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Abstract

Background: The predictive nature of the primate sensorimotor systems, for example the smooth pursuit system
and their ability to compensate for long delays have been proven by many physiological experiments. However,
few theoretical models have tried to explain these facts comprehensively. Here, we propose a sensorimotor
learning and control model that can be used to (1) predict the dynamics of variable time delays and current and
future sensory states from delayed sensory information; (2) learn new sensorimotor realities; and (3) control a motor
system in real time.

Results: This paper proposed a new time-delay estimation method and developed a computational model for a
predictive control solution of a sensorimotor control system under time delay. Simulation experiments are used to
demonstrate how the proposed model can explain a sensorimotor system’s ability to compensate for delays during online
learning and control. To further illustrate the benefits of the proposed time-delay estimation method and predictive
control in sensorimotor systems a simulation of the horizontal Vestibulo-Ocular Reflex (hVOR) system is presented.
Without the proposed time-delay estimation and prediction, the hVOR can be unstable and could be affected by high
frequency oscillations. These oscillations are reminiscent of a fast correction mechanism, e.g, a saccade to compensate for
the hVOR delays. Comparing results of the proposed model with those in literature, it is clear that the hVOR system with
impaired time-delay estimation or impaired sensory state predictor can mimic certain outcomes of sensorimotor diseases.
Even more, if the control of hVOR is augmented with the proposed time-delay estimator and the predictor for eye
position relative to the head, then hVOR control system can be stabilized.

Conclusions: Three claims with varying degrees of experimental support are proposed in this paper. Firstly, the brain or
any sensorimotor system has time-delay estimation circuits for the various sensorimotor control systems. Secondly, the
brain continuously estimates current/future sensory states from the previously sensed states. Thirdly, the brain uses
predicted sensory states to perform optimal motor control.
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Background

Sensorimotor control system is the most robust and ver-
satile collection of modular, hierarchical and well-
organized hybrid of control strategies. With it we can
land a plane, drive a car, play sports, and adapt to bizarre
sensorimotor transformations [1, 2] (e.g., reversing
prisms), or we are allowed to perform in space or in the
deep sea. Sensorimotor control system can accomplish all
of these tasks in an optimal manner in terms of speed, ac-
curacy and efficiency (3, 4].

The brain’s sensorimotor cortex, as a complex neural
sensorimotor control system, inherently finds and imple-
ments an optimal decision to a vast range of input con-
ditions. Noises, nonlinearities, delays, uncertainties and
redundancies are among the major problems that the
sensorimotor control system interacts with [5]. Delays
occur in various parts of a sensorimotor control system,
ranging from sensory information reception to, informa-
tion transmission along nerve fibers, computing responses
by processing the sensory information, feedback transmis-
sion, and finally, motor output in terms of muscle reac-
tion. The delay value is dynamic and varies with sensory
modality. For example there is longer delay for vision than
proprioception. This is because the complexity of the sen-
sory information processing depends on the task and it is
longer for face recognition than motion perception. Effer-
ent control signals are delayed as a result of neural con-
duction delays and low-pass filtering properties of
muscles. Short efferent delays, such as the monosynaptic
Stretch Reflex (SR), are in the order of 10-40 millisec-
onds, depending on the length and the type of nerve fiber.
This delay is increased to 30—-70 milliseconds for the cor-
tical component of the long latency SR [6]. The electro-
mechanical delay, such as the delay in generating force
response in muscles, can take up to 25 milliseconds [7].
So far, the investigation focuses on how a complex neural
sensorimotor control system such as the brain’s sensori-
motor cortex is capable of performing tasks in the pres-
ence of the above-mentioned conditions. However, the
study in this paper specifically focuses on developing a
mathematical model that will simulate a sensorimotor
control system in the presence of noise and delay.

The Vestibulo-Ocular Reflex (VOR), one of the fastest
involuntary responses due to the short neural connec-
tions and high neural computation speed, is not prone
to the occurrence of delay up to 10 milliseconds from
stimulus onset [8]. VOR is a motor control system that
stabilizes vision during head movements. Smooth pur-
suit, another efficient visual control system in human
beings for target tracking in their visual field, has the
ability to process the information with a 80-130 milli-
second delay in the brain [9, 10]. Delays make control
difficult because information about the current state of
the motor system is outdated. A motor control system
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that does not have delay compensation mechanisms
could not correct for errors, leading to potential ineffi-
ciencies and instability. The explanation of those con-
trollers such as fuzzy logic control, feedback and
adaptive linearization based control, optimal nonlinear
trajectory control can be found in the literature [11-13].
Although they have several applications but they should
be modified to be used in systems with time delays.

