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Abstract

Background: The engineering of ontologies, especially with a view to a text-mining use, is still a
new research field. There does not yet exist a well-defined theory and technology for ontology
construction. Many of the ontology design steps remain manual and are based on personal
experience and intuition. However, there exist a few efforts on automatic construction of
ontologies in the form of extracted lists of terms and relations between them.

Results: We share experience acquired during the manual development of a lipoprotein
metabolism ontology (LMO) to be used for text-mining. We compare the manually created
ontology terms with the automatically derived terminology from four different automatic term
recognition (ATR) methods. The top 50 predicted terms contain up to 89% relevant terms. For the
top 1000 terms the best method still generates 51% relevant terms. In a corpus of 3066 documents
53% of LMO terms are contained and 38% can be generated with one of the methods.

Conclusions: Given high precision, automatic methods can help decrease development time and
provide significant support for the identification of domain-specific vocabulary. The coverage of the
domain vocabulary depends strongly on the underlying documents. Ontology development for text
mining should be performed in a semi-automatic way; taking ATR results as input and following the
guidelines we described.

Availability: The TFIDF term recognition is available as Web Service, described at http:/
gopubmed4.biotec.tu-dresden.de/ldavollWebService/services/
CandidateTermGeneratorServicelwsd|
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Background

The engineering of ontologies is still a new research field.
There does not yet exist a well-defined theory and technol-
ogy for ontology construction. This means that many of
the ontology design steps remain manual and a kind of
“art” and intuition [1-3]. There exists a variety of different
ontologies, constructed for different purposes and
projects.

As far as the biomedical ontologies are concerned, during
the last years there have been major efforts in the biologi-
cal community for organizing biological concepts in the
form of controlled terminologies or ontologies [4-7]. A
key difference between terminologies and ontologies is
that the former lack the semantic depth of the latter. How-
ever, when it comes to design, terminologies can serve as
basis for ontologies and vice-versa. An example where a
terminology can serve for ontology is that of the Gene
Ontology [6], which provides a controlled vocabulary to
describe gene and gene products in any organism. On the
other side, the Gene Ontology Next Generation (GONG)
project [8] aims at the migration of current bio-ontologies
to a richer and more rigorous status, using formal repre-
sentation languages like OWL. Examples of true ontolo-
gies are the GALEN project [9] and the Systematized
Nomenclature of Medicine (SNOMED) [10] which are
based on Description Logic for concept representation
and the Foundational Model of Anatomy (FMA) [11]
which is based on frames representing information about
anatomical classes, designed so that content can be main-
tained as a dynamic resource and can be used as terminol-
ogies.

There have also been developed systems to provide inter-
operability among different ontologies, such as the Uni-
fied Medical Language System [12] in order to provide a
common frame of reference among the different research
communities. The Open Biomedical Ontologies (OBO)
Foundry [13] hosts over 60 open source ontologies asso-
ciated with phenotypic and biomedical information, such
as the Mouse Anatomy (MA) [7] and the Cell Ontology
(CL) [14]. Bodenreider and Stevens [15], Blake and Bult
[16] and Baker et al. [17] give overview on biomedical
ontologies, the consortia involved, formalisms as well as
semantic web technologies and representation tools.

Semantic meta-information provided in the form of
ontologies has proven useful in order to search [18,19] or
index large collections of documents (e.g. MeSH for
indexing MEDLINE [20]). Meta-information found for
text documents is often general (keyword list) or still too
complex for an automated evaluation (article abstract).
Finding terms of controlled vocabularies in text over-
comes this shortage, while relations between terms pro-
vide the necessary navigation structures.
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Ontological background knowledge can serve to answer
questions with knowledge-based search engines, by eas-
ing the task of finding relevant documents through the
term automatic annotation [18,21,22]. In the domain of
lipoprotein metabolism, for example, a search for “anal-
phalipoproteinemia” will retrieve articles for Tangier's
disease, which is actually a synonym. In case of a syn-
drome, such as the “metabolic syndrome”, in a properly
designed ontology the articles retrieved will contain
symptoms and other characteristics for it (e.g. type II dia-
betes, hypertension, insulin resistant, low HDL, hyperten-
sion, all of them being parts of the metabolic syndrome).
Researchers explore literature on different parameters that
can affect the lipoprotein metabolism, such as the pheno-
type, genotype and age of the patients/animals tested,
environmental factors and lifestyle, specific lipoprotein
and enzyme concentrations and others. Questions like
‘what is the activity of cholesterol ester transfer protein in
diabetes’, ‘which cells/tissues is apoE expressed in’, ‘what
is the impact of a fish oil diet on metabolic syndrome
individuals’, ‘which genes/proteins/metabolites are
hypertension-specific’ can be answered with the use of a
well designed ontology on lipoprotein metabolism, con-
taining terminology found in literature with semantically
interconnected terms.

