
BioMed CentralBMC Bioinformatics

ss
Open AcceProceedings
A structural approach for finding functional modules from large 
biological networks
Mutlu Mete1, Fusheng Tang2, Xiaowei Xu*3 and Nurcan Yuruk1

Address: 1Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas, USA, 2Department of Biology, University of 
Arkansas at Little Rock, Little Rock, Arkansas, USA and 3Department of Information Science, University of Arkansas at Little Rock, Little Rock, 
Arkansas, USA

Email: Mutlu Mete - mxmete@ualr.edu; Fusheng Tang - fxtang@ualr.edu; Xiaowei Xu* - xwxu@ualr.edu; Nurcan Yuruk - nxyuruk@ualr.edu

* Corresponding author    

Abstract
Background: Biological systems can be modeled as complex network systems with many
interactions between the components. These interactions give rise to the function and behavior of
that system. For example, the protein-protein interaction network is the physical basis of multiple
cellular functions. One goal of emerging systems biology is to analyze very large complex biological
networks such as protein-protein interaction networks, metabolic networks, and regulatory
networks to identify functional modules and assign functions to certain components of the system.
Network modules do not occur by chance, so identification of modules is likely to capture the
biologically meaningful interactions in large-scale PPI data. Unfortunately, existing computer-based
clustering methods developed to find those modules are either not so accurate or too slow.

Results: We devised a new methodology called SCAN (Structural Clustering Algorithm for
Networks) that can efficiently find clusters or functional modules in complex biological networks
as well as hubs and outliers. More specifically, we demonstrated that we can find functional modules
in complex networks and classify nodes into various roles based on their structures. In this study,
we showed the effectiveness of our methodology using the budding yeast (Saccharomyces
cerevisiae) protein-protein interaction network. To validate our clustering results, we compared
our clusters with the known functions of each protein. Our predicted functional modules achieved
very high purity comparing with state-of-the-art approaches. Additionally the theoretical and
empirical analysis demonstrated a linear running-time of the algorithm, which is the fastest
approach for networks.

Conclusion: We compare our algorithm with well-known modularity based clustering algorithm
CNM. We successfully detect functional groups that are annotated with putative GO terms. Top-
10 clusters with minimum p-value theoretically prove that newly proposed algorithm partitions
network more accurately then CNM. Furthermore, manual interpretations of functional groups
found by SCAN show superior performance over CNM.
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Background
Biological systems can be modeled as complex network
systems with many interactions between the components.
These interactions give essential information about the
function and behavior of the analyzed system. For exam-
ple, the protein-protein interaction network is the physi-
cal basis of multiple cellular functions. The first large-scale
protein interaction studies were conducted on yeast [1,2],
followed by more recent studies on the fly [3] and the
worm [4]. The main goal of current network research in
many diverse areas such as biology, social sciences and
statistical physics is to understand and characterize under-
lying network structures. Such an understanding is vital
for many systems, simply because structure always affects
function [5].

As noted by Barabasi [6], the most important discovery of
network research in recent years is that many different
complex network systems including biological networks
demonstrate some significant common principles that
govern their architecture, topology and behavior such as
small-world property [7,8], power-law degree distribution
[7] and highly modular structures [9].

Among other network analysis tasks network clustering
plays a particular role as it helps us to detect modules or
communities which are usually good indicators of struc-
tural or functional units of the underlying network.

Various methods have been developed to find partitions
in networks. These methods tend to partition networks
such that there are a dense set of edges within every parti-
tion and few edges between partitions. Modularity-based
algorithms [10-12] and normalized cut [13,14] are widely
used examples. However, most of the state-of-the-art algo-
rithms have quadratic running time thus limited usage for
large real networks.

Recently we proposed a new network clustering algo-
rithm, SCAN (Structural Clustering Algorithm for Net-
works) which runs linearly with the size of given network
[15]. Despite the common methodology of current meth-
ods where maximization or minimization of edges
within/across clusters is essential, it defines clusters based
on structural similarity of vertices. Number of shared
neighbors for two vertices basically defines their similar-
ity, and vertices with similarity values above certain
threshold are assigned to the same partition. Similarity
definition that takes into account the neighborhood of a
vertex becomes more reasonable when social networks are
considered: people who share more friends are more
likely to be friends each other and more likely to be mem-
bers of same community.