Delay compensation: facts and current theories
Consider the saccadic eye movement, which is a fast eye
movement produced by a visual system that directs the
eyes to interesting visual stimuli: the movement duration
is shorter than the sensory delay [9]. This means that sen-
sory feedback about the current state of the eye and the
visual field cannot be used to correct or guide saccades be-
cause the sensory information regarding the movement it-
self arrives after the completion of the movement. Smooth
pursuit eye movements allow a person to track targets in
the visual field at a high speed of ~200°/sec, which is a re-
markable performance. Recent experiments stated the
high performance of the smooth pursuit system, where it
was observed that the position of eyes was ahead of visual
sensory feedback of the target position. This cannot be
achieved by solely implementing standard negative feed-
back methods based on visual error signals [14—16].
Under such information processing and transmission
delays, simple feedback control is affected by significant
temporal discrepancies between target signal and current
state, suggesting that some form of predictive control
must take place to achieve such a high performance
[17]. The predictive nature of sensorimotor control sys-
tems is explored and demonstrated through multiple
experiments. Experiments demonstrated that monkeys
have the ability to conduct smooth pursuit movements
with zero retinal slip [18, 19] or the ability to maintain
smooth pursuit during blink periods (momentary disap-
pearances of the target) [20]. Such predictive compensa-
tion was observed both in tracking moving targets with
constant velocity or in sinusoidal moving objects. In a
hand movement study, it was demonstrated that the
cerebellum is involved in predicting the position of the
hand during a movement [21]. The predicted state of
the limb from the history of motor commands allows
the motor control to act on this estimate of state rather
than relying solely on a delayed sensory feedback. This
suggests that cerebellar output is a signal that can be
combined with delayed sensory feedback elsewhere in
the brain in order to generate real-time state estimates
for motor control.

Time-delay estimation and control
A primate’s sensorimotor controller is equipped with the
ability to predict motor movements, as well as possess
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the ability to compensate for time delays. Time-delay es-
timation is a difficult problem, as it renders even the
simplest linear systems nonlinear, yet biological control
systems are robust enough to deal with time delays.
However, it is not known how this is achieved. Current
time-delay estimation techniques mainly cover linear
systems, including: constant time delays, random time
delay with specific noise characteristics, or restricted
dynamic time delay [9, 10, 22-27]. However, most
biological systems exhibit some degree of variability,
nonlinearity, and uncertainty, which may make above
mentioned methods developed inapplicable. Further-
more, most delay estimation procedures are not used in
the context of predictive control methodology. The
Hilbert-Huang Transform-based method is found to be
the most efficient delay estimation technique with a
focus on practical applicability to the motor control;
however, the process is a complex one [10].

A comprehensive computational model to explain
time-delay compensation in biological control is lacking.
The study in this paper proposes a sensorimotor learn-
ing and control model that estimates variable time de-
lays, predicts sensory states from delayed sensory
feedback, and controls a motor system in real time. Ac-
curate models of sensorimotor control systems result in
a better understanding of the function of the human
sensorimotor cortex, with practical applications in un-
derstanding the mechanisms underlying neurological
disorders such as autism [28] and epilepsy [29].

The next section covers the proposed time-delay esti-
mation method and develops a computational model for
a predictive control solution for a sensorimotor control
system under time delay. The proposed model is evalu-
ated in a real time, with online learning and control
simulation processes. The paper is concluded with find-
ings and suggestions for future research.

Methods

Suppose the sensorimotor system can be approximated
in a region of interest by the linear time-varying system,
as stated in Eq. (1):

X(¢) = A(t)x(¢) + B(t)u(t) (1)

where x(t) is the state vector (e.g., the position of the eye
or hand in space, etc.), u(t) is the control vector or the
neural motor commands (e.g., the firing of motor-
neurons or muscle contractions, etc), and A(¢) and B(¢)
are time-varying matrices with appropriate dimensions.
The matrix A(f) represents the influence of the current
state x(£) of the motor system to its future changes %(¢).
The matrix B(tf) is the sensorimotor controller gain,
which determines how motor commands affect#(¢). It is
common for A(f) and B(f) to change over time.
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Examples include joint friction, viscosity and elasticity of
muscles, etc. All of which change over time.

