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Abstract

Background: Physical mapping of DNA with restriction enzymes allows for the characterization and assembly of
much longer molecules than is feasible with sequencing. However, assemblies of physical map data are sensitive to
input parameters, which describe noise inherent in the data collection process. One possible way to determine the
parameter values that best describe a dataset is by trial and error.

Results: Here we present OMWare, a tool that efficiently generated 405 de novo map assemblies of a single
datasets collected from the cotton species Gossypium raimondii. The assemblies were generated using various
input parameter values, and were completed more efficiently by re-using compatible intermediate results.
These assemblies were assayed for contiguity, internal consistency, and accuracy.

Conclusions: Resulting assemblies had variable qualities. Although highly accurate assemblies were found,
contiguity and internal consistency metrics were poor predictors of accuracy.

Background
Massively parallel sequencing (MPS) has and will con-
tinue to produce tremendous biological insights [1].
However, the ability to answer certain genomic ques-
tions is dependent on read length, and in some cases,
the most commonly available read lengths are shorter
than what is required [2]. For example, read length may
limit the robustness of de novo genome assembly [3].
Single molecule, high molecular weight (HMW) DNA
sequencing by PacBio has had success producing sig-
nificantly longer read lengths than many other tech-
nologies [4], but even their impressive maximum read
length, 40 kb, may still be too short to answer some
questions regarding genomic structural variants [5].
Until sequencing technologies are able to characterize
longer molecules, alternative methods for HMW DNA
assembly are required. Restriction fragment length ana-
lysis has long been a preferred method for analyzing
longer DNA molecules [6–8].

Recent technical developments commercialized by the
company BioNano Genomics (BNG) increased through-
put for this type of long molecule characterization. Their
method uses modified restriction enzymes to incorpor-
ate single-strand breaks at restriction sites, which are
then labeled by using polymerase to incorporate fluores-
cent nucleotide analogs. Labeled sample is loaded into
an array of nanofabricated channels that linearize the
DNA. Waves of DNA can be loaded into the channels
and imaged with a high-powered microscope and high-
resolution camera. Individual molecules are assembled
based on shared patterns of restriction sites into repre-
sentations of the entire genome.
As with any single molecule technology, there is sig-

nificant noise in the raw data. Sources of noise in this
type of mapping include limitations in camera reso-
lution, enzyme efficiency (particularly in the presence
of contaminants), and non-uniform behavior of fluores-
cent molecules and the DNA duplex [9]. Additionally,
depending on genome size and complexity, restriction
fragment length patterns may be similar at different
genomic loci by chance. Successful assembly algorithms
must compensate for this noise in order to reconstruct
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accurate models of chromosomes. These algorithms in-
corporate noise compensation measures such as fuzzy
matching for lengths between restriction sites, model-
ing enzyme error probabilities, and requiring whole
molecule alignments that are long and similar enough
to be unlikely results of chance alone [9]. These com-
pensating measures rely in large part on descriptions of
the data error profile, which are provided by the user as
input parameters. Therefore, optimum assembly re-
quires that a user select appropriate input parameters.
There are methods for empirical estimation of error

profiles, many of which rely on significant genomic re-
sources. For example, BNG provides software that maps
a random subset of molecules to a reference genome se-
quence assembly, and selects error parameters that
maximize both the number of molecules that align, and
the goodness of fit for those alignments. However, this
method depends on a highly contiguous sequence as-
sembly for the organism of interest, which might not be
available. One potential alternative for selecting accurate
parameters is trial and error. Using a variety of input pa-
rameters yields a variety of assemblies, from which an
optimal solution might be chosen.
Trial and error is a computationally expensive strategy.

In order to be feasible, it should minimize redundant
calculations and re-use intermediate results wherever
possible. BioNano Genomics produces their own soft-
ware for de novo assembly, which, internally, can make
use of intermediate results. However, the user interface
for that software makes result re-use impractical. There-
fore, to test the effectiveness of the trial and error strat-
egy, a new interface had to be developed.
We approached the problems of short read limitations,

noise in physical map data, and the computational inten-
sity of the trial and error strategy using a specific data-
set. Gossypium raimondii is a cotton species that is the
closest living relative to one of the subgenome progeni-
tors of the agriculturally significant allopolyploid, Gossy-
pium hirsutum [10]. Gossypium raimondii has a high
quality reference genome sequence assembly that was
created using MPS, as well as genetic and traditional
physical maps [11]. An extended abstract describing a
portion of this work has been published previously [12].