Additionally its capability to detect hubs and isolated
nodes in the given network makes it a unique approach as
no other available methods offer such a function.

In this study, we show the effectiveness of our methodol-
ogy using the budding yeast (Saccharomyces cerevisiae)
protein-protein interaction network. To validate our clus-
tering results, we compare our clusters with the known
functions of each protein. Our predicted functional mod-
ules achieve very high clustering scores as compared to
other state-of-the-art approaches.

Results and discussion
Protein-Protein Interaction Network
Hand-curated databases of PPI in Saccharomyces cerevisiae
have been studied earlier in the literature [16-18] and are
proven to be invaluable resources for bioinformatics
research. For this study, PPI network is downloaded from
the Saccharomyces Genome Database (SGD) [19] on Janu-
ary 21, 2008. After cleaning unrelated interaction, we
chose only Affinity Capture-MS and Affinity Capture-
Western proteins, which account for 26751 interactions
between 4030 proteins.

Validation metric based on Gene Ontology
The Gene Ontology (GO) database provides controlled
vocabularies for the description of the 1) molecular func-
tion, 2) biological process, and 3) cellular component of
gene products. The ontologies are continuously updated
by GO Consortium, and new versions are made available
on monthly basis. Of three ontologies, molecular func-
tion describes the tasks performed by individual gene
products, such as enzyme activator activity and RNA bind-
ing; biological process refers broad biological goals, such
as chromatin remodeling or mRNA capping; and cellular
component covers subcellular structures, locations, and
macromolecular complexes, such as intracellular or cyto-
plasm.

The ontologies of GO database are manually created by
many scientists. GO database is accepted as ground-truth
and used for comparison and validation purposes. Thus,
in our analysis we used GO ontologies to test if the result-
ing clusters are related to any known functional modules.
Simply relying on number of proteins that have same
annotation will be misleading since distributions of genes
among various GO categories are not uniform.

P-value is the probability that a given set of proteins is
enriched by a given functional group by random chance.
It is usually used as a criteria to assign each cluster to a
known function [20,21]. The smaller the p-value, the
more evidence the clustering is not random. In terms of
GO annotations, a group of genes with smaller p-value is
more significant than the one with a higher p-value.
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Consider a cluster with size n, m proteins sharing a partic-
ular annotation A. Also assume that there are N proteins
in the PPI database, and M of them are known to have
annotation A. Given that, the probability of observing m
or more proteins that are annotated with A out of n pro-
tein is:

Based on above formulation, p-value is calculated for each
of three ontologies. However we cannot find always three
p-values for a cluster since it is not guaranteed that each
cluster has at least one member associated with each of
ontology. For instance, protein trm2 does not have any
association for cellular component, whereas protein
mms1 has two entries which are both from biological
process ontology. Assuming a cluster has only two mem-
bers, trm2 and mms1, we cannot calculate a p-value of the
cluster for cellular component ontology. Therefore, it
would be correct to claim that we calculate at least one p-
value for each cluster. In the case of multiple annotations
from same ontology, the one with the smaller p-value is
assigned to the cluster as functional annotation. That
being said, the p-value without any restriction is not
enough to label clusters as significant. Hence we use the
recommended cutoff value of 0.05 in order to select signif-
icant clusters within each ontology.

Let C be a cluster including k annotations, and AC denote
proteins having annotation A in cluster C. The cluster

 is labeled with a functional

annotation , 1 ≤ t ≤ k, iff p-value of  is the smallest

one among others in cluster C and less than cutoff value.
After all, we call a cluster insignificant if it has no func-
tional annotation.

While functional annotations, backed by the statistical
evidence, are good interpretation for a single cluster, they
do not have much impact to quantify the overall cluster-
ing accuracy. Therefore we employ a measure called clus-
tering score [22] to compare two clustering layouts.

where ns and ni denotes the number of significant and
insignificant clusters, respectively and min(pi) represents

the smallest p-value of a significant cluster. Note that
min(pi) equals to the p-value of functional annotation at
the same time. Clustering score is calculated for three dif-
ferent categories of the GO Ontology, molecular function,
biological process, and cell component. In Figure 1 clus-
tering scores are shown for SCAN and CNM. Please refer
Additional file 1 for annotation of each cluster.