The solution to the first order differential Eq. (1) is
given by:

x(t) = e/OtA(S)dsxo + /te/stA(V)de(s)u(s)ds (2)

0

where x, is the initial state [30].
t

/A(s)ds
Let G(¢) =e/o and Eq. (2) written in terms of
G(t) is

x(t) = G(t)xo + G(t)/G’1 (8)B(s)u(s)ds (3)

0

where x(f) is the current state of the sensorimotor
system measured by the sensor organs. The motor com-
mand vector is u#(t). Motor commands are usually sensed
at the level of the effector by specialized sensory organs.
For example, muscle spindles measure the force gener-
ated in the muscle and communicate the information to
the brain. Here, we assume that x(f) and u(t) are pre-
cisely measured by sensory organs.

Suppose the sensory time-delay vector is represented
by t=[z] (™ time delay value). For simplicity we as-
sumed 7 = 7; in the rest of this paper. The solution of Eq.
(2) with the time delay is

x(t-1) = G(¢-7)

X0
+ G(t-7) / G (s)B(s)u(s)ds (4)

Before proceeding with a solution for the time-delay
problem and an associated predictive control method in
the brain, let us state our assumption about the repre-
sentation of time in the brain. We assume that the brain
is a truly autonomous system. In other words, there are
no clocks in the brain that count the ticks of absolute
time. All sensation of time is the result of externally per-
ceived periodic stimuli. This is unlike industrial control
systems, where there are synchronized clocks that count
the ticking of time and the time variable ¢ can be
accessed directly. Direct access to a time variable ¢ is not
possible in the brain’s sensorimotor control system.

We assume the brain keeps an internal estimate of
time delays, denoted as t. The error signal is calcu-
lated as {=x(¢t-1)-x(¢t-7), where x(t - 1) is the delayed
sensory signal. The delayed sensory signals are known
to the brain, but the brain cannot access the time-
delay vector 7 directly. On the other hand, x(¢-7) is
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unknown since T is unknown. However, x(¢ — ) can be
computed from the knowledge of G(t), B(t) and u(z).

To compute T, a modified version of the gradient
descends method is used:

dr 8(
A )

wheres 7 is the learning parameter.
Using Eq. (3), we can express Eq. (5) in a form,
dr [ (t-

7)-x(t-1)]
dt ot

_ ! [ise

-nC{B(t-T)u(t-1)- G(t 7)

ox(t-1)
ot

e
1G($)u(s)ds|  ©

B(0)u(0)}

The time delay 7 can be estimated using Eq. (6). How-
ever, there are biological constraints that need to be con-
sidered. Equation (6) requires the knowledge of x(t-7),
G(t-7) and u for any 0<7<t-r. But, this is impossible
because it needs to store the full history of motor com-
mands u(¢) or all functions, G(¢) and x(¢). Therefore, as-
suming the biological plausibility of Eq. (6) without
boundedness assumptions on the maximum delay 7 is
not possible.

To guarantee stability and limited memory usage, the
following condition, 7 < 7,,,, is added. This condition is
reasonable and does not in any way limit the generality
of the method. Furthermore, most human movements
are either repetitive, such as walking, or intermittent
with many pauses, such as reaching. In reaching, at the
beginning of the movement, the initial position of the
arm is known, and the delay is not an issue because the
arm is at rest. At the end of the movement, the arm is
coming back to rest and the final state of the arm is
known. Therefore, delays have no detrimental effects.
However, during the motion, the state of the arm keeps
on changing which causes the values communicated to
the brain with variable delays. It is during the arm’s mo-
tion that the delay estimation is paramount. Since move-
ments are finite in time, applying a limit on the
maximum number of delays is reasonably justified.

In terms of hardware implantation, it is necessary to
store the history of constructed signals in a finite buffer.
Actually, the brain automatically stores history about
signals like u(£) and x(z). One possible scenario is for the
brain to learn the dynamics of G(¢) and B(£) and thereby
compute the dynamics of x and u for any time period.