The GoPubMed search engine [18,19] allows users to
explore PubMed search results with the Gene Ontology
(GO) [6] and Medical Subject Headings (MeSH) [20].
GoPubMed retrieves PubMed abstracts for a search query,
detects terms from the GO and MeSH in the abstracts, dis-
plays the subset of GO and MeSH relevant to the key-
words and allows for browsing the ontologies and
displaying only articles containing specific GO and MeSH
terms. The search engine is developed in a way that any
ontology (e.g. a Lipoprotein Metabolism Ontology) can
be easily integrated and used for a domain-specific litera-
ture search. One of the benefits of such an ontology-based
literature search is the categorization of abstracts accord-
ing to a specific ontology, allowing users to quickly navi-
gate through the abstracts by category and providing an
overview of the literature. It can also automatically show
general ontology terms related to the original query,
which often do not even appear directly in the abstract.

In this paper, we introduce design principles for ontolo-
gies used for text mining, based on our personal experi-
ence with the manual development of a Lipoprotein
Metabolism Ontology. A key problem in this context is
the generation of terms, which is corroborated by Castro
et al. [3], who compared different ontology design meth-
ods and tools all of which lacked automated term recog-
nition. The paper is organized as follows. We first
introduce the design principles followed when designing
the lipid metabolism ontology and turn to the question
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how to automate the generation of terms. We introduce
two methods to identify terms and evaluate them together
with two existing tools for this task.

Methods

Ontology design principles

The Open Biomedical Ontologies (OBO) Foundry pro-
vides ontology design principles concerning the syntax,
unique identifiers, content and documentation of ontolo-
gies to be added or edited, as a common agreement
between users/editors. OBO principles that are not dis-
cussed later (but were followed during the Lipoprotein
Metabolism Ontology design) refer mainly to the use of a
common shared syntax (OBO syntax and extensions or
OWL), the insertion of a unique identifier per term, the
relations included in the OBO Relation Ontology and the
clearly delineated content (terms in different ontologies
should provide distinguishable descriptions of a concept).
The success of the OBO representation format is attrib-
uted to its informal expressivity, combined with the abil-
ity of conversion into OWL and vice-versa.

The only OBO principles we did not follow were the free
availability and collaboration with other OBO Foundry
members, due to corporate reasons. However, we present
the knowledge acquired and the problems faced during
the ontology design. The following guidelines, as well as
the decisions, compromises and problems described later
derive from our experience during the manual develop-
ment of the Lipoprotein Metabolism Ontology.

Some basic steps that should be followed during the
design of any ontology include identifying the range of
intended users, deciding on the purpose and main research area
of the ontology and defining/predicting further possible
applications (e.g. GO has also been used by the search
engine GoPubMed [18,19] and by GoMiner [23] for gene
expression data evaluation, although its initial purpose
did not include use for text-mining). Important points to
start from are literature scanning for deciding on the basic
concepts as well as the insertion of a textual definition for
each term. Formulation of questions is also crucial [24].
Examples of questions that researchers from Unilever
needed to answer were: “what is the activity of cholesterol
ester transfer protein (CETP) in diabetes?”, “which tissues
is apoE expressed in?”, “what is the impact of fish oil diet
in metabolic syndrome patients?”, etc, indicating that
terms such as ‘CETP’, ‘diabetes’, ‘apoF’, ‘diet’, ‘fish oil diet’,
‘metabolic syndrome’ and ‘patient’ should be included in
the ontology. Reusing existing ontologies that may cover to
some extent the ontology under design or could be
inserted as a separate branch of the ontology is also a pos-
sibility. In the case of the Lipoprotein Metabolism Ontol-
ogy (LMO), we needed to include information on diet.
For this purpose, we included the Nutrition Ontology
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from the NCI Cancer Nutrition Ontology Project [25] as a
separate part under diet. Deciding on a label for each concept
is one of the most crucial steps during the structuring of
the ontology. This task is difficult for humans as it
requires good knowledge of the domain of interest so as
to group concepts on the hierarchy in a semantically
meaningful way. It is even more difficult for machines to
do this automatically. There has been previous work on
automatic labeling of document clusters [26] by using the
most frequent and most predictive words in clusters of
documents, but there is still work to be done on that. One
must firstly concentrate on the semantics of a term, decide
what is really needed to be expressed with that term and
then choose the appropriate name. Last, but not least, and
perhaps one of the very first steps of the designing proce-
dure is the selection of a suitable ontology editor. We used
the Protégé OWL plug-in [27] for building the ontology
and CmapTools [28] for visualization. Ontology visuali-
zation is crucial when the knowledge engineer and the
domain expert are two different persons and need to agree
on the different versions of the ontology.