Furthermore, to show how SCAN clearly outperforms
CNM, we listed top-10 clusters having the smallest p-val-
ues with corresponding GO categories in Table 1 and
Table 2. For the category of biological process, SCAN finds
clusters with smaller p-values. Also note that p-values of
clusters in SCAN are increasing gradually from first to
tenth cluster (4.45E-98 to 9.29E-28). In contrast, CNM
results start with greater p-value (2.10E-61) and spot clus-
ters with larger size. Recall that the smaller p-value is the
better to annotate a cluster with certain function. How-
ever, some clusters of CNM with smaller p-values are still
hard-to-interpret because of their enormous size, such as
cluster 14 having 220 proteins, cluster 12 with 919 pro-
teins, and cluster 48 with 549 proteins.

For molecular function, similar to biological process,
there is a significant difference between two algorithms in
terms of both p-values and size of clusters. While SCAN
clusters have p-values between 5.64E-71 and 1.37E-17
and average cluster-size of 44, CNM yields clusters with p-
values ranging between 1.71E-26 and 2.52E-09 and aver-
age size of 329 (10 to 1408). Size problem for molecular
function seems even worse than biological process.

In the category of cellular component, group of top-10
clusters starts with cluster 10, p-value 3.67E-66, size of
107. It is good start against SCAN, however, p-values of
CNM do not show regular increase as seen in SCAN clus-
ters. Additionally, regarding CNM results, fluctuation in
clustering size arises once again and makes the evaluation
intricate. Thus, we randomly picked a few clusters and
analyzed the accuracy manually.

Validation based on manual comparisons
To judge the significance of a cluster, we manually ana-
lyzed whether the function of each member corresponds
to cluster's assigned function from three different GO
Ontologies, biological processes, cellular components,
and molecular functions. We chose cluster sizes ranging
from 10 to 30 members since most functional complexes
contain the comparable numbers of protein components.

For biological process, SCAN assigned all the anaphase
promoting complex proteins (apc1; apc11; apc2; apc4;
apc5; apc9; cdc16; cdc23; cdc26; cdc27; doc1; mnd2;
swm1) into one cluster. The clustering result is shown in
Figure 2. In this graph, interactions only for cluster mem-
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bers are shown to keep the network visually readable. Pro-
teins that are members of found cluster are denoted in
different color. Although SCAN identified most subunits
of the APC/C complex, it missed a few key components
such as cdc20 and cdh1. This is due to the multi-valent
interactions of these proteins. SCAN assigned these two
proteins in the hub category. Unlike SCAN, CNM merged
these proteins into a big cluster with 75 members, which
also includes proteins involved in translation initiation,
ergosterol synthesis, and other cellular processes. SCAN
also identified the vacuolar H+- ATPase complex (rav1,
rav2, vma10, vph1, etc) and grouped them into a cluster
with 16 members. In this cluster, there are three proteins
that have not been reported to directly function in the
assembly of the vacuolar H+-ATPase. Xdj1p is a chaper-
one-like protein. Yig1p is involved in anaerobic glycerol
production, which may indirectly affect the cytosolic pro-
ton homeostasis. Ymr027wp is a protein with unknown
function so far. From our clustering results, we predict that

xdj1p and ymr027wp are also involved in the assembly of
the vacuolar H+-ATPase. Contrary to the SCAN results,
CNM grouped these vacuolar H+-ATPase proteins into a
huge cluster with 1416 members, which is not insightful
for any predictions.

For cellular components, SCAN accurately identified the
exocyst complex (exo70, exo84, sec3, sec15, etc, please
refer Figure 3), and the DNA replication preinitiation
complex (cdc45, dpb11, mcm10 etc). On the contrary,
CNM put the exocyst complex into a group with 551
members and the DNA replication preinitiation complex
into a group with 919 members. Although SCAN missed
protein Sld2p in the DNA replication preinitiation com-
plex and included two extra proteins (srp101p, srp102p),
SCAN predicted a new function for erv2p. Erv2p is an ER
lumen protein required for the formation of disulfide
bonds. Our clustering result suggests that erv2p helps the
proper folding of the proteins required for DNA replica-

Comparison of clustering scores for three GO categoriesFigure 1
Comparison of clustering scores for three GO categories.
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tion. Both SCAN and CNM detected the peroxisome
membrane protein complex (SCAN cluster-176 with 9
members; CNM cluster-19 with 11 members). Please refer
Additional file 2 and 3 for detailed clustering results. The
two extra proteins (pex3, pex19) in CNM cluster 19 are
also members of the peroxisomal membrane complex.