Here, we assume that the brain stores u(¢) from ¢
to t— T, as well as G(t), B(t) and x(¢). It should
be noted that if delays exceed 7,,,,, a complete open-loop
control prevails.
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The most important in the proposed control system is
to predict the future state of a sensorimotor system,
given that the delayed state and an estimate of the time
delay are known. To do so, Egs. (3) and (4) are com-
bined, as follows:

x(t) = G(1)G™! t(t—r)x(t—r)
+G(t) / B(s)G(5)uu(s)ds. (7)

Then, the state can be predicted using estimated time-
delay, 7, as follows

lt(t—%)x(t—%)
+ G(t) / B(s)G 1 (s)u(s)ds. (8)

t-T

x(t) =G(t)G”

It should be noted that x(t — 1) is what is actually mea-
sured and delivered to the sensorimotor plant model in
the brain, represented by Eq. (4). However, G(¢) and the
integral over u(t) are both dependent on the estimate of
the time delay 7. When the error in the estimate of time
delay € = 7-7 decreases to zero, the predicted state ap-
proaches to the actual state x(t).

The next step involves finding a way to combine the
sensorimotor plant model with the motor controller.
Let the difference between the desired sensory goal r(¢)
and current state x(£) be the performance error e(t) =
r(£) — x(t), and the estimate of the performance error be
é(t) = r(t)-x(t). Here, we define a PID controller input
in terms of the estimated error as [31, 32]:

de(t) [
it +I(1/e(s)ds 9)

0

L{(t) = 1<pé(t) + I(D

and the optimal feedback controller as

u(t) = Ké(t) (10)

where Kp, Kp, K; and K are proportional gain, derivative
gain, integral gain and optimal gain, respectively.

The PID controller and the optimal feedback control-
ler gains can be designed as if there was no delay with
information about the predicted state. Essentially, the
controller depends on the error é(¢) that results from the
estimate x(t). So, if the estimate x(¢) converges to x(f),
then é(t) converges to e(t).

Next is the recap of the concept about sensorimotor
time-delay estimation, state prediction and control.
Figure 1 shows the elements and connectivity between
components of the proposed computational model of a
brain sensorimotor control system at a higher level. It
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r(t) e e(t)

u(t)

x(t)

Controller

x(t)

State Predictor

Fig. 1 Model of the sensorimotor control with time-delay estimation and sensory states predictor. The Plant Box symbolizes a higher level of a
sensorimotor system such as the eye, associated muscles, sensors, responses, goals and objectives (e.g, minimize retinal slip in VOR). The Controller
Box is the neural network responsible for achieving the required task in an “optimal” way. Delay Estimator is the circuit we are proposing as the brain,
or a sensorimotor systems to estimate time delay in a sensory and motor pathway. Sate Predictor is where current and “future” sensory states are
estimated and predicted, respectively, based on the estimated current time delay. The “r(t)" is the desired goal, or in the language of control theory,
the reference trajectory. The “e(t)" is the error difference between the desired sensory state and predicted sensory state X(t). The “u(t)" are the motor
commands to muscles or effector organs. The x(t — 1) are the delayed sensory states. The “x(1)" is the actual sensory state. Finally, “t" is the time delay
that could either be a natural time delay or a consequence of damage or disease

Plant

x(t —1)

is assumed that the brain wiring is a way to carry out
the computations in accordance to the schematics in
Fig. 1.

Tables 1 and 2 show the lists of known and un-
known sensorimotor control variables of the brain, re-
spectively. Three main assumptions in the proposed
computational model for the brain sensorimotor con-
trol system are: 1) the brain possesses a time-delay es-
timator circuit; 2) the brain uses the estimate of time
delay to predict the current state; and 3) the brain
uses the current predicted estimate to control motor
movements.

To illustrate the benefits of the time-delay estimation
method of predictive control in the sensorimotor system,
we have chosen to simulate the VOR system. The
method has been implemented with MATLAB R2013a.

Results and Discussion
In the horizontal Vestibulo-Ocular Reflex (hWVOR), x € R
is the eye position relative to the head, and u € R is the

Table 1 Sensorimotor control known variables

Variable Definition

r(0) Goal or reference

xt-1 Delayed sensory inputs

&) Prediction errors

7 Estimated time delay

G(t-1) Estimated sensory
Jacobian

B Control Jacobian

u Motor commands

net motor-neuron signal to the horizontal eye muscles.
So, the hVOR system equation in its simplest form [1] is
shown as:

. K 1
X=—-—X+—-Uu

(11)
where « is the coefficient of viscosity and p is the coeffi-
cient of elasticity, and both are constants. The retinal-
image slip velocity is y € R, which is the sum of eye and
head velocities,

y=x+h (12)

The goal of the hVOR is to make the retinal slip equal
to zero, i.e., y =0. Here, the reference signal r is -4 and
the feedback error signal e is x -7 or x+ h. Therefore,
y =eé, and the feedback control law is basically a deriva-
tive control given by

u(t) = Kpé(t) (13)

Choosing the appropriate Kp, results in é = y = 0.

