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Abstract

Background: Massive biological datasets are generated in different locations all over the world. Analysis of these
datasets is required in order to extract knowledge that might be helpful for biologists, physicians and pharmacists.
Recently, analysis of biological networks has received a lot of attention, as an understanding of the network can reveal
information about life at the cellular level. Biological networks can be generated that examine the interaction
between proteins or the relationship amongst different genes at the expression level. Identifying information from
biological networks is recognized as a significant challenge, due to the inherent complexity of the structures.
Computational techniques are used to analyze such complex networks with varying success.

Results: In this paper, we construct a new method for predicting phenotype-gene association in breast cancer using
biological network analysis. Several network topological measures have been computed and fed as features into two
classification models to investigate phenotype-gene association in breast cancer. More importantly, to overcome the
problem of the skewed datasets, a synthetic minority oversampling technique (SMOTE) is adapted in order to
transform an imbalanced dataset to a balanced one. We have applied our method on the gene co-expression
network (GCN), protein–protein interaction network (PPI), and the integrated functional interaction network (FI),
which combined the PPIs and gene co-expression, amongst others. We assess the quality of our proposed method
using a slightly modified cross-validation.

Conclusions: Our method can identify phenotype-gene association in breast cancer. Moreover, use of the integrated
functional interaction network (FI) has the potential to reveal more information and hidden patterns than the other
networks. The software and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/
NetTop.zip.
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Background
Understanding crosstalk and feedback among oncogenic
pathways is critical in order to predict and overcome
resistance to targeted anticancer therapy. The topology of
biological networks has increasingly been used to com-
plement studies based on individual genes or gene sets.
Several network applications are relevant to the study of
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pathway crosstalk in drug resistance. The identification
of modules and sub–networks that are relatively isolated
from the rest of the network can lead to an under-
standing of the direct interaction and cooperation among
molecules and to more detailed or dynamic models of the
network. Network topological characteristics can poten-
tially be predictive biomarkers through network based
classification [1, 2].
Protein interaction networks and gene co-expression

networks potentially represent patterns of network
connectivity among genes/proteins that differ between
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clinically relevant phenotypes. Various topological mea-
sures that identify relationships between genes, such as
node degree, betweenness [3], or bridging [4], may con-
tribute to the ability to predict phenotype-gene associa-
tion.
Here, we apply several techniques for network analysis

to demonstrate their utility in studying biological net-
works in breast cancer. We utilize network topological
measures to expose the important nodes (genes/proteins)
within the network, and identify marker genes (genes
related to breast cancer) from gene co-expression net-
works, protein interaction networks, or integrated func-
tional networks.
In the present work, we have extracted thirteen topo-

logical measurements (features) from a publicly available
gene co-expression network and a protein interaction net-
work. We then use classification models to investigate
the phenotype-gene association in breast cancer. More-
over, we apply this approach to the integrated functional
network of PPI and gene expression in order to investi-
gate the hidden patterns of breast cancer that might not
be revealed in the protein network or gene co-expression
network.

Related works
Gene expression datasets (not networks) have been used
extensively for the purpose of phenotype-gene associa-
tion, where the gene expression profiles are fed as features
into the classifier [5–7].
Recently, the network–based approach has also been

used for this purpose. For instance, Zhang et al. [8]
proposed a network–based Cox regression model (Net-
Cox). The proposed model was intended to investigate
the gene expression signatures that contribute to the
result of death or repetition in ovarian cancer treat-
ment. Moreover, Ruan et al. [9] proposed a general co-
expression network-based technique that allows analysis
of genes and samples obtained from microarray datasets.
This technique uses a rank–based network construction
method, a parameter-free module discovery algorithm,
and a reference network-based metric for module evalu-
ation. The study utilized a number of different datasets
for evaluation purposes, such as yeast and human cancer
microarray.
Yuanfang et al. [10] proposed an approach that utilized a

mouse genome-wide functional relationship network and
support vector machine classifier to investigate the bone
mineral density (BMD) of a phenotype related to osteo-
porotic fracture. Two genes were revealed (Timp2 and
Abcg8) that are related to bone density defects that were
not identified in other statistical methods (i.e. genome-
wide association studies/quantitative trait loci).
Wu et al. [11] developed a naive Bayes classifier

(NBC) to reveal a functional interaction (FI) network

that combines both curated protein–protein interaction
networks and pathway information.The computed FI net-
work was used to investigate two glioblastoma multi–
form (GBM) datasets and projected the cancer candidate
genes onto the FI network.