For molecular functions, SCAN found translation initia-
tion complex (cluster-105 with 10 members; gcd1, gcd11,

ist1, mrf1, etc). The found clustering result is depicted in
Figure 4. CNM again assigned these proteins into a huge
cluster with 1416 members. The function of protein glyc-
osylation is achieved by many proteins in multiple subcel-
lular locations including the lumen of ER and golgi. After
glycosylation, the proteins will be transported to their
right locations by secretion or other sub-cellular transport
systems. SCAN assigned 35 proteins to one cluster. This
cluster contains the oligosaccharyltransferase complex

Table 1: Top-10 SCAN clusters with highest p-values

Cluster ID P -value GO Term Term Freq. in 
Network

Term Freq. in 
Cluster

Cluster Size

Biological 
Process

1 4.45E-98 nuclear mrna splicing, via 
spliceosome

66 58 88

89 1.01E-65 translation 252 58 64
5 1.16E-52 ubiquitin-dependent protein 

catabolic process
60 34 56

2 9.04E-40 transcription from rna polymerase ii 
promoter

50 41 288

15 8.58E-38 anaphase-promoting complex-
dependent proteasomal ubiquitin-
dependent protein catabolic process

13 13 13

22 1.36E-30 chromatin remodeling 46 20 40
192 5.46E-29 vacuolar acidification 23 13 16
13 6.36E-29 chromosome segregation 36 16 25
24 2.14E-28 regulation of microtubule 

polymerization or depolymerization
10 10 12

30 9.29E-28 regulation of cell growth 10 10 13

Cellular 
Components

7 6.81E-53 cytosolic large ribosomal subunit 80 55 222

89 1.50E-51 mitochondrial small ribosomal 
subunit

33 29 64

1 2.53E-41 u4/u6 × u5 tri-snrnp complex 27 25 88
15 9.01E-36 anaphase-promoting complex 15 13 13
22 7.15E-31 rsc complex 16 15 40
24 2.14E-28 dash complex 10 10 12
38 2.14E-28 trapp complex 10 10 12
185 7.18E-26 ribonuclease mrp complex 9 9 11
155 5.84E-25 smc5-smc6 complex 8 8 8
53 4.93E-24 dna replication preinitiation complex 21 12 22

Molecular 
Functions

89 5.64E-71 structural constituent of ribosome 210 58 64

5 2.75E-45 endopeptidase activity 26 24 56
1 7.12E-45 contributes_to rna splicing factor 

activity, transesterification 
mechanism

29 27 88

37 6.44E-41 snap receptor activity 24 23 74
192 4.65E-28 hydrogen ion transporting atpase 

activity, rotational mechanism
12 11 16

185 7.18E-26 contributes_to ribonuclease mrp 
activity

9 9 11

22 6.60E-23 contributes_to dna-dependent 
atpase activity

15 12 40

34 1.30E-22 protein transporter activity 24 14 46
15 2.25E-18 ubiquitin-protein ligase activity 44 10 13
8 1.37E-17 dolichyl-diphosphooligosaccharide-

protein glycotransferase activity
8 8 35
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proteins (ost1, ost2, ost3, etc) of the ER lumen, the golgi
mannosyltransferase complex proteins (mnn9, mnn10,
mnn11), and secretion proteins (sec61, sec62, sec63, etc).

Grouping these proteins into one cluster emphasizes the
potential of applying SCAN in analysis of dynamic bio-
logical networks.

