.1 0.500 90.8 0.837 88.9 0.825

Phy + Str 85.1 0.500 80.8 0.603 80.8 0.596

Seq + Str + Phy 88.9 0.810 89.5 0.826 91.4 0.895

Impens Dataset

Seq + Str 89.3 0.682 89.3 0.918 93.6 0.918

Seq + Phy 91.4 0.839 87.2 0.889 91.4 0.896

Phy + Str 85.1 0.500 82.9 0.889 93.6 0.932

Seq + Str + Phy 87.2 0.675 87.2 0.889 89.3 0.850
*The best accuracy and AUC in each dataset are underlined
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segment is the entire dataset, also known as the root
node of the tree, and it is first portioned into two or
more segments by applying a series of simple rules. Each
rule assigns an observation on a segment based on the
value of an explanatory variable for that observation. For
example, the decision tree model first selects the RSA_4

variable (i.e., the RSA of the 4th position in the octapep-
tide) as the first rule to distinguish cleavage sites and
non-cleavage sites. If the RSA_4 value of an octamer is
greater than or equal to 0.4055, we follow the right sub-
tree; otherwise, the rules in the left subtree are applied.
In a similar fashion, each resulting segment is further

Table 6 Predictive performance based on selected features and machine learning algorithms based on validation sets and test sets

Datasets Features Algorithm Sen.(%) Spe.(%) Acc.(%) AUC

746 Seq + Str ANN 100.0 (100.0)* 88.2 (94.4) 94.5 (97.4) 0.994 (0.995)

1625 Seq + Str ANN 94.7 (89.4) 95.2 (96.8) 95.1 (95.1) 0.992 (0.994)

Schilling Seq + Str + Phy ANN 57.1 (27.3) 96.5 (95.8) 91.4 (86.6) 0.895 (0.815)

Impens SA ANN 71.4 (44.4) 100.0 (89.8) 95.7 (80.0) 0.950 (0.816)
*The predictive performance of test set is shown in parenthesis

Fig. 2 Decision tree of the 746 dataset based on Seq + Str features

The Author(s) BMC Bioinformatics 2016, 17(Suppl 17):478 Page 287 of 303



portioned into sub-segments, and each sub-segment is
further portioned into more sub-segments. From the
right subtree of the previous example, the second rule
selected by decision tree model to identify cleavage sites
is MT (i.e., the DipC of methionine and threonine in the
octapeptide). When MT is greater than or equal to
7.145, the octapeptide is predicted as cleavage site in the
right subtree; otherwise, rules from the left subtree are
applied for further partition. This process continues
until no more portioning is possible. This process of seg-
menting is called recursive portioning, and it results in a
hierarchy of segments within segments. The decision
trees for the other three datasets are illustrated in
Figure S5–S7 of the supplementary material [Additional
file 6]. In Table 7, variable importance of the decision tree
model in Fig. 2 is ranked by reduction of Gini index for
the training set. The top ranked variables RSA_4 and
RSA_5 variables corresponded well with the findings that
solvent accessibility served as a discriminative feature to
predict cleavage sites [16]. Moreover, the selected RSA_4
and RSA_5 variables suggested that the centered position
4 and position 5 in the octapeptide play a crucial role for
identification of cleavage sites, and these two positions
have also been illustrated important in a traditional classi-
fication of HIV-1 protease substrates [5]. This lends sup-
port on our assumption that our method can identify
important biological features to identify cleavage sites. In
addition, combinations of hydrophobic and polar amino
acid dipeptides (i.e., MT, VH, AE, and FL), which can form
hydrogen bonds with others, are selected as important fea-
tures preferred for cleavage sites [32].

Conclusions
To predict protease cleavage site, the understanding of
HIV-1 protease specificity becomes imperative. In this
study, we demonstrated that the combination of various
sequence, structure, and physicochemical features can
play a vital role in the identification of HIV-1 protease
cleavage sites and understanding of the specificity of the
substrates. We incorporated three machine learning
algorithms to compare the predictive performance of

protease cleavage sites. Experiment results suggested
that the hybrid biological features performed better than
the single feature types. In addition, the results also lend
support on our assumption that incorporation of various
biological features can compensate each other and achieve
more accurate performance. Moreover, through this study,
we can identify an effective set of feature combinations
that help identify the highly favorable sites where cleavage
events take place. The source codes and datasets are
freely available for download as standalone software
from the link provided here (https://drive.google.com/
open?id=0B-_hwmxkV77wNlY0cUxoQmcyOWc).
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