Methods
Our proposed methodology consists of four steps:

• Step 1: Extract topological measures from biological
networks.

• Step 2: Identify the breast cancer signature genes.
• Step 3: Apply SMOTE in order to make a balanced

dataset.
• Step 4: Use classification models in order to

investigate the phenotype-gene association in breast
cancer.

Details about these steps are described below:

Topological measures
We study several topological measures in order to under-
stand their capability in identifying disease markers from
the biological network. Table 1 illustrates the relation
among these measures. First, we need to define some
graph (network) concepts.
The degree of a vertex v in a graph G = (V ,E) is the

number of connections it has. Here V is the set of ver-
tices (genes or proteins) in the graph and E is the set of
edges (links) in the graph. The distance σvw of a vertex v
from another vertex w is the number of edges in the short-
est path between them. A path in a graph is a sequence
of edges that connect a sequence of vertices (no repeated
vertices allowed). The walk is a path in which vertices or
edges may be repeated.

Table 1 Topological measures

Degree–based measurements Degree

Coreness

Clustering coefficient

Shortest–path–based measurements Betweenness

Closeness

Proximity prestige

Bary center score

Eigenvector–based measurements Eigenvector centrality

Katz status index

Subgraph–based measurements Subgraph centrality

Within–module z-score

Random–walk–based measurements k-Step Markov

Social–capital–based measurements Structural holes
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The betweenness value of a vertex v is defined by the
following equation:

B(v) =
∑
s∈V
s�=v

∑
t∈V
t �=s,
t �=v

σst(v)
σst

.

The numerator in the fraction shows the number of
shortest paths joining s and t on which v is an intermediate
vertex.
The closeness value of a vertex v is defined by the

following equation:

C(v) =
∑
t∈V
t �=v

1
σvt

.

The proximity prestige measure [12] could be measured
as the ratio of the proportion of vertices that can reach v
to the average path length of these vertices from v.

PP(v) = Iv/(|V | − 1)∑
t∈V
t �=v

σvt/Iv
,

where Iv is the number of vertices in the domain of node v.
Bary center score ranks each vertex of the graph

depending on the total shortest path of the vertex. It com-
putes the shortest path distances for each vertex in the
graph and a score will be assigned for each vertex based
on the lengths of the shortest paths that go through the
vertex.
Clustering coefficient measures the degree of cohesive-

ness in a given graph. For a given vertex v,Ccc(v) is defined
as the ratio of actual number of edges Ei within its neigh-
borhood and the maximum number of possible edges in
that neighborhood.
The coreness value measures the set of vertices that

are highly and mutually interconnected. The k-core is the
largest subgraph, comprising vertices of a degree at least
k, and is derived by recursively removing vertices with a
degree lower than k until none remain.
Eigenvector centrality value expresses the centrality of

a vertex as dependent on the centralities of its directly
connected neighboring vertices. For a given undirected
graph G = (V ,E) and its adjacency matrix A, the
eigenvector centrality is the eigenvector of the largest
eigenvalue λmax in absolute value. The eigenvector cen-
trality Ceiv could be obtained from the following system of
equations:

λ
−→
Ceiv = A

−→
Ceig .

Katz status index centrality ranks a vertex as highly
important if a large number of vertices are connected to it.
Both direct and indirect neighbors of a vertex contribute

to its importance. Katz status index centrality (Cksi is
defined by the following equation:

−→
Cksi =

((
1 − αAT

)−1 − I
) −→1 ,

α is a scaling factor. AT is the transpose of A, I is an
identity vector, −→1 is a vector of ones.
Subgraph centrality value ranks vertices according to

the number of times a given vertex participates in different
connected subgraphs of a network [13]. For a vertex v in
undirected graph G = (V ,E) and its adjacency matrix A,
the subgraph centrality for a node that has length of close
walk k is computed as follows:

Csg(v) =
∞∑
k=0

(Ak)vv
k!

