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Abstract

Background: Microarray experiments enable simultaneous measurement of the expression levels of virtually all
transcripts present in cells, thereby providing a ‘molecular picture’ of the cell state. On the other hand, the genomic
responses to a pharmacological or hormonal stimulus are dynamic molecular processes, where time influences gene
activity and expression. The potential use of the statistical analysis of microarray data in time series has not been fully
exploited so far, due to the fact that only few methods are available which take into proper account temporal
relationships between samples.

Results: We compared here four different methods to analyze data derived from a time course mRNA expression
profiling experiment which consisted in the study of the effects of estrogen on hormone-responsive human breast cancer
cells. Gene expression was monitored with the innovative lllumina BeadArray platform, which includes an average of 30-
40 replicates for each probe sequence randomly distributed on the chip surface. We present and discuss the results
obtained by applying to these datasets different statistical methods for serial gene expression analysis. The influence of
the normalization algorithm applied on data and of different parameter or threshold choices for the selection of
differentially expressed transcripts has also been evaluated. In most cases, the selection was found fairly robust with
respect to changes in parameters and type of normalization. We then identified which genes showed an expression
profile significantly affected by the hormonal treatment over time. The final list of differentially expressed genes
underwent cluster analysis of functional type, to identify groups of genes with similar regulation dynamics.

Conclusions: Several methods for processing time series gene expression data are presented, including evaluation of
benefits and drawbacks of the different methods applied. The resulting protocol for data analysis was applied to
characterization of the gene expression changes induced by estrogen in human breast cancer ZR-75.1 cells over an entire
cell cycle.
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Background

Estrogens (E2) are key regulators in many biological proc-
esses, along with a highly recognized role in breast cancer
where they control key cellular functions by diffusing
through the cell membrane and interacting with the estro-
gen receptors (ERs), transcription factors which play an
important role in controlling multiple cellular processes
mainly via changes in the expression of selected genes [1-
3]. Complexity of the cellular responses to estrogen and
their receptors can ideally be investigated only with com-
prehensive analytical approaches, including in particular
gene expression profiling with microarrays [4,5]. These
technologies allow to assess at genome-wide scale changes
in gene activity resulting, for example, from hormonal
and pharmacological treatments or pathological and
divergent physiological conditions. As changes in gene
expression are driven by a dynamic process, the influence
of time should not be neglected, but the use of this tech-
nique to study kinetics of gene expression changes has not
been fully exploited yet. Indeed, few statistical methods
are available which enable to fully evaluate time series.
Most of the methods to identify differentially expressed
genes adapt classical techniques originally designed for
static experiments. This ‘static’ approaches have the disad-
vantage of not taking into account temporal relationship
among samples, leading to results that are often invariant
under permutation of the values representing different
time points, thus ignoring the biological causality which
can be inferred from the temporal response. They do not
accurately consider the existing temporal structure in the
data which can have as consequence a falsely calculated
significance of the genes.

For example, the popular microarray analysis package
SAM (Significance Analysis of Microarrays) [6] was
recently adapted to handle time course data, by consider-
ing different time points as distinct groups; the ANOVA
[7] approach can also be applied to time course experi-
ments by treating the time variable as a particular experi-
mental factor and other methods [8-10], including the
limma package [11] which uses linear models, follow sim-
ilar approaches.

On the other hand, most classical time series algorithms,
mainly used for signal processing, are quite rigid, includ-
ing requirement of a large number of time-points, uni-
form sampling intervals and absence of replicated or
missing data-points, which microarray experiments rarely
meet.

Recently the time variable is starting to be much more
considered in the analysis of regulation of gene expres-
sion, leading to new developments in the area of analysis
of time-course microarray [12,13]. Due to the constraints
in microarray data structure, however, the problem of
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detecting and estimating gene expression profiles
becomes extremely challenging and robust statistical
methodologies are still missing. On the other hand, very
few large scale comparisons are available in order to illus-
trate benefits and drawbacks of current methodologies.

With the aim of setting up a workflow adapted for time
course experiments, we tested the available methods tai-
lored for time series analysis and established an analysis
protocol to be used in subsequent experiments. The first
method we considered introduces the time variable
through a gene expression response curve which is
expanded over the polynomial or B-spline basis with the
coefficients estimated by the least squares procedure [14]
(implemented in the software EDGE - Extraction of Differ-
ential Gene Expression [15]). The second method uses a
novel multivariate empirical Bayes approach to rank
genes in the order of interest from longitudinal replicated
microarray time course experiments [16] (implemented
in the Bioconductor [17] package timecourse). However,
this last method does not consider time curves from a
functional point of view, neither provides any cut-off to
select statistically significant genes. The third method is a
functional Bayesian approach in which each gene expres-
sion temporal profile is estimated globally by expanding
it over an orthogonal basis [18] (implemented in the soft-
ware BATS - Bayesian Analysis of Time Series [19]).

