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Abstract

Background: Urokinase, its receptor and the integrins are functionally associated and involved in
regulation of cell signaling, migration, adhesion and proliferation. No structural information is
available on this potential multimolecular complex. However, the tri-dimensional structure of
urokinase, urokinase receptor and integrins is known.

Results: We have modeled the interaction of urokinase on two integrins, allbB3 in the open
configuration and avf3 in the closed configuration. We have found that multiple lowest energy
solutions point to an interaction of the kringle domain of uPA at the boundary between o and 3
chains on the surface of the integrins. This region is not far away from peptides that have been
previously shown to have a biological role in urokinase receptor/integrins dependent signaling.

Conclusions: We demonstrated that in silico docking experiments can be successfully carried out
to identify the binding mode of the kringle domain of urokinase on the scaffold of integrins in the
open and closed conformation. Importantly we found that the binding mode was the same on
different integrins and in both configurations. To get a molecular view of the system is a
prerequisite to unravel the complex protein-protein interactions underlying urokinase/urokinase
receptor/integrin mediated cell motility, adhesion and proliferation and to design rational in vitro
experiments.

Background

The serine protease urokinase-type plasminogen activator
(uPA) and its high affinity cell surface receptor (uPAR)
play an important role in a number of physiological as
well as pathological extracellular degradation processes
where cell migration is required, such as fibrinolysis,

inflammatory responses and tumor invasion [1]. uPA is
made up of three domains, the aminoterminal growth-
factor-like domain, the kringle domain and the protease
domain. The first two domains form the ATF (amino ter-
minal fragment) a domain that binds uPAR 2] and whose
structure has been solved by X-ray crystallography [3]. In
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the ATF it is the growth factor domain that binds uPAR.
No real function has been established so far for the kringle
domain.

uPAR is a heavily glycosylated GPI-ancored protein
formed by three cysteine-rich LYG6-like extracellular
domains (D1,D2, and D3) connected by short linker
regions |4]. The three domains of uPAR are organized in a
bowl-like shape with a “fissure” between domains D1 and
D3 and a deep central cavity for the interaction with the
growth factor domain of uPA. The whole external surface
of uPAR is available for other interactions [5].

Genetic and biochemical evidence shows that uPA and
uPAR are involved not only in the regulation of fibrinoly-
sis and cell surface-focused pericellular proteolysis [2], but
also in the regulation of intracellular signaling affecting
cell adhesion, migration, and proliferation [1,6-9]. Some,
but not all, of these functions require the proteolytic activ-
ity of uPA.

Identified interactors of uPA/uPAR are trans-membrane
signaling molecules: integrins, the G protein-coupled
receptor FPRL1, the EGF-receptor (EGFR), the mannose-6-
phosphate receptor, the family of low density lipoproteins
receptor-related proteins (LRP), p130 and others [1]. The
involvement of integrins was originally proposed on the
basis of co-immunoprecipitation experiments in hemat-
opoietic cells [10]. Both uPA and uPAR have since been
reported to interact with cell adhesion receptors of the
integrin superfamily, including subfamilies a1, a3, a5, as
well as a2 expressed in cells of hematopoietic lineage and
containing an I (insertion) domain [11]. More recently,
also the B1 subunit has been proposed to participate in
the interaction with uPAR [12].

The extracellular segments of the a- and B-subunits of
integrins are up to 1104 and 778 residues long, respec-
tively, with the N-terminal portions of each subunit com-
bining to form a globular ligand-binding “head”. The
structure of two such integrins is known, allbb3 in the
open configuration and avf3 in the closed configurations
[13,14]. Integrins bind an Arg-Gly-Asp (RGD) peptide
sequence, the cell recognition site present in numerous
adhesive proteins. The binding site of RGD on integrin
avfP3 has been identified by x-ray crystallography [15].