.

Within–module z-score measures how vertices are
related. Modules could be organized in different ways. If
ki is the number of edges of vertex i to other vertices in its
module mi, k̄mi is the average of k over all the vertices in
mi, and smi is the standard deviation of k in mi, then, the
within-module z-score is computed as follows:

zi = ki − k̄mi

smi
.

The within–module z-score measures how well con-
nected vertex i is to other vertices in the module.
k-Step Markov technique calculates the relative proba-

bility that the system will spend some time at any partic-
ular vertex, such that it is given the start set of roots R
and ends after k steps. Let Pu,v be the probability of reach-
ing v from u in one step. So, this probability is the weight
of the edge between u and v. Then, let N(u) be the set
of neighbor vertices of u. After that, the probabilities are
constrained by the following equation.∑

u∈V
v∈N(u)

Pu,v = 1.

Furthermore, a random walk is defined as a walk that
starts at a particular vertex and traverses the graph based
on Pu,v. k-Step Markov centrality is the probability with
which a random walk of length k brings a system to a
particular vertex v [14], and could be obtained from the
following equation.

Cksm(v, k) = P0Ak ,

where P0 is an initial probability distribution of the ver-
tices in G, and A is the adjacency matrix of G containing
the transition probabilities. In this study, we consider k to
be 6.
To apply the structural hole concept, we identify nodes

utilizing Burt’s aggregate constraint measure (Equation
2.7 in [15]). Burt’s structural hole argument is that social
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capital is created by a network in which individuals in
the social network can broker connections between oth-
erwise disconnected segments. This concept builds on a
metaphor of ‘social capital’ that is made concrete with net-
workmodels in which topological measures rank nodes by
their connectivity and lack of redundancy. The argument
further posits that since there is some cost of maintaining
connections, non-redundancy increases the influence of a
node.

Breast cancer signature genes
In this study, three major databases have been utilized
to identify the breast cancer signature genes (genes that
influence breast cancer disease):

• The Genetic Association Database (GAD) [16].
• The Mammalian Phenotype (MP) [17].
• The Human Phenotype Ontology [18].

We have extracted 451 genes that related to breast can-
cer from the databases mentioned above. We fed this gene
data as class labels into classifiers. Thereby the class labels
in the dataset are represented as ‘Yes’ (genes that influ-
ence breast cancer disease) and ‘No’ (genes that do not
influence breast cancer disease).

Synthetic minority oversampling technique
Synthetic Minority Oversampling Technique (SMOTE)
[19] is a sampling approach used to transform an imbal-
anced dataset to a balanced one. A dataset can be con-
sidered imbalanced if there is one group of observations
with a very minimum number of samples compared to
the other group of observations in the same dataset. It is
well known that a machine learning classifier cannot per-
form well if the dataset is highly imbalanced. The dataset
we used in this study is imbalanced by nature and hence
application of SMOTE could transform the dataset to a
balanced one.
The SMOTE approach over–samples the minority class

by creating synthetic samples rather than over–sampling
with replacement. In other words, the positive (minority)
samples are over–sampled with replacement to match the
number of negative (majority) samples, as shown in Fig. 1.
This method operates in ‘feature space’ rather than ‘data
space’: i.e each feature is over–sampled. In line with this,
the minority class is over-sampled by taking each sample
belonging to the minority class and generating synthetic
samples to increase the sample size. This is done using a k-
nearest neighbor algorithm among the minority samples.
The sample that appears to be the closest k neighbor is
joined together to generate a new sample.