Our aim here, rather than to propose new methodologies,
is to provide a detailed comparison of different methods
which can be used as suitable protocol for analysis of time
course gene expression data from microarray experiments.

Methods

Cell-lines cultures and array hybridizations

Human estrogen-responsive breast cancer cells (ZR-75.1)
cultured in steroid-free medium for 4 days were stimu-
lated with a mitogenic dose (10nM) of 17f-estradiol and
RNA was extracted before or after 1, 2, 4, 6, 8, 12, 16, 20,
24, 28 and 32 hours hormonal stimulation. Cells were
collected from multiple parallel cultures and pooled
before RNA extraction as described before [4]. Hybridiza-
tion reactions were performed with [llumina Human WG-
6 BeadChips following manufacturer's protocols, in
duplicate for each sample, except the reference sample
(before stimulation - Oh) which was in quadruplicate and
the 4h sample in triplicate. In the Illumina arrays the oli-
gonucleotides are attached to microbeads which are then
put onto microarrays using a random self-assembly mech-
anism [20]. Also, due to the small dimension of the beads,
each bead-type (representing one probe for a total of
46713 sequences) is present in a number of the order of =
30-40 copies, thus providing an internal technical replica-
tion that other platforms usually lack. In the present
paper, we use the term ‘probe’ and ‘bead’ indifferently,
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since in each case we use as signal the mean value of each
bead population of signals present on the array.

The complete datasets will be submitted to the public
repository of microarray data ArrayExpress upon publica-
tion.

Pre-processing

Five different normalization algorithms were applied on
data, three of them present in the chip manufacturer's
analysis software BeadStudio and two of them performed
using R/Bioconductor statistical environment [17,21].
The average method simply adjusts the intensities of each
signal so that the average signal of each array becomes the
same. The rank invariant is very similar, the only differ-
ence is that the scaling factor is calculated only on a subset
of rank-invariant genes and not on all genes [22]. The
cubic spline is the only non-linear method present in the
BeadStudio software, similar to an existing algorithm [23]
and described in the software manual [22]. The quantile
method [24] acts to uniform the quantile distribution of
each array signal population and is widely used as stand-
ard in single-channel arrays [25]; it is available through
the R/Bioconductor packages affy [26] or limma [11] and
many other popular analysis software. Lumi[27] is a new
method especially designed for Illumina BeadChips,
based on a modification of the variance stabilizing nor-
malization algorithm [28] to make use of the bead stand-
ard deviation associated to each signal, only available in
this microarray platform.

After normalization, probe signals were checked for detec-
tion against negative controls with a BeadStudio internal
algorithm and missing values were introduced to replace
signals under the detection limit. Probes in which the ref-
erence sample had less than 3 out of 4 detected signals
were filtered out. Then log2 transformation was applied
on data, except in the case of lumi which uses its own var-
iance stabilizing transformation. Ratios of each signal
against the average reference signal were calculated and
probes with more than 15% missing values of the result-
ing time series were filtered out.

Time series analysis

The following sections contain a brief description of the
methods used in this paper to perform the statistical anal-
ysis of a microarray experiment made in the course of
time. For a detailed description of each method, we refer
the reader to each method's reference. Some preliminary
considerations are however necessary: the number of time
points t0), j = 1,..., n at which each sample is taken is rela-
tively small (n = 10) and the experimental design is not
generally regular, with very few replicates at each time
point (k) = 0,..., K, K=1, 2 or 3); on the other hand a
very large number of genes (N ~ 10%) are simultaneously
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measured, some data points might be missing due to tech-
nical error and the noise is usually not gaussian.

Sliding window analysis

We first extracted a list of differentially expressed genes at
each time-point using the internal DiffScore test of Bead-
Studio software [22] by using thresholds of different strin-
gency (a DiffScore of 20 and 30, corresponding
respectively to a p-value of 0.01 and 0.001 of the underly-
ing statistical test). We denoted as ‘differentially
expressed’ genes those which were selected at least in three
consecutive time-points. The limits of this procedure are
the lack of statistical formalization and the fact that the
fixed window does not account for irregularly spaced grid
assigning to all points the same weight.