Table 2: Top-10 CNM clusters with highest p-values

Cluster ID P -value GO Term Term Freq. in 
Network

Term Freq. in 
Cluster

Cluster Size

Biological 
Process

15 2.10E-61 nuclear mrna splicing, via 
spliceosome

66 55 220

17 5.00E-40 transposition, rna-mediated 33 19 22
13 5.11E-31 rna elongation from rna polymerase 

ii promoter
53 51 919

49 4.30E-25 ribosomal large subunit assembly 
and maintenance

39 34 549

16 1.09E-23 anaphase-promoting complex-
dependent proteasomal ubiquitin-
dependent protein catabolic process

13 13 75

58 2.78E-22 microtubule nucleation 22 16 98
53 7.86E-20 trna processing 14 8 10
45 8.35E-18 negative regulation of 

gluconeogenesis
9 7 12

56 3.15E-17 ubiquitin-dependent protein 
catabolic process via the 
multivesicular body pathway

13 11 91

63 1.73E-13 mrna polyadenylation 17 13 241

Cellular 
Components

11 3.67E-66 mitochondrial large ribosomal 
subunit

43 41 107

49 4.72E-42 cytosolic large ribosomal subunit 80 64 549
17 5.00E-40 retrotransposon nucleocapsid 33 19 22
58 1.28E-30 condensed nuclear chromosome 

kinetochore
30 22 98

16 2.48E-24 anaphase-promoting complex 15 14 75
20 1.58E-23 peroxisomal membrane 12 9 11
37 9.63E-23 smc5-smc6 complex 8 8 11
53 2.36E-22 ribonuclease mrp complex 9 8 10
63 5.21E-18 mrna cleavage and polyadenylation 

specificity factor complex
14 14 241

65 3.13E-15 alpha-1,6-mannosyltransferase 
complex

6 6 18

Molecular 
Functions

17 1.71E-26 rna binding 130 19 22

58 2.34E-24 structural constituent of 
cytoskeleton

47 22 98

53 2.36E-22 contributes_to ribonuclease mrp 
activity

9 8 10

13 9.16E-19 dna-directed rna polymerase activity 31 30 919
49 6.52E-17 snorna binding 21 20 549
48 5.97E-13 contributes_to protein transporter 

activity
7 5 10

30 1.24E-10 nad-independent histone deacetylase 
activity

4 4 15

65 2.79E-10 contributes_to alpha-1,6-
mannosyltransferase activity

4 4 18

33 1.34E-09 endopeptidase activity 26 24 1408
63 2.52E-09 contributes_to histone lysine n-

methyltransferase activity 
(h3-k4 specific)

7 7 241
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With regard to assigning proteins with similar functions to
a cluster, SCAN out-weighted CNM in 6 out of 7 clusters
we analyzed manually. Moreover, smaller size clusters
found by SCAN enable us to predict the function of each
cluster more accurately.

Methods
The notion of structure-connected clusters
Our goal is to achieve an optimal clustering of the PPI net-
work, as well as to identify hubs and outliers. Therefore,
both connectivity and local structure are used in our defi-

Cluster of anaphase promoting complex proteinsFigure 2
Cluster of anaphase promoting complex proteins.
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nition of optimal clustering. In this section, we formulize
the notion of a structure-connected cluster, which extends
that of a density-based cluster [23] and can distinguish
good clusters, hubs, and outliers in networks. In the next
section, we present, SCAN, an efficient algorithm to find
the optimal clustering of networks [15].

Structure-connected clusters
The existing network clustering methods are designed to
find optimal clustering of networks based on the number
of edges that run within or across clusters. Direct connec-
tions are important, but they represent only one aspect of
the network structure. We believe that the neighborhood
around two connected vertices is also important. The
neighborhood of a protein includes all the vertices con-
nected to it by an edge. When you consider a pair of con-
nected vertices, their combined neighborhood reveals
neighbors common to both vertices.

Our method is based on common neighbors. Two vertices
are assigned to a cluster according to how they share
neighbors. This makes sense when you consider social
communities. People who share many friends create a
community, and the more friends they have in common,
the more intimate the community. But in social networks
there are different kinds of actors. There are also people

who are outsiders (like hermits), and there are people
who are friendly with many communities but belong to
none (like politicians). The latter plays a special role in
small-world networks as hubs [24]. Such a hub is illus-
trated by protein G in Figure 5.

More formally, we focus on simple, undirected and
unweighted graphs. Let G = {V, E} be a graph, where V is
a set of vertices -proteins in PPI; and E is set of unordered
pairs of distinct vertices, called edges. Before formal pres-
entation of SCAN, it is worth to give fundamental defini-
tions exploited by the algorithm. We refer the reader to
our previous work [15] for extensive formal discussions.