With GO we experienced some limitations for text-min-
ing. For example, it is unlikely that a descriptive label such
as ‘cell wall (sensu Gram-negative bacteria)’ will literally
appear in text. A comprehensive overview of such prob-
lems is provided by Smith et al. [29]. There often exist
ontology terms that are unlikely to appear as such in text
but are rather of a structuring nature. For example, the
terms ‘hydrolase activity, acting on ester bonds’
(GO:0016788) or ‘hydrolase activity, acting on carbon-
nitrogen (but not peptide) bonds’ (GO:0016810) include
several different types of information: activity (hydro-
lase), type of bond affected (ester or carbon-nitrogen) and
exception (but not peptide) (see Figure 1). These should
be 3 different branches of the tree, combined with rela-
tions, therefore structuring ‘logical formulas’. For exam-
ple, in the case of the second term (GO:0016810), the
exception could be expressed as a certain condition: the
protein has a hydrolase activity and is acting on carbon
nitrogen bonds, but not in all bonds (peptide bonds are
excluded). Aranguren et al. [30] provide a simple and
indicative example of the problem: a Person is a Man or a
Woman, a Man has Testis, a Woman has no Testis, but
what happens in the case of a Eunuch (who is actually a
man without Testis)? There is a need for distinguishing
between relations that are strict “always” rules and “nor-
mally” or “usually” relations that can also allow for excep-
tions. Biomedical terms are usually connected with
“usually” relations between them. Another example is the
definition of mammals: a simple definition [31] can be
‘warm-blooded vertebrate animals belonging to the class
mammalia, including all that possess hair and suckle their
young'. Therefore, one can say that all mammals give birth
to and suckle their young. But there exists the exception of
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Problematic terms — the hydrolase activity example. Terms like hydrolase, hydrolase activity, bond, ester bond and
relations between them (e.g. acts on) can be easily found in text, whereas full GO terms such as ‘hydrolase activity, acting on

ester bonds’ are unlikely to appear literally in an article.

the monotremes, which are mammals that lay eggs
instead of bearing live young. The definition here would
be “mammals are animals that normally bear live young
and suckle them” and the exception “monotremes are
mammals that lay eggs”. Another example is given by
Hoehndorf et al. [32] (from the Foundational Model of
Anatomy), where “every instance of a human body has as part
an appendix”, corresponding to an idealized (canonical)
“normal” human. However, an individual human body
may lack an appendix as a part, demonstrating that canon-
ical ontologies do not always represent default knowledge
and should include exceptions. Hoehndorf et al. devel-
oped a methodology for representing canonical domain
ontologies within the OBO foundry by adding an exten-
sion to the semantics for relationships in the biomedical
ontologies that allows for treating canonical information
as default. Rector [33] explored some of the alternatives in
OWL and related languages for dealing with issues such as
exceptions (predictable and not) and limited expressivity.
Rector's analysis is divided in four cases, which can be
resolved with OWL, more precise logical formulation
(OWL-DL), more explicit context and generalized com-
mon information and other more complicated methods.

Compositional structure of terms is a major bottleneck for
ontology design, especially when it comes to text mining,

as the relations between terms must be as simple as possi-
ble. Ogren et al. [34,35] have performed an analysis of the
term names in the GO to investigate substring relations
between terms and revealed that 65.3% of all GO terms
contain another GO term as a proper substring. These
terms can be categorized into two groups: GO terms that
contain other GO terms as proper substrings (e.g. ‘hydro-
lase activity, acting on acid sulfur-sulfur bonds’ (GO:
0016828) and ‘hydrolase activity’ (GO: 0016787)) and
GO terms that contain strings that seem to recur fre-
quently (e.g. regulation of in GO, ‘predominance of in
the Lipoprotein Metabolism Ontology).

Text-mining ontologies can be extensions of annotation
ontologies which enrich annotation ontologies with syn-
onyms suitable for text-mining. Some decisions and com-
promises have to be made on the relationships and on the
labels defined during the concept hierarchy design.