No definite information is available on the interaction of
uPA or uPAR with integrins. However, three peptides were
found that bound uPAR and prevented integrins function
and uPAR-integrin co-immunoprecipitation. The first
peptide belongs to the a subunit and is located in the w4
repeat of the B-propeller. Peptide a325 derived from a3f1
integrin and aM25 derived from aMp2, were shown bio-
chemically to directly bind uPAR, although at high con-
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centration, and to affect integrin and uPAR functions
[16,17]. Also in the B1 chain two stretches of amino acids
(corresponding respectively to B1P1 and B1P2 peptides)
completely inhibited uPAR-dependent cell adhesion to
fibronectin, thus suggesting that they might interfere with
the binding of uPAR to integrin a5b1 [12].

Despite this wealth of evidence indicating a direct interac-
tion between uPAR and at least some integrins in vivo, evi-
dence of a direct interaction in a purified system is lacking.
Indeed, a soluble form of uPAR can be co-immunoprecip-
itated with purified a3p1 and a5 B1 integrins, but only in
the presence of uPA [12,18]. uPA-dependent co-immuno-
precipitation was also observed in some cell lines [19]. In
conclusion, even though it is absolutely clear that uPAR
and integrins regulate each other, a direct interaction
between uPAR and integrins is not really demonstrated
and might also be (at least in certain cases) mediated by
uPA.

The ligand of uPAR, uPA, regulates cell migration, adhe-
sion and the function of a,32 integrin in cells expressing
uPAR [20]. More recent evidence shows that the amino
acid sequence linking the ATF to the protease domain of
uPA can interact with the av 3 integrin [21].

The interaction of uPA, uPAR and integrins is important
since in uPAR Ko cells at least some integrins have been
shown to be inactive [17,22]. Thus, the identification of
the mechanisms of contact between these three molecules
is important. Since the 3D structure of uPA, uPAR, ATF-
uPAR complex, of the extracellular region of avp3 and
allbB3 [3,5,13,14,23,24] has been solved, it might be
possible to exploit the available information to model
these interactions. We have investigated the binding of the
urokinase kringle to integrins in silico. We report that resi-
dues 113-123 of the kringle domain can be docked onto
the integrin allbp3 and avf3 in a position that is close to
regions in both the o and B subunits, previously suggested
to potentially interact with uPAR [12,16].

Results and discussion
We docked the kringle domain of uPA on integrins in sil-
ico.

In our first experiment we docked the kringle domain
onto a fragment of allbp3 (residues 1-452 of the human
ollb chain, and residues 1-440 of the human B3 chain).
This fragment represents the only possible scaffold of
integrins in open conformation available in the PDB. We
analysed the lowest energy solutions and in Fig.1 we arbi-
trarily chose to show the first 15. Eleven out of 15 solu-
tions clustered together contacting the integrin at the
boundary between the two chains. We have highlighted
on the surface of the integrin scaffold three peptides
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which were reported to play a role in integrin-uPAR and/
or integrin uPAR/ATF interaction in other integrins (no
such information is available for the uPA interaction). The
first peptide, which belongs to the o subunit and is
located in the w4 repeat of the B-propeller [16,17], is col-
oured in magenta. Its homologues, peptide a325 derived
from a3p1 integrin and aM25 derived from aMpB2, were
shown biochemically to directly bind uPAR, although at
high concentration, and to affect integrin and uPAR func-
tions [16,17]. Two stretches of amino acids in the B chain
are coloured in orange and in yellow and are homologous
respectively to 31P1 and B1P2 peptides derived from the
B chain of integrin a5p1.

A relevant biological result indicates that uPA is required
to enhance co-immunoprecipitation of purified integrins
and uPAR (see for example the paper by Degryse et al.