Methods
Mapping high molecular weight DNA molecules
Young leaf tissue from several Gossypium raimondii
plants was flash frozen in liquid nitrogen and shipped
on dry ice to Kansas State University, a Certified Service
Provider for long-range DNA mapping with BNG’s tech-
nology. They performed HMW DNA extraction accord-
ing to a proprietary protocol that includes physical
disruption of the cell wall, polyphenol isolation with
PVP, and embedding of unlysed nuclei in agarose gel to

prevent DNA shearing. DNA molecules were subjected
to sequence-specific, single-strand nicking at sites recog-
nized by two modified restriction enzymes, Nt.BspQ1
and Nt.BbvCl, simultaneously. These enzymes were se-
lected by simulating digestion of the reference genome
sequence assembly [11] with a variety of enzymes, and
selecting the enzyme or pair of enzymes that gave the
expected label density closest to 11 nicks per 100
kilobase-pairs (kbp). Restriction sites were labeled with
fluorescent nucleotide analogs, which were incorporated
by Taq polymerase, and the DNA backbone was stained
with the non-specific, intercalating dye, YOYO-1. Fi-
nally, labeled, stained DNA molecules were linearized
by physical constriction in nanoscopic channels, immo-
bilized with an electric current, and imaged with a
high-powered microscope and high-resolution camera.
Software provided by BNG converted raw images into
digital representations of individual molecules.

Parameter estimation by trial and error
The user interface provided by BNG allows the user to
specify a number of input parameters that are known
to affect map assembly algorithms (see [13, 14]). A sig-
nificance threshold for accepting pairwise molecule
alignments is an assumption about genome complexity,
which frequently, but not necessarily, scales with gen-
ome size. It is an indication of how probable an align-
ment between two molecules is expected to occur
because of random chance instead of a common gen-
omic locus. False positive and false negative label
rates explain, respectively, the density of observed
labels found at locations other than the expected re-
striction sites, and the proportion of restriction sites
that are not labeled, due to enzyme inefficiency. It is an
assumption of the algorithm that false positive labels
and false negative labels are distributed randomly through-
out the genome. Minimum molecule length and mini-
mum labels per molecule are not assumptions about the
data error profile, or the genomic complexity. Rather, they
represent a compromise between the amount of data in-
cluded and the reliability of each data point, where longer,
more label-dense molecules are more reliable. Addition-
ally, the user interface has multiple parameters to describe
variance in observed distances between labels compared to
actual restriction site distributions, which is caused by
molecule stretching and non-uniform stain behavior, as
well as options relevant to the assembly refinement pro-
cesses (see [15]). Although all of these parameters do not
apply uniformly to all of the steps in the assembly process,
the user interface only allows a single designation for each.
We designed and wrote Python code that would facili-

tate automatic assembly using a variety of values for
those input parameters. This approach is similar to that
used by Kansas State University in their program Stitch
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[16], except that it does not perform assembly refine-
ment steps (see [15]), and it breaks each assembly into
its component parts in order to reduce the computa-
tional resources required. We used our code to generate
405 unrefined de novo assemblies of our Gossypium rai-
mondii dataset, each with a different combination of the
input parameters shown in Table 1.
We assessed the quality of the assemblies based on

their contiguity, their internal consistency, and their
accuracy according to the reference genome. Assem-
blies were scored for total length, contig N50 length,
and length of longest contig for contiguity. Internal
consistency was divided into two metrics, the average
number of overlapping molecules in which each label is
observed, and the proportion of molecules not excluded
from the assembly as singletons. Finally, we measured
accuracy by comparing our assemblies to a highly con-
tiguous reference genome sequence, using software
provided by BNG. We report the weighted average con-
fidence score, where confidence is the negative, 10-base
logarithm of the p-value of an alignment.