Decisions that need to be made during the ontology design

Keep or dismiss a term: When using the ontology for text-
mining over a specific biomedical domain, it is important
to include terms specific enough to define the domain and
also general enough to cover it entirely. For example,
including information on ‘kinetics’ during the design of
the Lipoprotein Metabolism Ontology is crucial. But
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‘kinetics’ is too general as a term, as the distinction
between different kinds of kinetics is important (e.g. when
querying PubMed for ‘kinetics’, there are retrieved articles
referring to ‘kinetics of phenols’ or a ‘reconstruction kinet-
ics well’, irrelevant to the domain of interest). On the
other hand, the term ‘lipoprotein kinetics’ is too specific
and documents mentioning it do not cover all essentials
known in lipoprotein kinetics. Searches for “lipoprotein
kinetics”, “lipoprotein” and “kinetics” and retrieval of rel-
evant articles (e.g. PMID: 12606523 ‘Differential regula-
tion of lipoprotein kinetics by atorvastatin and fenofibrate
in subjects with the metabolic syndrome.”) lead to the
decision that the best term to use for ‘lipoprotein kinetics’
is the exact term. There already exist previous efforts on
automatic labeling of document clusters and identifica-
tion of ontology components, based on Natural Language
Processing techniques or hierarchical and suffix-tree clus-
tering [36,37,26].

Decide on ontology design/relations: the ontology must be a
subsumption ontology. It can be either a structured
vocabulary/terminology containing only child-parent
relationships (mostly ‘is_a” and ‘part_of’) between con-
cepts or an ontology of different complexity that could be
easily translated into a simple hierarchy. It should also be
rich in synonyms and textual definitions (mentioned ear-
lier), that would be useful for disambiguation. For the
Lipoprotein Metabolism Ontology we used the Protégé
OWL plug-in, with concepts being the term labels (e.g.
human / Tangier's disease) and instances the term syno-
nyms/variants (e.g. patient, test person, experimentee /
analphalipoproteinemia).

Decide on synonyms: researchers do not have strict and for-
mal ontologies or nomenclatures in their minds when
composing a scientific article and therefore use terminol-
ogy of differing granularity. They often use parent terms to
refer to a child term, or vice-versa (e.g. ‘coronary artery dis-
ease (CHD, CAD)’ is child of ‘cardiovascular disease’, but
in many cases authors are treating them the same). Again
literature scanning, for both child and parent term, will
help to clarify how researchers refer to different terms.
Another problematic case is that of the different lipopro-
tein subclasses (based on particle size, buoyant density,
composition, etc.) where there do not exist clear limits
between them. Depending on the way of measurement
and the difference in surface lipid content, they can be
expressed in different ways. For example, in the case of
LDL, there are 5 different subclasses based on particle size
(LDL I-V), but there are also references such as ‘small
dense LDL' or ‘buoyant LDL' that are very often found in
text but could contain a mixture of different subclasses.
Since we need to keep only a simple hierarchy with par-
ent-child relationships, we do not incorporate any “defi-
nitional” information (e.g. that ‘small dense LDL’ consists
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of a mixture of LDLIII and LDLIV). In these cases, we put
the synonyms according to the authors’ use, for example
‘small dense LDL’ as a synonym for LDL III and ‘buoyant
LDL or ‘large LDL’ as synonyms for LDL I [38]. A similar
example from the GO is that of ‘transporters and carriers’.
In every day language ‘transporter and carrier’ is the same
as ‘transporters or carriers’, but logically they are different.

Handle term variation: terms like ‘Tangier disease’, ‘Tan-
gier's disease’ or "Tangiers disease’ are variants of the same
term. Terms like ‘LDL I, ‘LDL-I', ‘LDL-1’, 'LDL 1, ‘LDL1’
and 'LDLI’ are also variants of the same term. The process
of manually inserting such lexical variants (with hyphens,
apostrophes, slashes, or even American/British spelling
variants) in the ontology is tedious and time-consuming.
There exist programs that handle such variations by pro-
ducing the normalized form of a term, such as the UMLS
Lexical Variant Generation Program [39]. For the Lipopro-
tein Metabolism Ontology we did not use such a variant
generation program. We included only term variants we
could find in literature.

Compromises that need to be made, problems, inconsistencies
There must be made some compromises to retain a correct
ontology (meaning that it contains valid relations) and
still get the best possible results from text-mining:

Ambiguity resulting either from identical abbreviations for
different terms (e.g. ‘CAM’ can stand for ‘constitutively
active mutants’, ‘cell adhesion molecule’, or ‘complemen-
tary alternative medicine’), or ambiguous term labels (e.g.
‘embryo’ for ‘mouse embryo’ or ‘male’ for ‘male patients’)
is always a problem. Abbreviations and acronyms should
be included in the ontology, but conservatively or with an
appropriate algorithm that could handle them. Word
sense disambiguation is a salient point here; knowledge
sources like long-form/short-form combinations, domain
(context under which the word is used) and collocations
(adjacent words/terms) can be exploited to provide the
correct sense of the term [40]. For the case of incomplete
term labels, let us consider the following example: we are
only interested in experiments performed in human
patients and need to distinguish between human- and
animal- referring articles. One option is to insert into the
ontology only human-specific terms, such as ‘experimen-
tee’, ‘patient’, ‘man’, ‘boy’, etc. ‘Male’ cannot be in the
ontology, since it could also be referring to animals.
Another option is to maintain a list of human- and ani-
mal- specific words or expressions and then transform the
algorithm in a way that one could make a Boolean selec-
tion (e.g. AND human, NOT animal) in the query and
finally include or exclude the results for the specific selec-
tions.
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Try to avoid any possible inconsistencies. To illustrate the
implication of inconsistencies on reasoning, let us
describe the following example: a researcher is interested
in the different lipoprotein levels in patients of different
race and geographical location, since there has been evi-
dence that these two factors affect lipoprotein metabo-
lism. Combination of geographical information as well as
racial information in one part of the ontology is, there-
fore, needed. Many articles refer to “African-Americans” as
“blacks”, so the term must be included under ‘ethnic
group’. Then the following must be valid: define ‘Cauca-
sian’, ‘“African’ and ‘Asian’ as ‘ethnic group’, ‘American’ is
a ‘Caucasian’, ‘African-American’ is a ‘African’, ‘African-
American’ is a ‘American’, ‘African-American’ is ‘black’
(synonym), ‘Caucasian’ is white (synonym) but ‘African-
American’ cannot be ‘Caucasian’ or ‘white’ (although he is
‘American’). This is similar to the case of mammals that
lay eggs or the ‘Man, Woman, Eunuch’ example described
earlier; people very often formulate rules such as “nor-
mally is-a”, as there are always exceptions. For the LMO
we excluded the ‘American’ concept and added ‘African-
American’ as child of ‘African’ and ‘Hispanic-American’ as
child of ‘Caucasian’.

Results

The Lipoprotein Metabolism Ontology (LMO) was man-
ually built in collaboration with domain experts from
Unilever for the purpose of document retrieval. It consists
of 223 concepts and 623 additional synonyms, with an
average term length of 14 (2 words of 7 characters). A con-
cept as used here consists of a concept label and optional
synonymous terms. A term can be any word or phrase of
relevance to the studied domain. Together with the Nutri-
tion Ontology from the NCI Cancer Nutrition Ontology
Project [25], the LMO contains in total 522 concepts and
964 additional synonyms, with an average term length of
15 (2 words of 7.5 characters). Concerning the relations
between the concepts, the mean number of parents is 2
(with a maximum of 3) and the mean number of siblings
is 5 (with a maximum of 10). We did not include the
Nutrition Ontology terms in the experiment, as we only
wanted to compare the terminology created manually by
us with the automatically derived terminologies from the
different term extraction methods. For Automatic Term
Recognition (ATR), a ‘lipoprotein metabolism’-specific
corpus was created, consisting of 300 abstracts collected
from PubMed with the query “lipoprotein metabolism”
(limit for Review papers). These 300 abstracts were the
maximal number of articles where all methods delivered
results. Five different ATR methods were tested on that
corpus, namely Text20Onto, OntoLearn, Termine [41-43]
and two methods developed in-house, one considering
the relative frequency (RelFreq) of a term in the corpus
and the other (TFIDF) additionally using the document
frequency derived from all phrases contained in NCBI's
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PubMed database. Termine [43] considers several statisti-
cal characteristics of the candidate term, such as the total
frequency of occurrence in the corpus, the frequence of
the term as part of other longer candidate terms (and the
number of these) and the length of the candidate term (in
number of words). Text2Onto [41] is based on algorithms
calculating the Relative Term Frequency and TFIDF, as
well as Entropy and the C-value/NC-value used by Ter-
mine in order to extract the concepts. It further exploits
the hypernym structure of WordNet [44], matches Hearst
patterns [45] and others in the corpus in order to get the
relations (subclass_of, part_of, instance_of), but at this
point we only examined the terminology extraction preci-
sion. OntoLearn [42] uses a linguistic processor and a syn-
tactic parser in order to extract a list of syntactically
plausible terminological noun phrases. For filtering “true”
terminology, OntolLearn is based on two measures,
namely Domain Relevance and Domain Consensus,
which calculate the specificity of a candidate term with
respect to the target domain via comparative analysis
across different domains as well as the distributed use of a
term in a domain. OntoLearn was excluded from further
analysis, as it only generated a few terms so that a mean-
ingful comparison would be possible, see Table 1.
Text2Onto was only included in the analysis for 300
abstracts as it was not possible to process all 3066 review
article abstracts for “lipoprotein metabolism” listed in
PubMed. We performed a bipartite analysis. We tried to
automatically reconstruct the manually created LMO ter-
minology, compared the terms predicted by the four
methods to the current LMO terms and also evaluated
manually the top 1000 retrieved terms. All automatic
comparisons between candidate terms and LMO were not
case sensitive.