EDGE

The method proposed in Storey et al. [14] apply both to
longitudinal and independent data. For each gene the
effect of the treatment is modeled as a mathematical func-
tion and expanded over the polynomial or p-dimensional
B-spline basis [s; (¢),..., s,(¢)]. In our case data are not truly
longitudinal since the biological source is a cell line, cul-
tured in parallel, under identical and controlled condi-
tions, hence the method is applied in its simplified
version.

Let z/* be the relative expression level of the gene i in the
kth replicates at the j time point t0) where there are i =
1,..., N genes and j = 1,..., n time points, k=1,..., k"

replicates for time point. The relative observed gene
expression values are then modeled by

2= gy ()

where p1,(t0)) is the (unknown) relative expression time
curve for gene i evaluated at time t() and can be written in
terms of a p-dimensional linear basis [s;(1),..., 5,(1)]:

lu’i (t) = /80,1' —"_ /Bi,lsl (t) + ﬁi,ZSZ (t) + + ﬁi:ﬂs,ﬁ (t>

where, B, ; is the intercept term, p is the same for all genes

(it is assumed to be known and in practice it is preliminar-
ily estimated from the data or it can be provided by the

user), and ¢/* are modeled as independent random vari-

ables with mean zero and gene dependent variance o; .

Under this setup the interest is to test the null hypothesis
H,; that pi(t) = 0 against the alternative H, ; formulated

under the general parametrization pi(t) = B;,,(t) + PBi,
252(t) + ... + B;,s,(1) with some non zero coefficients. To

assess differentially expressed genes, the goodness of
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model fit under the null hypothesis is compared to that
under the alternative hypothesis, by calculating for gene i
a F statistic similar to the one used in ANOVA:

SS? — S8}
: SS!

’

where SS; is the sum of squares of the residuals obtained

from the null model, and SS; from the alternative model.

However, Storey et al. [14] do not impose assumption of
normality: the distribution of these statistics is treated as
unknown and studied via bootstrap [29], which may
require high computational cost. Finally, to account for
the multiplicity of comparisons, the most significant
curves are selected by controlling g-values using an FDR-
like procedure [30].

This method is implemented in the user-friendly software
EDGE [15]. We used the software with default parameter
setting (increasing the number of iterations to 1000 in
order to reduce the problem of the granularity of the p-val-
ues and to obtain more stable lists) and g-value thresholds
of 0.01 and 0.001. The ‘K nearest neighbor’ (KNN)
method [31] is provided to impute missing values, since
the method itself does not account for missing data. In
order to separate the effect of the method from the proce-
dure to impute the missing values, we repeated the analy-
sis both by filtering out all the genes with missing
observations and by using the KNN method to impute
them.

timecourse

This method applies the novel multivariate empirical
Bayes approach described in Tai et al. [16] to rank genes in
the order of interest from longitudinal replicated microar-
ray time course experiments. Similarly to Storey et al. [14],
timecourse can be applied both to the ‘one-sample’ and
‘two-sample’ case, however in the last case it is applicable
only to data sets with identical time grids. On the other
hand, differently from Storey et al. [14] where both longi-
tudinal and independent sampling designs are accounted
or from Angelini et al. [18] where only the independent
sampling is considered, this method is designed for data
where replicates are biologically meaningful, for example
when a full series of time-points is drawn from the same
individual (i.e., truly longitudinal). Indeed, biological
samples are treated under the ‘fixed effects’ rather than the
‘random effects’ design model. Hence, since in this con-
text one replicate is a full time curve (i.e, vector of size n),
missing data are not allowed and the same number of
arrays is required at any time point. On the other hand,
different number of replicates are allowed between differ-
ent genes.
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For each gene i and individual k the n-dimensional vector
r
of observations z; = (z;,,..., z,) on the grid ¢(1),...,t"

is assumed to be conditionally independently drawn from
a multivariate n-variate normal distribution with

unknown mean y, and covariance matrix %, i.e.,

Zfl |:ui’2i ~Nn(lui’zi)

The method only seeks a statistic for ranking genes in the
order of evidence against a null hypothesis and does not
attempt to find a threshold to select the significant genes.
The null hypothesis corresponding to a gene mean expres-
sion level being zero is defined as H,;: ;= 0, ¥; > 0 and
the alternative as H, ; : p; # 0, Z; < 0. An N-dimensional
indicator random variable I is defined to reflect the status
of the genes:

1, if H,, is true
‘o, if Hy, is true

with a Bernoulli distribution with success probability ®, 0
< ® < 1. The multivariate hierarchical Bayesian model is
built by elicitating the following priors:

plX, [ =1~N,©n'X)and u |3, I, =0~6(0,..,0)
Y. ~Inv-Wishart, (vA) ')

where 1 > 0 is a scale parameter, v> 0 and v A < 0 are the
degrees of freedom and scale matrix, respectively. Since
conjugate priors are elicited on the unknown parameters,
all computations for the posterior distributions and the
form of the statistics are carried out in a analytical form.
Moreover, the hyper-parameters, whose amount however
increases with the number of time points, can be esti-
mated from the data.

Finally, the Hotelling T2-statistic is calculated and used to
rank genes when the same number of replicates are avail-
able for all genes, while the M B-statistics is used when the
number of replicates is not equal for all genes [16]. For
further details on the statistics and on parameters estima-
tion, we refer the interested reader to the original refer-
ence. Here we only note that, due to the way the data
model was conceived, the quantitative information about
the time measurements is not explicitly used by this
method. The method is implemented in the timecourse R/
Bioconductor package [32]. We applied the method using
the first two replicates per time point, since the number of
replicates has to be the same along the time curve. Also
since missing values are not allowed, we repeated the
analysis both by filtering out all the genes with missing
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observations and by using a KNN algorithm implementa-
tion present in R [33].

BATS

BATS (Bayesian Analysis of Time Series) software [19] is a
newly-developed user friendly tool which implements the
functional Bayesian approach described in Angelini et al.
[18]. Although independently developed, the method
appears to be a compromise between EDGE and time-
course. Indeed, similarly to EDGE, the method treats
records as functional data, thus preserving causality and
taking into account the temporal nature of data. Similarly
to timecourse, the Bayesian approach is applied in the
method at all stages of analysis, but the priors are elicited
on the space of the function coefficients, hence the time
variable enters in the model in explicit form trough the
design matrix.

BATS is designed for data consisting of the records on N
genes and describing the difference in gene expression lev-
els between treatment and control in a context of inde-
pendent sampling time course experiment. A gene record
is defined as a vector of size M;, containing all the meas-
urements available for gene i. Each record is modeled as a
noisy measurement of a function p,(t) at a time point ()

€ [0, T] as in equation (1) where for each gene i, its expres-
sion profile p;(t) is expanded into series over some stand-

ard orthonormal basis [§y(t) ¢,(f) - -+ ¢(t)] on [0,T]
(Legendre polynomials or Fourier basis are implemented
in the software, however any other bases can be theoreti-
cally considered) of gene specific degree 0 <L, <L with

coefficients CI.(I), 1=0,---,L:

1

max

()= 3%, (0.

Similar to EDGE, the objective is to identify the genes
showing different functional expressions between treat-
ment and control (i.e. p;(t) # 0), and additionally to
explicitly evaluate the effect of the treatment (i.e., estimate
1 (t)), which in EDGE is hidden in the model but it
could be obtained by least squares fit of (1) under model

(2). Following Angelini et al. [18], genes are treated as
conditionally independent and modeled as

z, = Dici + Ci

in which D; is the block design matrix, the j-row of which

is the block vector [¢() ¢1(5) - - - ¢.(t;)] replicated k;
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times;

T T
,z.”'l,...zi"'k") ,Ci:(C?,...,CiL‘) and

i

_ 11 Ll ..
z, = (g .5,

G=" e G M ¢ )T are, respectively, the

column vectors of all measurements for gene i, the coeffi-
cients of () in the chosen basis, and random errors. The
following hierarchical model is imposed on the data:

N D, 0l,,)
Truncated Poisson (A, L_,.)

70(0,-1.,0)+ (1= )N 0,07

2
z,|L,c,0 ~
L. ~

i

¢ |L,o* ~

All parameters in the model are treated either as random
variables or as nuisance parameters that are recovered
from data. Noise variance ¢2 is assumed to be random, ¢2
~ p(0?) in order to account for possibly non-Gaussian
errors which are quite common in microarray experi-
ments.

Three different Bayesian models are contained in BATS
providing the user a more flexible theoretical set-up to
accommodate various types of error distributions,
namely, all scale mixtures of a normal distribution: delta-

type prior p(c’)=06(c" — 0, ), the inverse Gamma prior

p(c?)