The structure of a vertex is described by its neighborhood.
A formal definition of vertex structure is given as follows.

Definition 1 (Vertex Structure)
Let v ∈ V, the structure of v is defined by its neighborhood,
denoted by

Γ (v) = {w ∈ V | (v, w) ∈ E} ∪ {v}

Please note that neighborhood of protein v, Γ (v), also
includes v in addition to all neighbors of v. For instance,
considering Figure 5, Γ (A) would be {A, B, E, F, G}. Hav-
ing Definition 1, now we can formulize similarity func-
tion, which is run for every edge, {v, w} ∈ E, in the
network. We call the similarity function structural similar-
ity because it is solely derived from vertex structure Γ (v).
The structural similarity between two vertices is measured
by normalized common neighbors, which is also called
cosine similarity measure commonly used in information
retrieval. If we only use the number of shared neighbors,
hub vertices, such as G in Figure 5, will be clustered into
either of the clusters or two clusters will be mistakenly
merged. Therefore, we normalize number of common
neighbors by the geometric mean of the two neighbor-
hoods' size. Note that In Figure 5, protein G should be
identified as a hub, shared in neighborhood of both clus-
ters.

Definition 2 (Structural Similarity)

When a member of cluster shares a similar structure with
one of its neighbors, their computed structural similarity
will be large. Obviously structural similarity is symmetric,
σ (v, w) = σ (w, v). Structural similarity between v and w,
σ (v, w), would be greater than zero if and only if v and w
are vertices of an edge e ∈ E. Under this circumstance,
structural similarity attains values between (0, 1]. How-
ever, structural similarity should be restricted to control

σ( , )
| ( ) ( )|
| ( )|| ( )|

v w
v w
v w

= Γ Γ
Γ Γ
∩

Cluster of exocyst complexFigure 3
Cluster of exocyst complex.
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expansion of the cluster. Therefore, we apply a threshold
ε to the computed structural similarity when assigning
cluster membership, formulized in the following ε-neigh-
borhood definition.

Definition 3 (ε-Neighborhood)
Nε (v) = {w ∈ Γ (v)|σ (v, w) ≥ ε}

When a vertex accumulates enough neighbors in its ε-
neighborhood, it becomes a nucleus or seed for a cluster.
Such a vertex is called a core vertex. Core vertices are a spe-
cial class of vertices that have a minimum of μ neighbors
with a structural similarity that greater than or equals to
the threshold ε. From core vertices we grow the clusters. In
this way only the parameters μ and ε determine the clus-
tering of networks. For a given ε, the minimal size of a
cluster is determined by μ. If a vertex w is in ε-neighbor-
hood of a core vertex v, vertex w should be included into
the same cluster with vertex v. Because, they are connected
and share a similar structure. This concept is known as
direct structural reachability.

Direct structural reachability is symmetric for any pair of
cores. However, it is asymmetric if one of the vertices is
not core. Also the property of direct structural reachability
is basis for the cluster expansion. A newly formed cluster
C consists of a core vertex v and v's ε-neighborhood. Then
we try to expand cluster C through any vertex w in v's ε-
neighborhood. This approach guarantees that vertex w is
directly structure-reachable from vertex v. Iterative queries
for direct structural reachability usually add more and
more vertices into the current cluster. This procedure
mimics a chain effect for core vertices.

A simple setting is shown in Figure 6. Under the condi-
tions of μ = 2 and ε = 0.6, the possible scenario is as fol-
lows: We find E as the first core vertex since structural
similarity between E and B is greater than ε, 0.6. Now a
cluster of {E, B} is formed, and it should be expanded if

possible. At the second step we look for any vertex that is
similar to B. Among neighbors of B, vertex D is selected
and inserted into the current cluster {E, B} due to similar-
ity value of 0.77 between B and D. After the insertion, the
cluster has now three vertices {E, B, D}. At this stage of
algorithm, it is noticeable that vertex E and B are core ver-
tices; B is directly structure-reachable from E; and D is
directly structure-reachable from B.

After given example, we introduce another property of
SCAN algorithm: structural reachability, which can be
considered as chained form of direct structural reachabil-
ity. The structural reachability is transitive, but it is asym-
metric. It is only symmetric for a pair of cores, as appears
in previous example. More specifically, the structural
reachability is a transitive closure of direct structural
reachability.