Reconstruction of LMO terminology

Consider Table 2, which shows the percentage of terms
that can be generated by the four methods. The first table
lists the results for LMO alone, the second for LMO and
terms considered relevant after manual inspection. Fur-
thermore, we distinguish precision and average precision.
The latter takes the ranking of terms into account:

Zil(l’(r)x rel(r))

- , with
number of retrieved terms

(1) average precision =

(2) rel(r)z—%(r—l)—i—%where r is the rank of

retrieval and P(7) is the precision at a cut-off rank. For
each of the four methods we list the percentage of relevant
terms for the top 50, top 200, and top 1000 predictions.
The results show that the precision for the top 50 predic-
tions for LMO ranges from 17-35% and 4-8% for the top
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Table I: Top 25 predicted terms per method. Listing of the top 25 predictions for TFIDF, RelFreq, Termine, Text2Onto and

OntoLearn. Terms relevant to the lipoprotein metabolism domain are marked with x.

Methods
Rank TFIDF RelFreq Termine Text2Onto OntoLearn
I X metabolic syndrome review x  low-density lipoprotein X  patient Mutation
2 x HDL x  metabolic syndrome x  cardiovascular disease x  disease fish oil
3 x  atherosclerosis X diabetes X metabolic syndrome risk hypercholesterolaemia
4 review x  atherosclerosis x  risk factor effect Serum
5 x LDL x HDL X cardiovascular risk study progression of atherosclerosis
6 x  cardiovascular disease x LDL x  high-density lipoprotein level Apheresis
7 x  diabetes X cardiovascular disease x  low-density lipoprotein cholesterol x  atherosclerosis ~ omega-3
8 x  dyslipidemia x  cholesterol x  high-density lipoprotein cholesterol x  cholesterol treatment of hypertriglyceridemia
9 X high-density lipoprotein type x fatty acid x  lipoprotein reductase inhibitor
10 x  cholesterol article x  coronary heart disease X statin Triglyceride
I X low-density lipoprotein x fatty acids X  coronary artery disease role adhesion molecule
12 x  cardiovascular risk x  high-density lipoprotein clinical trial syndrome Evolution
13 x fatty acids role x Idl cholesterol x  diabetes purification process
14 article x  dyslipidemia X  heart disease x  trial Prescription omega-3
15 X insulin resistance X low-density lipoprotein x  diabetes mellitus protein omega-6
16 type x  cardiovascular risk X  omega-3 fatty acid x  risk factor hiv-infected
17 X statin x  hypertension blood pressure X  treatment marker of inflammation
18 x  hypertension combination X  oxidative stress event strong evidence
19 x  inflammation X insulin resistance increased risk therapy attractive target
20 x VLDL protein density lipoprotein review accelerated atherosclerosis
21 x  lipid metabolism x  disease x  cardiovascular risk factor type internalization
22 combination studies coronary artery mechanism Scenario
23 role x  inflammation X statin therapy evidence protease inhibitor
24 x  oxidative stress association x  plant sterol development inflammatory cell
25 X  obesity X plasma x  reverse cholesterol transport use inflammatory marker

1000 predictions. Using LMO and the expert terms leads
to better results of up to 75% for the top 50 predictions
and up to 29% for the top 1000. Considering the average
precision and thus the ranking of terms, results for the top
50 predictions go up to 89% and for the top 1000 up to
51%. Generally, Termine which favours long terms per-
forms well for the top 50, because long terms are a good
indicator of a relevant term. However, there are many
short terms, which are relevant, too. The TFIDF and Rel-
Freq methods can pick up these terms, as they include
background knowledge, i.e. frequencies of terms in
PubMed. By and large, Text2Onto does not perform so
well as it neither includes domain-specific background
knowledge (as in the case of the TFIDF developed in-
house) nor the ranking pursued by Termine, which is
biased towards longer frequent terms. Text2Onto sug-
gested short and very general terms, like ‘use’, ‘effect’,
‘study’, ‘event’, etc. Although we explicitly deactivated the
relation extraction part for this experiment, it is not clear
why Text2Onto persisted in ranking these terms in the top
of the list. Overall, the results are encouraging, as they
indicate that a large part of the terminology can be gener-
ated automatically.

Concerning recall, consider Table 3. 3066 documents
contain only 53% of the LMO terms literally. TFIDF man-

ages to predict up 39%, which is an encouraging result.
Increasing the document base to 50.000 only 71% of the
LMO terms are included indicating a possible upper limit.
Figure 2 provides an overview of the results we acquired
from these comparisons. Figures 3 and 4 provide zoom-
ins of Figure 2, describing the performance of each
method in the top 50 predicted terms.