P (O_z ): C/la_vale*Uz;l/z
and double-exponential errors, respectively. The choice of
differentially expressed genes is made on the basis of
Bayes Factors which are used for multiplicity control and

are computed using the procedure described by Abramov-
ich et al. [34]. Once significant genes are detected, the

= IG(y, b) and the exponential type prior

which lead to normal, Student T

coefficients ¢’ and, subsequently, the curve i (t) are
estimated by the posterior means. Hyperparameters 7,
and o}, y, b or p are estimated from the data, or can be
entered as known by the user. Gene specific parameters
7} and L, are estimated by maximizing the marginal like-

lihood P(z;) and the posterior mean or mode of P(L/Z)),
respectively.

The advantage of the Bayesian model described above is
that since all priors are conjugate (see [18] for details), all
posterior inference can be carried out analytically with
very efficient computations.

The method is used for simultaneous estimation of the
curves, as well as for ranking the curves (genes) according
to their significance level. Moreover, significance testing
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of the curves is carried out by controlling the multiplicity
of comparisons from a Bayesian perspective [34], provid-
ing an automatic cut-off. We performed the analysis by
using two error models (the normal and the double-expo-
nential) and a range of values of the parameter A, which
influences the prior degree of the polynomial curve esti-
mated for each gene.

Simulations

To compare performances of EDGE, timecourse and BATS,
we carried out a small simulation study by generating data
with the Simulation utility of BATS. We generated data to
mimic the structure of the real data set described above,

with N = 10000, n = 11 and k/ =2 forallj=1, ..., 11
except k' =3 . In the data sets generated, 1000 or 2000

genes were randomly chosen to be “differentially
expressed”, corresponding respectively to 10 % or 20 % of
the total number of genes. The first scenario correspond to
a case where relatively few genes are involved in the proc-
ess, the second to a more strong respondence to the treat-
ment. The values of 1000 and 2000 where chosen from
the prior belief on behavior of the real data experiments.
The remaining 9000 or 8000 curves were set to identical
Zero.

For each significant curve, the Simulation utility samples
the degree of the polynomial L™ from a discrete uniform

distribution in [1, L,,], with L., = 6 (in contrast to the

truncated Poisson that is used in fitting the model). Poly-
nomials of degree zero are excluded since a nonzero con-
stant signal is questionable from a biological point of
view. Coefficients ¢; where randomly sampled from

N(0, 0 Q).
Q. =diag1*,2%,...,Li"") where v; ~ U([0,1]) and

Matrix Q; is set to

77 was sampled uniformly in order to produce the signal-

to-noise ratio (SNR) in the interval between 2 and 6.
Under this set up we can mimic both weak and strong sig-
nals and different signal regularity (which is not
accounted explicitly by any of the models). Furthermore,
since is known that noise on microarray date has heavier
tails than gaussian, we performed simulations under three
scenarios of i.i.d. noise: normal N(0, 62) and Student T
with 5 or 3 degrees of freedom (indicated as 75 and T3,
respectively). Student noise was rescaled to have the same
variance 62 of the normal case (o = 0.33, the estimated
value for the real data set).
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In addition, very large values (with a threshold of 5) were
filtered out and substituted with missing values, mimick-
ing real data preprocessing where unreliable values are
eliminated.

For each kind of noise and number of true signals we gen-
erated 5 data-set, averaging the results. Analysis of simu-
lated data was performed with the three methods with the
same choice of parameters used in the real data analysis:
EDGE g-value 0.01 and 0.001; BATS error model normal
and double exponential and A = 9 and A = 12; with time-
course we chose the first genes in the ranked list corre-
sponding to the same number of the genes selected by
BATS on the same dataset, to evaluate the number of false
positives and false negatives.

Cluster analysis

Cluster analysis on the final list of gene profiles signifi-
cantly affected by estrogen stimulation was performed
using a Bayesian functional based software, Splinecluster
[35]. The method proposes a hierarchical cluster
approach, where the number of cluster is automatically
selected by maximizing the marginal distribution. How-
ever, it is recommended both for computational and for
practical point of view to apply the method only on the
relevant subset of genes, instead of the whole dataset of
genes. Here, similarly to BATS, the gene profiles are also
represented by expansions over a certain basis and the
normal-inverse gamma prior is imposed on the unknown
coefficients. The number of clusters and cluster participa-
tion are also treated as random, leading to a full Bayesian
model. Since the method does not address many of the
issues which we treat in the Results and discussion Sec-
tion, we processed the selected data matrix by filtering out
missing data points and by averaging the replicates at each
time point.