Fig. 1 SMOTE’d data example (sample data)
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Classification models
In this study we have used two different classifiers:
Decision Tree Bagger (DTB) [20] and Random under
sampling boost RUSBoost [21] in order to classify the
data, based on the extracted topological measures as
features and breast cancer signature genes as the class
label.
Decision Tree Bagger employs a classic decision tree as

the classifier and then a bagging methodology is used to
further enhance the classification performance of the clas-
sifier. A decision tree is a widely used classifier that divides
the dataset such that the impurity level in each parti-
tioned dataset is reduced when compared to the dataset
that has been partitioned. The impurity level of a dataset
is measured using the class label of each of the records.
The most popular measurement for measuring impurity
level is the Gini Index. Following a tree structure view,
the source dataset is considered as a root node of the
tree, while each partitioned dataset is considered as a
child node that is rooted at the corresponding root node.
Dataset partition is repeated at each of the sub-partitions
with the aim of achieving a pure partitioned data at
the leaf node of each of the branches of the tree. Once
the tree is induced from the training dataset, traversing
the tree from the root to each of the leaf nodes gen-
erates rules. These rules are then applied to classify an
unknown dataset. Since the decision tree is induced from
the training dataset, the tree structure might vary with
varying sets of data of the same problem. Hence, the per-
formance of the respective decision tree also could vary.
To overcome this and achieve an enhanced classification
performance a number of bootstrap replicas of the dataset
are generated. This process of generating multiple repli-
cas of the dataset, by varying sets of data in each of the
datasets, is called the bagging or bootstrap methodol-
ogy. Through application of the bagging methodology, the
resultant individual replica of the training dataset is used
to induce a decision tree. Thus, there will be as many
decision trees as there are generated dataset replicas.
The bagging replica could be sampled randomly choosing
from N observations out of N with replacement, where
N is the total data events in the dataset. Furthermore,
the average of the classification performances from indi-
vidual trees is considered as the output of the decision
tree bagger.
Random Under Sampling Boost (RUSBoost) decision

tree is another approach used to enhance the performance
of the base decision tree classifier to better deal with
an imbalanced dataset. In this approach, the data that
belongs to the minority class is considered as the basic
population, while data belonging to the majority class is
under–sampled, such that the data for each of the classes
becomes balanced. Let us consider that there are obser-
vations that belong to the minority class in the training

data. Following the RUSBoost approach, theseN observa-
tions are considered as the basic population for sampling.
Thus, a total N observation from the data belonging to
the majority class is sampled. Note: if there is more than
one class that is considered as a majority class, N obser-
vations are sampled from each of the classes. All of the
sampled data is merged with the N observations from the
minority class to form a balanced dataset. After achieving
a balanced dataset, a decision tree is induced using this
dataset.

Performance metrics
We consider several measures in order to evaluate each
classifier performance:
Accuracy (ACC) is one of the most widely used perfor-

mance metrics in evaluating a classifier. ACC is defined by
the following equation:

ACC = (TP + TN)

N
,

where (TP+TN) represents all samples that are classi-
fied correctly (both True Positive (TP) and True Negative
(TN)) and N is the total number of samples available (N =
(TP + TN) + (FP + FN)). (FP+FN) represents all samples
that are classified incorrectly (both False Positive (FP) and
False Negative (FN)).
Positive predictive value (PPV) is the proportion of can-

cerous genes in the prediction that are correctly predicted
as cancerous genes:

PPV = TP
(TP + FP)

.

Sensitivity (SN) refers to the proportion of cancerous
genes which are correctly predicted as cancerous and the
total cancerous genes:

SN = TP
(TP + FN)

.

Specificity (SP) refers to the proportion of non-
cancerous genes that are correctly eliminated and the total
non-cancerous genes:

SP = TN
(TN + FP)

.

F-measure (F) is the harmonic mean of sensitivity and
positive predictive value, which is defined as:

F = (2 · SN · PPV)

(SN + PPV)
.