Results
Data collection
We collected a total of 217.28 Gigabase-pairs (Gbp) of
physical map data over nine, two-flow-cell runs of BNG’s
Irys® machine. This is enough data for ~241× coverage
of the similar to 900 Megabase-pair (Mbp) G. raimondii
genome. Data statistics for individual flow cells are
shown in Table 2. The weighted average across datasets
for the molecule N50 length was 165.37 kbp. The ex-
pected label density using Nt.BspQ1 and Nt.BbvCl was
12.6 labels per 100 kbp. Our observed label density was
consistently lower than the expected (max 11.3 labels
per 100 kbp, weighted average 9.2).

A tool for efficient trial and error
In order to generate a large number of assemblies in a
reasonable amount of time, we developed the code
OMWare, available at [17]. Our code generates a set of
unrefined assemblies that results from a certain combin-
ation of input parameters. It automatically detects and
runs only the minimum number of compatible precursor

steps. Unrefined assembly with BNG’s software proceeds
in four steps. First, input molecules are sorted. Second,
they are split into files of approximately equal sizes, for
computational efficiency. Third, each unique pair of
molecules is aligned to produce an overlap score based
on label pattern similarity. Finally, genomic regions are
assembled using overlap scores in an overlap-layout-
consensus graph. In order to produce 405 unrefined
assemblies, OMWare performed only nine pairwise
alignment steps, and a single split and sort step. The
combinations of input parameters that affect certain
steps, as well as the computational resource require-
ments of those steps, are shown in Table 3. The code
also includes an interface to read and write data in the
file formats used by BNG.

Table 1 Input parameter values

Parameter Overlap significance
threshold

False positive labels
per 100 kbp

Proportion restriction
sites unlabeled

Min. molecule
length (kbp)

Min. labels per
molecule

Values 1.11E-04 0.5 0.15 100 6

1.11E-06 1.5 0.3 150 8

1.11E-08 2.5 0.45 180 10

1.11E-10

1.11E-12

Min. is short for minimum

Table 2 Map data collected

Date Run Quantity (Mbp) Molecule N50
(kbp)

Average labels
per 100 kbp

28-May-14 5,861.00 218.6 7.2

04-Jun-14 15,723.90 154.5 8.2

05-Jun-14 32,131.70 150.4 8.6

05-Jun-14 18,135.40 143.9 9

22-Jul-14 7,122.50 188.7 6.1

23-Jul-14 9,651.20 175.8 9.3

24-Jul-14 2,833.90 165.8 9.1

24-Jul-14 5,492.80 198.6 10.2

25-Jul-14 15,037.10 189.7 6.1

28-Jul-14 6,246.70 189.7 6.6

29-Jul-14 4,848.80 155.4 10

30-Jul-14 9,029.30 163.8 10.1

31-Jul-14 15,970.40 168.3 10.1

05-Aug-14 12,213.10 171.2 10.3

06-Aug-14 15,718.60 169.8 10.2

07-Aug-14 7,312.50 161.5 10.6

07-Aug-14 1,176.00 155.5 11.3

07-Aug-14 17,104.90 160 10.9

07-Aug-14 15,670.10 150.6 11
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Assembly quality
Contiguity and internal consistency varied widely be-
tween assemblies, and were predominantly controlled by
two input parameters, minimum molecule length and
significance threshold. The maximum total length of any
assembly was about 1.1 Gbp, which is larger than the ex-
pected genome size of about 900 Mbp. The shortest as-
sembly covered only 78 Mbp. Contig N50 lengths
ranged from 252 to 431 kbp, and the maximum length

of any single contig was 2.24 Mbp. In every assembly, a
large proportion of input molecules, from 0.90 to 0.993,
were excluded as singletons. Across parameter combina-
tions, the average number of molecules in which each
label was observed was between five and nine.
The accuracy of assembled contigs also varied, and

appeared to correspond very little with measures of
contiguity or internal consistency. The lowest average
confidence score of any assembly was 21.4 (p-value ≈

Table 3 Compute resources required for de novo assembly

Assembly step Sort Split Pairwise alignment Assembly Total

Applicable
parameters

Minimum lengtha,
minimum labelsa

Minimum lengtha,
minimum labelsa

Minimum lengtha,
minimum labelsa,
significance thresholda,
false positive, false negative