Figure |
Representation of the fifteen lowest energy poses of urokinase kringle domain on allbf3 in the open confor-
mation. The a and B chains of allbf3 are shown as pale pink and yellow spheres, respectively. The stretch of aminoacids
homologous to the 0325 peptide are highlighted in magenta, the stretch homologous to BIPI in orange, and the one homolo-
gous to BIP2 in yellow.
Ribbons represent every ligand positions after the rigid-body simulations. A spectrum of different shadows of red, green, blue,
cyan were used going from lowest to highest energy solutions.

http://www.biomedcentral.com/1471-2105/9/S2/S8

[18]). These data thus indicate that the kringle domain
could bridge uPAR and integrins. This is compatible with
the location of the cluster of low energy solutions shown
in Fig.1, which localises the kringle onto the peptides
homologous to f1P1 and B1P2 not distant from the pep-
tide homologous to 0325 which might be spanned by
uPAR.

We also tested whether the same residues of the kringle
domain in the complexes of the cluster were employed to
contact integrin. Indeed, in 6 out 11 cases, it is the tip of
the hairpin of the domain, residues 113-123 in active
uPA, which contacts a21I3. These solutions ranked 2nd,
3rd, 4th, 5th, 6th and 7th when the scoring function
included electrostatic energy, desolvation energy and the
van der Waals term. In Fig.2 a blow-up of the contact
between the tips of four of the lowest energy solutions
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Figure 2

Kringle tip contacts with allb33 in open conforma-
tion. The a and B chains of allbB3 are shown as pale pink
and yellow spheres, respectively. The amino acids stretch
homologous to the 0325 peptide is in magenta, homology to
BIP1 is in orange, homology to B1P2 in yellow. Res |13-123
are shown as cartoons, those corresponding to the second
ranking solution are in red, those corresponding to the third
ranking solution are in green, those corresponding to the
fourth ranking solution are in blue and those corresponding
to the fifth ranking solution are in cyan.

(2nd, 3rd, 4th, 5th) is shown, which highlights the close-
ness of the kringle residues 113-123 to both the o and B
subunits peptides outlined above.

We identified the residues in the integrin a and f chain
and on the kringle domain, which change their accessibil-
ity to solvent by more that 10% upon binding as seen in
complexes ranking 2nd, 3rd, 4th and 5th. These residues
mostly coincide in the different solutions. In Fig.3A, we
show the residues of the open configuration integrin and
in Fig.3B that of the kringle domain which undergo signi-
ficative shielding from solvent in all analysed complexes
(2nd, 31d, 4th and 5th). They are highlighted in blue in
the a chain, in green in the 3 chain and in red in the krin-
gle domain. Although complexes generated by rigid body
docking should be considered near native complexes
because they are identified without taking into account
induced fit, our results indicate that the relative orienta-
tion of the integrin and kringle domain in the low energy
solutions is similar.

http://www.biomedcentral.com/1471-2105/9/S2/S8

When we tried to dock uPAR, or uPAR in complex with
growth factor domain, we did not observe a significant
clustering of low energy solutions.

In uPA the catalytic serine protease moiety is preceded by
a non catalytic amino-terminal fragment ATF. ATF binds
the uPA receptor uPAR through its growth factor domain
[2]. Visual inspection of the structure of ATF alone or in
complex with uPAR reveals that the growth factor domain
is a finger which fills an internal cavity of uPAR, formed
by the interaction of the three domains, becoming almost
completely embedded. The growth factor domain is con-
nected by a flexible linker to the kringle, which stands as
a structurally and functionally independent domain
[3,23]. Although it is difficult to take into account the flex-
ibility of the linker, we tried to dock the entire ATF-uPAR
complex, in the conformation seen in the crystallographic
structure 2i9b [3]. In nine out of ten lowest energy solu-
tions we observed direct binding of the kringle domain to
the a21IB3 integrin (not shown).Although the solutions
were quite spread, in the first and fifth ranking solutions
the kringle contacted a21If3 at the border between o and
B subunits trough the tip of the hairpin of the domain, res-
idues 113-123, i.e.as observed when docking the isolated
kringle to a211B3 (Fig.2).