Two non-core vertices in the same cluster may not be
structure-reachable because the core condition may not
hold for them. But they still belong to the same cluster
because they both are structure- reachable from the same
core. This idea is known as structural connectivity, and
explained more formally as follows. A vertex v ∈ V is struc-
ture-connected to a vertex w ∈ V w.r.t ε and μ, if there is a
vertex u ∈ V such that both v and w are structure-reachable
from u. The structural connectivity is a symmetric relation.
For the structure-reachable vertices, it is also reflective.
Now we are ready to define a cluster as structure-con-
nected vertices, which is maximal w.r.t. structural reacha-
bility.

A small network demonstrating two clusters, a hub (vertex 6), and an outlier (vertex 13)Figure 5
A small network demonstrating two clusters, a hub (vertex 
6), and an outlier (vertex 13).

A toy network demonstrating structural reachabilityFigure 6
A toy network demonstrating structural reachability. Similar-
ities between vertices are given.
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A non-empty subset C ⊆ V is called a structure-connected
cluster w.r.t ε and μ, if all vertices in C are structure-con-
nected and C is maximal w.r.t structure reachability. The
SCAN algorithm finds all clusters w.r.t ε and μ, however,
there might be some isolated vertices that are not assigned
to clusters. If this is the case, we categorize each of those
vertices either as hub or outlier. When an isolated vertex v
∈ V has neighbors belonging to two or more different
clusters, it is labeled as hub vertex. Otherwise, isolated ver-
tex would be an outlier.

In practice, the definitions of a hub and an outlier are flex-
ible. It may be more useful to regard hubs as a special kind
of outlier, since both are isolated vertices. The more clus-
ters in which an outlier has neighbors, the more strongly
that vertex acts as a hub between those clusters. This point
will be discussed further when we consider actual net-
works.

Algorithm scan
In this section, we describe the algorithm SCAN which
implements the search for clusters, hubs and outliers in
PPI network. The search begins by first visiting each vertex
once to find structure-connected clusters, and then visit-
ing the isolated vertices to identify them as either a hub or
an outlier.

The pseudo code of the algorithm SCAN is presented in
Figure 7 with graphical representation in Figure 8 and Fig-
ure 9. SCAN performs one pass of a network and finds all
structure-connected clusters for a given parameter setting.
At the beginning all vertices are labeled as unclassified.
The SCAN algorithm classifies each vertex either a mem-
ber of a cluster or a non-member. For each vertex that is
not yet classified, SCAN checks whether this vertex is a
core (STEP 1). If the vertex is a core, a new cluster is
expanded from this vertex (STEP 2.1). Otherwise, the ver-
tex is labeled as a non-member (STEP 2.2). To find a new
cluster, SCAN starts with an arbitrary core v and search for
all vertices that are structure-reachable from v in STEP 2.1.
This is sufficient to find the complete cluster containing
vertex v, due to given definitions. In STEP 2.1, a new clus-
ter ID is generated which will be assigned to all vertices
found in STEP 2.1. SCAN begins by inserting all vertices in
ε-neighborhood of vertex v into a queue. For each vertex
in the queue, it computes all directly structure-reachable
vertices and inserts those vertices into the queue which are
not yet classified. This is repeated until the queue is
empty.

The non-member vertices can be further classified as hubs
or outliers in STEP 3. If an isolated vertex has edges to two
or more clusters, it is classified as a hub. Otherwise, it is an
outlier. This final classification is done according to what
is appropriate for the network. As mentioned earlier, the

more clusters in which an outlier has neighbors, the more
strongly that vertex acts as a hub between those clusters.
Likewise, a vertex might bridge only two clusters, but how
strongly it is viewed as a hub may depend on how aggres-
sively it bridges them.

As discussed before, the results of SCAN do not depend on
the order of processed vertices, i.e. the obtained clustering
of network (number of clusters and association of cores to
clusters) is determinate.