Discussion

The low coverage of the LMO in the data sets calls in ques-
tion the document set selected and the suitability of the
manually built LMO itself. The straightforward approach
to select relevant documents from PubMed (review arti-
cles in “lipoprotein metabolism”) did not return enough
documents to cover all of the LMO.

The LMO terms that were absent from the 50,000 PubMed
abstracts were grouped in five categories: rarely occurring
terms, rarely occurring variants of terms, very long terms,
combinations of terms/variants and, finally, terms that
should normally be easily found. Terms such as ‘experi-
mentee’ (2) (absolute count of appearance in PubMed per
term is given in parenthesis), ‘obesive’ (2), ‘test person’
(76) and ‘central fatness’ (9) are LMO terms, but rarely
used by authors and, therefore, rarely appearing in
PubMed. The second group contains variants of terms that
appear rarely in PubMed, such as ‘Apo-F (14), ‘apolipo-
protein c-3’ (4), IDL I' (1), 'VLDL chol’ (34), ‘diabetis’
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Table 2: Precision and Average Precision (rank dependent) for top 50 / 200 / 1000 predictions for 4 methods (TFIDF, Relative
Frequency, Termine, Text20nto) in terms of coverage of LMO and relevant vocabulary. The key finding is that among the top 1000
predictions there are up to 51% terms, which are in the LMO or considered good terms by expert, implying that automated term
recognition can play an important role in semi-automated ontology design.

LMO

Precision AveragePrecision
Top TFIDF Termine Text2Onto RelFreq TFIDF Termine Text2Onto RelFreq
50 35% 19% 17% 35% 65% 54% 38% 54%
200 20% 10% 12% 22% 42% 28% 23% 37%
1000 8% 4% 5% 8% 21% 12% 12% 20%

LMO + Domain expert

Precision Average Precision
Top TFIDF Termine Text20nto RelFreq TFIDF Termine Text20nto RelFreq
50 75% 67% 33% 56% 86% 89% 52% 70%
200 55% 40% 49% 49% 74% 65% 38% 60%
1000 29% 20% 14% 28% 51% 40% 25% 45%

(37, instead of 270177 occurrences for ‘diabetes’), ‘free
chol’ (0, instead of 2622 for ‘free cholesterol’), ‘hypolipo-
proteinaemia’ (5, “ae” spelling is rare), ‘insuline resistant’
(0, instead of 3912 for ‘insulin resistant’), ‘slo syndrome’
(36) and ‘sphingomyelinase deficiency disease’(0, MeSH
synonym for ‘Niemann-Pick Disease’). However, we
decided to include such terms in the LMO for complete-
ness. The third category contains terms that are too long
and, therefore, unlikely to appear as such in text: ‘receptor-
mediated extra-hepatic cellular uptake’ (0), ‘'macrophague
cellular uptake’ (0), ‘predominance of large low-density
lipoprotein particles’ (0) and ‘apob100 containing parti-
cles’ (2). However, given the initial purpose of the LMO
for document retrieval, these terms were included to be
recognized by the ontology-based text-mining methods
[18]. The fourth group is a combination of the previous
two, i.e. LMO terms that are long terms and contain rare

variants of LMO terms, such as ‘elevated plasma-tg level’
(0), ‘increased total chol’ (0, instead of 116 for ‘increased
total cholesterol’), ‘long-lived test person’ (0), ‘apoprotein
b100 kinetics’ (0), ‘elevated plasma tg concentrations’ (0),
and ‘decreased hdl-chol’ (4). The last group contains LMO
terms that appear often in PubMed and should normally
be identified, but are probably absent from the document
set, due to its size or specificity. Such terms are ‘diabetes
type I’ (126), ‘acetyl-coa c-acyltransferase’ (430), ‘apolipo-
protein-c¢’ (1585), ‘type-II diabetic’ (1132), ‘long-lived
population’ (23), ‘middle-aged adult’ (81), 'human body
composition’ (95), and ‘lipid poor HDL' (12).

The third and fourth groups of terms belong to the same
category as the hydrolase activity example described ear-
lier. Composite terms like ‘receptor-mediated extra-
hepatic cellular uptake’ and ‘predominance of large low-

Table 3: Coverage of LMO terminology in selected document sets. The table sets the upper limit of terms that can be found with text-
mining: Even a large text base with 50,000 documents contains only 71% of LMO terms. TFIDF can predict up to 38% of LMO terms.