Results and discussion

Experimental design of the experiment and its implications
We present the analysis performed on a time series of
microarray data from breast cancer cells treated with estro-
gens. Our experimental design is formalized in a ‘one
sample’ statistical model with a time series, in which rep-
licated arrays for each time-point are technical replicates,
with no special relationships between each other. We also
have unequally spaced sampling intervals (1h between
the first two time-points, 2h till the time-point of 8h and
4h till the end of the series) and 2 replicates at each time-
point, except one case (4h) in which we have 3 replicates.
This data structure has quite common features in microar-
ray experimental designs: a number of replicates barely
sufficient to get statistically significant results, unequal
number of replicates which may be due to technical needs
or reasons of biological interest. For example, the higher
detail in the first part of the curve reflects a greater interest
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from a biological point of view in the earlier responses to
hormone treatment with respect to the rest of the time
series. Some difficulties may arise in analyzing data pre-
senting features like these, both for a static analysis
approach and with a longitudinal method. In fact, for a
static method of comparison treated/non treated, per-
formed point-by-point, the number of replicates of indi-
vidual time-points is lower than the required minimum of
most standard tests. This limited number of replicates is
justified by the time-series analysis: since we are interested
in the whole profile, we don't need absolute precision in
each time point comparison but rather we need to take
advantage of the temporal structure of the data and use all
information available along the time in order to make
appropriate and robust inference.

Pre-processing

We evaluated the effect of different normalization algo-
rithms in terms of overlap between the selected gene lists
produced with the time-series analysis methods used.
After inspection of normalized data, the cubic spline
method was discarded since the data produced was not
correctly normalized between the arrays (see Additional
file 1), thus requiring further manipulation on data that
we decided not to apply. The better overlap was noted
between quantile and lumi normalization, with average
being the best performing algorithm among the ones
present in BeadStudio software.

After the filtering step, the genes left for the analysis were
9593, of which 1261 (13.2%) had between 1 and 4 miss-
ing values.

Time series analysis
Sliding window analysis
This method is quite naive and is presented just to have a
static counterpart to compare with the other methods. We
chose to apply it only to data normalized with BeadStudio
algorithms, thus representing an analysis performed with
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the only help of the chip manufacturer's software. We
applied the internal differential analysis algorithm which
uses the bead standard deviation in the error model, thus
making it possible to analyze data with only 2 replicates
for each time-point, as in our case, unlike a standard t-test.
Results of the analysis with this and the other methods are
reported in Table 1. We noted a fairly good robustness to
normalization effects (75-80% overlap among the
selected gene lists). Although being a very simple proce-
dure, we obtained results which were comparable to other
methods having more appropriate assumptions (60-70%
with EDGE and BATS). However, we also have to point
out that, by considering a window of three time points
regardless of time interval between them, we are incor-
rectly treating unequally spaced times with the same
weight in the analysis. It can nevertheless be useful to
detect local changes in the expression.

EDGE

EDGE is distributed as a stand-alone software and,
although relying on R [21], it silently uses it in the back-
ground, so that the user does not need to know the lan-
guage to use it but only interacts with a graphical
interface. It also has some useful utilities to inspect the
input data, such as the possibility to make boxplots, to
check the presence of missing data and to impute them
with the KNN algorithm. The results are highly robust to
changing normalizations (80-96% overlap among all the
four methods) except for the case of rank invariant nor-
malization, with which the number of significant genes
drops unexpectedly with respect to the others. We
obtained similar results both by filtering out missing data
and by imputing them. As compared with the other meth-
ods, on real data EDGE selects a surprisingly much longer
list of genes (Table 1). Moreover, we observed that, even
though we increased the number of permutations, due to
the granularity problem, genes with the same g-value are
too many, since for example the first 67 (average norm.),
44 (lumi) or 85 (quantiles) genes all result as ‘first rank’

Table I: Comparison of the selected gene lists obtained with different methods of selection. Numbers indicate the genes obtained by
pairwise intersection of different methods of selection. In bold are the selected gene lists for each method.

Sliding window  Slidingwindow EDGE 0.012 EDGE 0.0012 BATS #13 BATS #2* timecourse 10005 timecourse 15005
20! 30!