We next carried out in silico binding of the kringle on the
scaffold of an integrin in the closed configuration. The
only structure available in PDB is that of avB3 (o chain
residues 31-987, B chain residues, 27-718) [14]. The 15
lowest energy solutions clustered in two main groups
(Fig.4). Solutions ranking 2nd, 6th, 8th, 9th, 12th, 13th
and 14th when the scoring function included electrostatic
energy, desolvation energy and the van der Waals term,
localise in the same area already identified as a target of
the kringle in the open configuration. In Fig.5 the
stretches of amino acids homologous to 325, 31P1 and
B1P2 peptides are coloured in magenta, orange and yel-
low respectively. In this case the inclusion of the biologi-
cal data and the correspondence obtained docking the
kringle domain on two conformations of the integrin is
required to single out correct solutions.

The same residues 113-123 of the kringle domain are
likely to form the contact with the integrin in the open as
well as in the closed form. This is seen in complexes rank-
ing 8th, 9th and12th. Fig.6 shows a blow-up and the ori-
entation of the kringle tip with respect to the stretches of
amino acids homologous to 325, $1P1 and B1P2 pep-
tides (coloured in magenta, orange and yellow). It is
worth noting that complexes ranking 8th and 9th are
almost superimposable. Complex ranking 12th when
electrostatic energy, desolvation energy and the van der
Waals term are included in the scoring function, ranks first
when only electrostatic energy and desolvation energy are
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Residues of allbf3 in the open conformation and of urokinase kringle domain which are differentially exposed
upon binding. In panel A the o and 3 chains of allbf3 are shown as pale pink and yellow spheres, respectively. Residues
whose accessibility to the solvent changes by more than 10% upon kringle binding to allf3 in the open form are highlighted in

blue or green in the a chain or f chain respectively.

In panel B the kringle domain of urokinase is shown as salmon spheres. Residues whose accessibility to the solvent changes by
more than 0% upon binding onto allbB3 in open form are highlighted in red. In any case, only the residues differently exposed

in all poses ranking second, third, fourth and fifth are highlighted.

included. It has been reported that in some cases near
native docking solution are better spotted excluding van
der Waals energy terms from the scoring equation because
this term is too sensitive to small structural perturbations
[25].

The RGD binding sequence is located very close to the
stretch of aminoacids corresponding to f1P1 peptide and
to the interaction site with the kringle domain. Thus the
kringle domain might affect the binding of RGD-contain-
ing substrates to integrins. Docking solutions can be con-
sidered only representative of near native complexes and
do not allow to predict whether binding of uPA to the
integrin would or would not be competitive with respect
to RGD.

We have identified the residues on integrin avp3 o and f
chains and on the kringle domain which change their
accessibility to solvent by more that 10% upon binding,
as seen in complexes ranking 8th, 9th and 12th. These res-
idues mostly coincide in the different solutions. In Fig.6A
we show the residues of the open configuration integrin
and in Fig.6B that of the kringle domain which undergo
significative shielding from solvent in all complexes ana-
lysed (8th, 9th and 12th). They are highlighted in blue in
the a chain, in green in the § chain and in red in the krin-
gle domain. Comparing Fig.3 and Fig.6, it should be
noticed that the relative orientation of kringle and

integrins appears to be the same in both open and close
forms.

Conclusions

Our studies strongly indicate that the kringle domain can
mediate the binding of uPA to integrins. The kringle
domain can bind intergrin in the open and closed confo-
ration. This interaction does not appear to be in competi-
tion with the possible direct binding of uPAR to integrins,
while it might possibly interfere with the RGD-dependent
binding of the integrins to its substrates. Direct molecular
studies will have to address this point. However, biologi-
cal studies have already indicated that the kringle is essen-
tial in the pro-adhesive effect of uPA in cells that express
ayB2 [20] and that truncated uPA without the uPAR-
binding domain can bind integrin avp3 [21]. Our results
are therefore strongly supported by these observations.