Geometric mean (Gm) has been introduced to over-
come the problem that is associated with the accuracy
metric in imbalanced dataset learning:

Gm = √
(SN · SP).
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The receiver operating characteristic (ROC) curve [22]
is a well known performance measurement metric used
to evaluate the performance of a classifier, particularly
when the dataset is highly imbalanced. The ROC curve
can be generated by considering a two-dimensional Carte-
sian plot, where the x-axis represents the amount (1-SP)
and the y-axis represents SN. It should be noted that by
varying the threshold level of classifying the data into two
classes (e.g. either 1 or 0), the above mentioned measures
will also vary. Hence the ROC plot reflects these variations
in terms of both Sensitivity and Specificity. In summary,
through analysis of the ROC plot it can be easily identified
which threshold level provides the best performance for
a classifier. It is worth mentioning here that the best pos-
sible performance for a classifier can be achieved if both
Sensitivity and Specificity yield 100%. In other words, the
ROC curve that exactly matches the upper part of the
ROC space yields the best performance. Hence, the closer
the curve to the upper part of the ROC space, the bet-
ter the performance is. Alternatively, the area under the
curve can reveal the quality of the classifier’s performance.
If the curve covers the whole ROC space, the classifier is
called the perfect classifier. As such, the area under the
curve (AUC) can also be used as an indication of classi-
fier performance. An AUC value equal to 1 is called the
best classifier, while anything close to 1 can be consid-
ered as good as that of the perfect classifier. An AUC
value less than 0.5 is considered to be a random classifier
performance.

Validation
To achieve a generalized performance of the proposed
method, we applied the well known k-fold cross validation
schema. In this schema, the dataset is divided into k equal
partitions and a computational model is generated using
k−1 partitioned datasets, while the kth partitioned dataset
is kept untouched in order to test the model later. These
steps are repeated k times such that each individual data is
used to test the efficacy of the proposed model. It is worth
mentioning that for k-fold partition, a total k number of
models with varying training datasets are generated. As
our proposed model consists of identification of features
that are based on the performance of the proposed model,
while selecting features we considered only the total k − 1
partitions of dataset by keeping the data belonging to the
kth partition aside. By doing so we achieve a more general
performance of the proposed model without having any
bias towards any class of data.

Results and discussion
In this study three public networks are utilized to extract
network topological features: a) the gene co-expression
network obtained from Hedenfalk et al. [23]; b) the pro-
tein interaction network of Homo Sapiens obtained from

the BioGrid database (version 3.4.132) [24]; and c) the
integrated functional interaction network which made
publicly available by Wu et al. [11]. We compare the
performance of the classification models in predicting the
phenotype-gene association using features extracted from
these networks.We report the performancemeasures that
were mentioned earlier. Table 2 presents a comparison of
the performance of classification models.
We applied 10−fold cross validation schema. We then

compute the 95% confidence interval for the mean with
the following formula: Q = M ± Z.95σM, where Z.95 is the
number of standard deviations extending from the mean
of a normal distribution required to contain 0.95 of the
area and σM is the standard error of the mean. Clearly, the
DTB classification model, which adapts SMOTE sampling
and uses topological features extracted from the inte-
grated functional interaction network (FI), has the highest
G-Mean value (0.90 ± 0.02), as illustrated in Table 2. A
high G-Mean value indicates that a high proportion of
the cancerous genes (the breast cancer genes’ signature)
are predicted correctly. On the other hand, the DTB clas-
sification models that adapt SMOTE sampling and use
topological features extracted from the other two net-
works — GCN and PPI — have lower G-Mean values of
(0.89±0.02) and (0.88±0.02), respectively. This indicates
that using an integrated functional interaction network
can reveal more information about phenotype-gene asso-
ciation in breast cancer. RUSBoost has similar results but
has one major drawback: the RUSBoost uses its own sam-
pling method, which creates a conflict with the SMOTE
sampling method.
Moreover, we compare the performance of the DTB

classification model that adapts SMOTE sampling with
the one that does not adapt SMOTE sampling. The per-
formances were computed using areas under the ROC
curves (AUC). Clearly, the DTB classification that adapted
SMOTE sampling has the largest area under the ROC
curve (AUC = 0.965), as shown in Fig. 2.