Complexity analysis
In this section, we present an analysis of the computation
complexity of the algorithm SCAN. Given a graph with m
edges and n vertices, SCAN first finds all structure-con-
nected clusters w.r.t. a given parameter setting by checking
each vertex of the graph (STEP 1). This entails retrieval of
all the vertex's neighbors. Using an adjacency list, a data
structure where each vertex has a list of which vertices it is
adjacent to, the cost of a neighborhood query is propor-
tional to the number of neighbors, that is, the degree of
the query vertex. Therefore, the total cost is
O(deg(v1)+deg(v2)+...deg(vn)), where deg(vi), i = 1,2,..., n

Pseudocode of SCAN AlgorithmFigure 7
Pseudocode of SCAN Algorithm.

ALGORITHM SCAN(G=<V, E>, ε, μ)

// all vertices in V are labeled as unclustered; 

for each unclassified vertex v ∈ V do

// STEP 1. check whether v is a core; 

if COREε,μ(v) then

// STEP 2.1. if v is a core, a new cluster is 
expanded; 

generate new clusterID; 

insert all x ∈ Nε (v) into queue Q; 

while Q ≠ 0 do

y = first vertex in Q; 

R = {x ∈ V | DirREACHε,μ(y, x)}; 

for each x ∈ R do

if x is unclassified or non-member then

 assign current clusterID to x; 

if x is unclassified then

 insert x into queue Q; 

 remove y from Q; 

else 

// STEP 2.2. if v is not a core, it is labeled as 
non-member 

 label v as non-member; 

end for. 

// STEP 3. further classifies non-members 

for each non-member vertex v do

if ( ∃ x, y ∈ Γ(v) ( x.clusterID ≠y.clusterID)
then

 label v as hub 

else 

 label v as outlier; 

end for. 

end SCAN. 
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is the degree of vertex vi. If we sum all the vertex degrees in
G, we count each edge exactly twice: once from each end.
Thus the running time is O(m).

We also derive the running time in terms of the number of
vertices, should the number of edges be unknown. In the
worst case, each vertex connects to all the other vertices for

Graphic diagram of the main body of algorithm SCANFigure 8
Graphic diagram of the main body of algorithm SCAN.
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a complete graph. The worst case total cost, in terms of the
number of vertices, is O(n(n-1)), or O(n2). However, real
networks generally have sparser degree distributions. In
the following we derive the complexity for an average
case, for which we know the probability distribution of
the degrees. One type of network is the random graph,
studied by Erdös and Rényi [25]. Random graphs are gen-
erated by placing edges randomly between vertices. Ran-
dom graphs have been employed extensively as models of
real world networks of various types, particularly in epide-
miology. The degree of a random graph has a poisson dis-
tribution:

which indicates that most nodes have approximately the
same number of links (close to the average degree E(k) =
z). In the case of random graphs the complexity of SCAN
is O(n).

Many real networks, such as social networks, biological
networks and the WWW follow a power-law degree distri-
bution. The probability that a node has k edges, P(k), is on
the order k-α, where α is the degree exponent. A value
between 2 and 3 was observed for the degree exponent for
most biological and non-biological networks studied by
the Faloutsos brothers [26] and Barabási and Oltvai [5].
The expected value of degree is E(k) = α/(α-1). In this case
the average cost of SCAN is again O(n).

Therefore, the complexity in terms of the number of edges
in the graph for SCAN algorithm is in general linear. The
complexity in terms of the number of vertices is quadratic
in the worst case of a complete graph. For real networks
like biological networks, social networks, and computer
networks, SCAN expects linear complexity with respect to
the number of vertices as well.

Conclusion and research directions
We devised a new methodology called SCAN (Structural
Clustering Algorithm for Networks) that can efficiently
find clusters or functional modules in complex biological
networks as well as hubs and outliers [15]. We showed the
effectiveness of our methodology using the budding yeast
(Saccharomyces cerevisiae) protein-protein interaction
network.

To validate our clustering results, we compared our clus-
ters with the known functions of each protein. Addition-
ally, we compared our algorithm with well-known
modularity based clustering algorithm, CNM [12]. We
successfully showed that SCAN can detect functional
groups that are annotated with GO terms. Top-10 clusters
with minimum p-values demonstrated that clusters of the
newly proposed algorithm are more accurate than those
of CNM. Manual interpretations of functional groups
found by the new algorithm also showed superior per-
formance over CNM.

Furthermore, a computational complexity analysis dem-
onstrated a linear running-time of the algorithm, which
makes it, to our knowledge, the fastest approach for find-
ing clusters in networks.
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