LMO terminology predicted by TFIDF

LMO terminology literally

contained
1000 all
300 review abstracts for “lipoprotein metabolism” 8.75% 15.35% 20.98%
3,066 abstracts for “lipoprotein metabolism” 14.99% 38.25% 53.00%
50,000 abstracts containing “lipoprotein” 71.22%
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Figure 2

Overlap with manually curated LMO and manual evaluation. Precision at a certain rank r represents each method's

capability to recognize domain relevant terms within the top r re

trieved terms. The chart shows the overlap within the top r

predicted terms with LMO and the manual evaluation (MANUAL). For example, from the top 50 predicted terms by
Text20nto, 20% are in LMO and 36% are correct according to the manual evaluation.

density lipoprotein particles’ could be easily broken into
several semantic parts (e.g. receptor-mediated/ extra-
hepatic/ cellular uptake, or more) and handled by an algo-
rithm that could later compose them and still keep their
semantics.

The terms that were predicted by most of the methods but
were not in the LMO were further examined and grouped.
These were either wrongly predicted ones, meaning
phrases frequently occurring in the corpus, but not rele-
vant to LMO, (~ 25% of the TFIDF predictions for the
Top50 terms) (e.g. ‘review’, ‘type’, ‘article’, ‘role’, ‘event’,
‘use’) or vocabulary that could extend the current ontol-
ogy (~ 40% of the TFIDF predictions for the Top50 terms).
This would include disease-specific terms such as ‘athero-
sclerosis’, ‘cardiovascular risk’ and ‘atherogenic dyslipi-
demia’, drugs or other chemicals such as ‘statins’,
‘ezetimibe’ and ‘torcetrapib’, or even method and therapy
related terms like ‘dose’ and ‘lipid lowering therapy’'.

Availability

The TFIDF term recognition is available as Web Service,
described at http://gopubmed4.biotec.tu-dresden.de/Ida
vollWebService/services/CandidateTermGenera
torSve?wsdl

Conclusions

As pointed out in [3], automated term recognition is miss-
ing from many ontology design methologies. In this
paper, we manually created an ontology for lipid metabo-
lism with 223 concepts and 623 additional synonyms
(846 terms in total), we derived design principles and sys-
tematically evaluated four methods for automated term
recognition.

Automated predictions of up to 1000 terms generate in
the order of 40-50% useful terms. Considering only the
top 50 terms, the results improve up to 89% average preci-
sion for LMO + domain expert (defined earlier). This sug-
gests that Automatic Term Recognition (ATR) methods
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Overlap with LMO. Precision at a certain rank r represents each method's capability to recognize domain relevant terms
within the top r retrieved terms. The chart shows the overlap within the top r predicted terms with LMO. For example, from

the top 20 predicted terms by TFIDF, 65% are in LMO.

can aid and speed up the process of ontology design by
providing lists of useful domain-specific terms, but that
they cannot (yet) replace the manually designed term
lists. The key problem to further improve these results are
composite terms which do not appear literally in text, like
GO's ‘hydrolase activity, acting on ester bonds’ or LMO's
‘receptor-mediated extra-hepatic cellular uptake’.

Overall, our results show that ontology development can
be performed in a semi-automatic way. The domain
expert must have as initial input the output from an auto-
matic term recognition method and proceed with enrich-
ing the ontology. The experiment as described aims at
providing restrictions as well as decision points for includ-
ing, excluding and reforming ontology terms. Once the
domain expert acquires the list of candidate terms, he/she
needs to decide on the relations between them. Formula-
tion of questions is one of the most important steps in the
ontology design process, helping to step from a list to an
ontology.

We discussed principles for development of an ontology
with text-mining as intended use, based on our personal
experience from the manual development of the Lipopro-
tein Metabolism Ontology and GoPubMed. We related
these principles to the performance of four different ATR
methods and their agreement with the manually built
LMO. Open problems relate to the choice of suitable text
bodies for term recognition as well as generation of com-
posite terms from basic ones.

List of abbreviations used
LMO - Lipoprotein Metabolism Ontology

ATR - Automatic Term Recognition
OBO foundry - Open Biomedical Ontologies Foundry
MeSH - Medical Subject Headings

GO - Gene Ontology
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ple, from the top 10 predicted terms by Termine, 100% are relevant to lipoprotein metabolism.

OWL - Web Ontology Language

OWL-DL - Web Ontology Language-Description Logic
PMID - PubMed identifier

TFIDF - Term Frequency Inverse Document Frequency
RelFreq - Relative Frequency

NCBI - National Center for Biotechnology Information
NCI - National Cancer Institute

LDL - Low density lipoprotein

IDL - Intermediate density lipoprotein

HDL - High density lipoprotein

VLDL chol - Very low density lipoprotein cholesterol
ApoF - apolipoprotein F
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