Table 2 Comparison of classification results which adapt SMOTE
sampling

Classifier # Metric Public networks

GCN PPI FI

DTB ACC .89 ± .02 .88 ± .02 .90 ± 0.02

F .89 ± .02 .89 ± .02 .90 ± 0.02

AUC .89 ± .02 .88 ± .02 .90 ± 0.02

G-Means .89 ± .02 .88 ± .02 .90 ± 0.02

RUSBOOST ACC .80 ± .04 .82 ± .02 .82 ± 0.03

F .80 ± .04 .83 ± .02 .82 ± 0.02

AUC .80 ± .04 .82 ± .02 .82 ± 0.03

G-Means .80 ± .04 .82 ± .02 .81 ± 0.03
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Fig. 2 Comparison of classification results on the FI network data

In addition, we compute the significant level of each
of the selected topological measurements by using two
well known statistical measurements: accuracy and the
Gini Index. Clearly, the Gini Index outweighs the accuracy
score (as illustrated in Table 3). To overcome this prob-
lem we compute the geometric mean of accuracy and Gini
Index as a combined score. We compute the accuracy, the
Gini Index and the combined score based on the DTB
classification model that adapts SMOTE sampling and
using topological features extracted from the integrated

Table 3 Feature importance analysis: Accuracy, Gini Index, and
the combined score are listed

Topological measures Accuracy Gini index Combined score

Structural holes 0.3081 579.9545 13.37

Degree 0.3088 578.1108 13.36

Coreness 0.3056 474.7823 12.05

k-Step Markov 0.2958 371.1454 10.47

Subgraph centrality 0.3032 354.3712 10.36

Within–module z-score 0.2704 291.5019 8.88

Katz status index 0.2882 259.1472 8.64

Closeness 0.2943 227.2495 8.18

Proximity prestige 0.2962 222.5109 8.12

Eigenvector centrality 0.2834 230.7507 8.09

Betweenness 0.2731 230.3441 7.93

Bary center score 0.2742 118.4802 5.70

Clustering coefficient 0.0632 0.3585 0.15

functional interaction network. The results are illustrated
in Table 3. It can be seen from that table that ‘Struc-
tural Holes’ and ‘Degree’ features outperform the other
features by a significant margin in terms of combined
score values. In addition, a backward elimination method
has been computed that identifies a subset of five fea-
tures as important features in predicting phenotype-gene
association. The identified features are ‘Structural Holes’,
‘Degree’, ‘Coreness’, ‘k-Step Markov’ and ‘Subgraph’.
Finally, we investigate genes that not classified correctly,

particularly the ones from the group where genes are
not cancerous but the method misclassifies them as can-
cerous genes. Table 4 illustrates some of these genes.
Each gene is listed according to its symbol, name and
related OMIM disease. The table shows that our method
is capable of identifying new genes that may be related to
breast cancer.

Conclusions
Wehave compared various topological measures that have
the potential to identify phenotype-gene association for
breast cancer. We have extracted thirteen features from
publicly available gene co-expression networks and pro-
tein interaction networks. We have used two classification
models to investigate the phenotype-gene association in
breast cancer. Moreover, we have applied this approach to
the integrated functional network of PPI and gene expres-
sion in order to investigate the hidden pattern of breast
cancer that might not be revealed in the protein networks
or gene co-expression networks.
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Table 4 List of some genes that are misclassified by the method as breast cancer related genes

Gene symbol Gene name OMIM disease

CD4 CD4 molecule CD4+ lymphocyte deficiency

APP amyloid beta (A4) precursor protein Alzheimer disease 1, Amyloidosis, Dementia, early-onset progressive,
autosomal recessive,

CDK2 cyclin-dependent kinase 2 A novel susceptibility locus for type 1 diabetes.

FN1 fibronectin 1 Glomerulopathy with fibronectin deposits.

IRF1 interferon regulatory factor 1 Gastric cancer, Macrocytic anemia, Myelodysplastic syndrome,
preleukemic, Myelogenous leukemia, acute, Nonsmall cell lung cancer.

PSEN1 presenilin 1 Alzheimer disease, Cardiomyopathy, Pick disease.

STAT1 signal transducer and activator of transcription 1 Mycobacterial infection, atypical, familial disseminated.

SLC25A3 solute carrier family 25 Micochondrial phosphate carrier deficiency.

SOS1 son of sevenless homolog 1 Fibromatosis, gingival, Noonan syndrome 4.

In conclusion, our approach is capable of effec-
tively detecting the phenotype-gene association in breast
cancer.
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