Minimum length,
minimum sites,
significance threshold,
false positive, false negative

Minimum length,
minimum sites,
significance threshold,
false positive, false negative

Steps run 1 1 9 405 -

Parallel jobs per
step

1 3 1,250 1 -

Minutes elapsed 1 6 3,442,500 105,614 3,548,121

Predictedb minutes 405 2,733 154,912,500 105,614 155,021,252

Megabytes RAM
used

1 5,667 176,321,250 1,130,838,484 1,307,165,402

Predictedb

megabytes
405 2,295,135 7,934,456,000 1,130,838,484 9,067,590,024

Megabytes disk
space used

580 580 4,640,000 51,874 4,693,034

Predictedb

megabytes
2,900 2,900 208,800,000 51,874 209,089,674

aInput parameter applies only as an output filter; it does not affect the algorithms internal workings. A step run with lenient parameters can serve as input for a
more stringent downstream step, which will filter its input
bEstimation of resources required if all 405 Sort, Split, and Pairwise alignment steps were run

Fig. 1 Assembly accuracy and contig N50 lengths are affected by different input parameters. Contig N50 lengths are relatively stable to
permutations of false positive label rates (FP, per 100 kbp), false negative label rates (FN), and minimum labels per molecule (Labels) (left).
When the same assemblies are grouped by minimum molecule length (Lengths, in kbp) and significance threshold (P-val.) (right), more substantial
changes in response to these input parameters are observed. Some inaccurate assemblies have high N50 lengths. The converse is also true
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3.9e-22), and the highest was 27.8 (p-value ≈ 1.5e-28).
There were no outliers in confidence. The confidence
scores are more responsive to changes in false positive
and false negative label rates than metrics of contiguity
appear to be. The distribution of both contiguity and
confidence scores as they are affected by various input
parameters can be seen in Figs. 1 and 2.

Discussion and conclusions
A major limitation of this study was data quality. In the
data, we observed label densities that were consistently
lower than expected. It may be worth noting that BNG
recommends keeping false positive and false negative
label rates below 1.5 erroneous labels per 100 kbp and
0.15 of restriction sites unlabeled. Even with very con-
servative false positive label rate estimates, our data has
a false negative label rate above this recommended
threshold. This may be due to the inherent difficulty of

extracting contaminant free HMW DNA from plants
[18]. Additionally, it is reasonable to suspect that by
using two nicking enzymes simultaneously in a buffer
that was optimized for only one of the two, we inad-
vertently reduced enzyme efficiency. These factors may
help explain the low internal consistency observed in
our assemblies.
It is clear that OMWare is far more efficient than the

BNG software at generating a large number of unrefined
assemblies. Trial and error showed promise for use in
scenarios when no reference genome is available. How-
ever, without using a reference genome, we were unable
to detect reliable, genome-independent predictors of
assembly quality in the five metrics of contiguity and in-
ternal consistency that we examined.
In scenarios where a reference genome is available,

alternative software for empirical estimation of input
parameters exists and requires fewer computational

Fig. 2 Several metrics of assembly contiguity and internal consistency fail to predict assembly accuracy
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resources than OMWare. In the case of BNG’s software,
there are some input parameters that OMWare assays
that their software does not, such as minimum sites per
molecule, minimum molecule length, and significance
threshold. There are also input parameters that OMWare
does not test. Molecule stretch or stain inconsistencies
manifest as variable distances observed between labels.
We did not incorporate this into OMWare because BNG’s
internal assembly algorithm uses three separate parame-
ters to compensate for variable distances, permutations on
which would have substantially increased the necessary
compute resources.
This analysis does yield some interesting insight into

the behavior of the de novo assembly algorithm. For ex-
ample, contiguity and internal consistency change far
more in response to significance thresholds and mini-
mum molecule lengths, and by extension, coverage,
than they do to false positive and false negative label
rates. However, assembly accuracy, as measured by sig-
nificance of alignments to the reference genome, does
respond to these assumptions about enzyme efficiency.
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