With sensory delay 7, the measured state of the hVOR
control system will be x(z- 1) instead of x(¢), which
means a form of time-delay estimation and a plant state
predictor.

Table 2 Sensorimotor control unknown variable
Variable
(t) Real time delay

Definition

x(t) Current sensorimotor state
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Fig. 2 The hVOR performance with failed time-delay compensation, traditional methods. The figure shows a poor response of the eye rotation to head
rotation with traditional controller or. The eye is responding to a delayed head velocity. And as result, the eye velocity (Blue solid line) is oscillating around the
head velocity (Red dashed line), see expanded view. This oscillatory behavior is as if the eye is executing a corrective movement (saccades) to compensate for
the delay head velocity value. However, it often overshoots the target head velocity. This oscillatory behavior continues until the hVOR fails to do its job
completely. The same behavior in Figure could also be the result of a damaged sensory state predictor. In this case even if the time-delay estimation is
working properly the state predictors fails to predict the correct current state. As a result the hVOR will be plagued with oscillations and instability

Based on our formulation, the time-delay estimator can ~ where it is assumed that u(0) =0. The state predictor

be written as can be found as
t-T .
2 M | /o)1) / /)5 5\ 4 ) ~(/p)t
t=Ce pxo+ [e u(s)ds #(e) = 0P g(p-g) +© / S5Psy(s)ds  (15)
0

t—#

M cue-t)
P Without time-delay estimation and prediction, the
(14) " KVOR is unstable and could be affected by high frequency
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Fig. 3 The hVOR performance with existence of time-delay estimator and state predictor under long time delay. The hVOR performance under

long time delay (10 ms) with the proposed method. The hVOR system is stable when the brain model is equipped with time-delay estimator and
state predictor. The figure clearly shows that the hVOR is performing as it should be. The eye velocity is the reverse of the head velocity
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Fig. 4 The response of the time-delay estimation circuit for the hVOR system. Blue dashed line is the variation of the time delay during horizontal
head movement. Red solid line is the simulated tracking of the time-delay estimation circuit
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oscillations (see Fig. 2). These oscillations are reminiscent
of a fast correction mechanism, e.g., a saccade to compen-
sate for hVOR delays [33].

Comparing our simulation result in Fig. 2 with that in
“Fig. 3” of reference [34]. It clearly shows that the hVOR
system with impaired time-delay estimation or impaired
sensory state predictor can mimic certain outcomes of
sensorimotor diseases.

However, if the control of hVOR is augmented with a
time-delay estimator (Fig. 4) and a predictor for eye pos-
ition relative to the head, then hVOR control is stable
and smooth (see Fig. 3).

Conclusion

In this paper, we have proposed a sensorimotor learning
and control model that can predict the dynamics of vari-
able time delays and the future sensory states from the
delayed sensory information; learned new sensorimotor
realities; and controlled motor system in real time. The
results have demonstrated that our developed model can
explain the ability of a sensorimotor system compensat-
ing delays during real-time control.

This development boils down to three claims, with
varying degrees of experimental support. Firstly, we
claim that the brain or sensorimotor systems possess
time-delay estimation circuits. Secondly, the brain con-
tinuously estimates current/future sensory states from
the previously sensed states. Thirdly, the brain uses pre-
dicted sensory states to perform optimal motor control.
Essentially, this process requires performing feedback
control by using predicted states.

The work makes further predictions that the brain
does not need to use any form of clocking mechanism
to sync various aspects of motor control systems af-
fected by delays. In other words, the brain is a data-
driven asynchronous collection of sensorimotor control
systems. Also, fast and random perturbations to the
motor control systems cannot be predicted and may
cause instability. The predictive nature of the primate
sensorimotor system and its ability to compensate for
long delays have been shown by several behavioral and
physiological experiments.
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