Sliding window 20! 1563 997 1126 667 903 1069 140 209

Sliding window 30! 997 825 540 690 797 85 128

EDGE 0.012 2595 1145 936 1086 232 343

EDGE 0.0012 1145 590 659 104 154

BATS #13 1478 1397 157 157

BATS #24 1660 232 243

timecourse 10005 1000 1000

timecourse 15005 1500

IDiffScore threshold. 2g-value threshold. 3Error model = normal, A=12. 4Error model = double-exponential, A=9. SNumber of ranked genes

selected.
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genes with the same g-value. To reduce granularity one
should further increase the number of permutations, but
then as a consequence the computational cost would also
increase, thus making the method less convenient to use.

timecourse

timecourse [32] is a package distributed with Bioconductor
[17], thus requiring knowledge of the statistical environ-
ment R [21], which is both an advantage for those familiar
with this language, since it is very quick to install and use
new packages, but it can be unfriendly for biologists. Sim-
ilarly to EDGE, we found very similar results both when
filtering out genes with missing observations and when
imputing them. This method only ranks in order of signif-
icance the input gene list without providing an automatic
or suggested cut-off to determine which genes are signifi-
cant. For this reason, on real data we selected the first
1000 and 1500 genes of the rank ordered lists to compare
results among normalizations and with the other meth-
ods. Surprisingly, we found a very low overlap both
between the ordered lists prepared with different normal-
izations and with lists produced with other methods
(Table 1). It is worth mentioning that our dataset contains
only technical (indistinguishable) replicates, thus the
method could not take advantage of the replicate identifi-
cation, nonetheless the difference with the other methods
and above all between data normalized with different
methods is difficult to explain.

BATS

BATS is also distributed as a stand-alone software with a
graphical and friendly interface, as, although written in
Matlab [36] it does not require the use of Matlab. Selec-
tion was found robust with respect to changes in parame-
ters (85-90% genes common to all the combinations
used) and type of normalization (74-82%, with a lower
overlap for the rank invariant). BATS has also some graph-
ical utilities to plot, filter data and compare resulting lists
and is the only method which allows to save the estimated
profile for the selected genes for further use (Figure 1). As
the result on the ‘one sample’ problem, the technique
allows different number of basis functions for each curve,
which improves the fits, it does not require to pre-deter-
mine the most significant genes to select the dimension of
the fit and avoids a computer intensive evaluation of the
p-values via bootstrap. Furthermore, by using the Bayesian
formulation in combination with the functional
approach it can successfully handle various technical dif-
ficulties which arise in microarray time-course experi-
ments such as a small number of observations available,
non-uniform sampling intervals, presence of missing data
or multiple data as well as temporal dependence between
observations for each gene, which are not completely
addressed by the above mentioned methods. On the other

http://www.biomedcentral.com/1471-2105/9/S2/S12

hand, current version of the BATS method cannot be
applied to the ‘two sample’ case.

Comparison of methods

Simulation study

Tables 2 and 3 summarize results with the simulated data-
sets. In particular, for any group of datasets it is reported
the average number of rejected hypotheses, i.e. genes
declared differentially expressed, the average number of
the correctly rejected hypotheses, the false discovery rate,
estimated as the average proportion of the falsely rejected
hypotheses over the total number of rejected hypotheses,
and the false negative rate, estimated as the average pro-
portion of the significant curves not detected over the
number of not rejected hypothesis. As already stated, since
timecourse does not provide any cut-off point, for the sake
of comparison we cut the ranked list on the same number
of significant genes as in BATS with default parameters
choice. We can say that all methods have good perform-
ances under all the simulated datasets, with BATS provid-
ing more accurate results (both in terms of FDR and FNR)
than the other methods. However, we have to note that
the simulated datasets were generated according to several
of the BATS model assumptions. On the other hand it
does not exists an accepted standard dataset of microarray
time course to be used as benchmark, neither a way to per-
form a blind experiment, or a well established set of syn-
thetic test functions as in non parametric regression.
Different methods account for different biological infor-
mation and are valid under different assumptions, while
the various amount of different interactions and sources
of error that can affect the data can often change the per-
formance of a given method from a simulated case to the
real data application.

For what concerns EDGE, we observe a quite conservative
behavior (it has a higher FNR with respect the other meth-
ods) which is not preserved on the analysis of real data.
This might be due to the bootstrap technique applied to
estimate the parameters.

In the case of timecourse, we note a higher consistency with
the other methods, in spite of its strikingly different
results when applied on real data. It is not surprising to
observe that the methods performed differently on real
data with respect to simulated data, since any simulation
has implicit assumptions which may or may not be veri-
fied on experimental datasets. Apparently, a more irregu-
lar noise distribution on real data has arisen opposite
problems to EDGE and timecourse in detecting gene
expression signals over the noise, while on the contrary it
does not affect the performance of BATS significantly.
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ZNF247 (rank 24, cl.1)

EGR1 (rank 108, cl.2)
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LOC392763 (rank 1, ¢l.2)

MYC (rank 25, ¢l.32)
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Figure |

Expression kinetics of representative estrogen-responsive genes. Green lines represent the estimated profiles gener-
ated by BATS for each gene and crosses show the actual data of replicates.