Methods

The structure of human ATF/uPAR is deposited in pdb
with the code 2i9b [3]. The structure was visually
inspected to derive two domains: the first domain com-
prises uPAR (res 1-277), growth factor like domain
(res11-42 of uPA) and kringle domain (res 43-132 of
uPA).

In this paper uPA is numbered starting from first residue

after signal peptide cleaveage.
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Figure 4

Representation of the fifteen lowest energy poses of urokinase kringle domain on avf33 in the closed conforma-
tion. The a and B chains of avp3 are shown as pale pink and yellow spheres respectively. The stretch of aminoacids homolo-
gous to a325 peptide are highlighted in magenta, homology to BIPI is in orange, homology to BI1P2 in yellow.

Ribbons represent every ligand pose after the rigid-body simulations. A spectrum of different shadows of red, green, blue, cyan

were used going from lowest to highest energy solutions.

For the integrin in open form we used the structure depos-
ited with pdb code 1jv2. To solve this structure a fragment
comprising residues 31-987 of the human aV chain, and
residues 27-718 of the human B3 chain was crystallised
[14].

For the integrin in closed form we used the structure
deposited with pdb code 1txv. A fragment comprising res-
idues 1-452 of the human allb chain, and residues 1-440
of the human B3 chain was crystallised [13].
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Figure 5
Kringle tip contacts with avp3 in the closed conformation. The a and 3 chains of avf33 are shown as pale pink and yel-
low spheres respectively. The stretch of amino acids homologous to the 0325 peptide are in magenta, homology to BIPI in
orange, homology to BIP2 in yellow. Res 113-123 are shown as cartoons, those corresponding to the eighth ranking solution
are in red, those corresponding to the ninth ranking solution are in green, those corresponding to the twelfth ranking solution
are in blue.

Cofactors, ions and other heteroatoms were not consid-
ered.

To build models of integrin-kringle domain comples we
used the suite of docking programs called pyDock [25].
Ten thousand rigid-body docking solutions are generated
by the FFT-based programs FTDOCK [26] in each experi-
ment. Then, the docking solutions are automatically eval-
uated with the module pyDockSER optimised for rigid-
body docking landscapes, by the equation:

Ebind = Eele + Edes + WEvdw

where Eele is the binding electrostatics energy (Coulom-
bic potential with distance-dependent dielectric constant
e=4r, truncated to a maximum and minimum value of
+1.0 and —-1.0 kcal/mol, respectively) and charges from
AMBER 94 force field [27]; Edes is the desolvation energy
upon binding, based on atomic solvation parameters pre-
viously optimised for rigid-body docking. Evdw is the van
der Waals binding energy based on the 6-12 Lennard-
Jones potential, with atomic parameters from the AMBER
94 force field, truncated to a maximum of 1.0 kcal/mol to
avoid much noise from the docking of rigid body surfaces;
W is weight which was set to 0.1.
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Figure 6

Residues of avf3 in the closed conformation and of urokinase kringle domain which are differentially exposed
upon binding. In panel A the o and 3 chains of avp3 are shown as pale pink and yellow spheres respectively. Residues whose
accessibility to the solvent changes by more than 10% upon kringle binding to avf3 in the closed conformation are highlighted

in blue or green in the a or B chain, respectively.

In panel B the kringle domain of urokinase is shown as salmon spheres. Residues whose accessibility to the solvent changes by
more than 10% upon binding onto avf3 in the closed conformation are highlighted in red. In any case, only those residues dif-
ferently exposed in the poses ranking eighth, ninth and twelfth are highlighted.

No spatial or biological restrictions were used during sim-
ulations, which allowed a complete sampling of the dock-
ing landscape around integrins

The residue solvent-accessible area were calculated using
Naccess [28] with a 1.4 A probe radius

Figures were drawn with Pymol [29].
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