Table 2: Simulation study. Datasets generated with 1000 true signals, with three different noise models. Results were averaged over 5
datasets.

Noise model N

Noise model T5

Noise model T3

Method Rej.4 Corr5 FDRé FNR? Rej.4 Corr.5 FDR® FNR? Rej.4 Corr.5 FDRé FNR?
EDGE! 0.01 383.8 3824 0.004 0.064 405.6 403.4 0.005 0.062 462.6 460.8 0.004 0.057
EDGE! 0.001 207.8 207.4 0.002 0.081 183.6 183.6 0.000 0.083 187 187 0.000 0.083
timecourse? 775.6 7334 0.054 0.029 7944 690.6 0.131 0.034 869.8 7334 0.157 0.029
BATS} N, 9 775.6 775.6 0.000 0.024 794.4 782.6 0.015 0.024 869.8 803.4 0.076 0.022
BATS3 N, 12 7754 7754 0.000 0.024 794.2 782.4 0.015 0.024 869 802.6 0.076 0.022
BATS3D, 9 753.2 753.2 0.000 0.027 7748 762.8 0.015 0.026 8754 7934 0.094 0.023
BATS3 D, 12 745.8 745.8 0.000 0.027 7684 756.4 0.016 0.026 871.6 789.2 0.095 0.023
Ig-value threshold.
2Number of rejected chosen equal to the case of BATS (N,9), for comparison purpose.
3Error model N = normal, D = double-exponential, the indicated number is the value of A.
4Rej. (Rejected) = average number of genes declared differentially expressed.
5Corr. (Correct) = average number of the correctly rejected hypotheses.
6FDR (False Discovery Rate) = average proportion of falsely rejected hypotheses over the total number of rejected hypotheses.
7FNR (False Negative Rate) = average proportion of false negatives over the total number of not rejected hypotheses.
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Table 3: Simulation study. Datasets generated with 2000 true signals, with three different noise models. Results were averaged over 5

datasets.
Noise model N Noise model T5 Noise model T3
Method Rej.4 Corr. FDR® FNR? Rej.4 Corrs FDRé FNR? Rej.4 Corr. FDR® FNR?
EDGE!' 0.01 928.4 921.8 0.007 0.119 953.4 948 0.006 0.1163 1054.6 1048.2 0.006 0.106
EDGE' 0.001 519.6 519.6 0.000 0.156 526 526 0.000 0.1556 544.6 544.6 0.000 0.154
timecourse? 1386 1380 0.004 0.072 1396 1319 0.055 0.0791 1461 1384 0.052 0.072
BATS3 N, 9 1385.8 1385.8 0.000 0.071 1395.8 1391 0.003 0.0708 1460.6 1435 0.018 0.066
BATS3 N, 12 1382 1382 0.000 0.072 1393.4 1388.6 0.003 0.0710 1459.6 1433 0.018 0.066
BATS3D, 9 1386 1386 0.000 0.071 1407.2 1403.4 0.003 0.0694 1510.2 1477 .4 0.022 0.062
BATS3 D, 12 1368.2 1368.2 0.000 0.073 1384.2 1380.4 0.003 0.0719 1489.8 1457 0.022 0.064

Ig-value threshold.

2Number of rejected chosen equal to the case of BATS (N,9), for comparison purpose.
3Error model N = normal, D = double-exponential, the indicated number is the value of A.
4Rej. (Rejected) = average number of genes declared differentially expressed.

5Corr. (Correct) = average number of the correctly rejected hypotheses.

6FDR (False Discovery Rate) = average proportion of falsely rejected hypotheses over the total number of rejected hypotheses.
7FNR (False Negative Rate) = average proportion of false negatives over the total number of not rejected hypotheses.

Real data analysis

When several methods are compared on experimental
data, there is no clear and well accepted way to compare
performance of each approach and the final choice usu-
ally depends upon several considerations. We thus first
investigated the robustness of each procedure in terms of
user selected parameters and different normalization pro-
cedures (data not shown). In Table 1 are reported the
results relative to the gene lists selected by each of the pro-
cedures described above, all normalized according to the
average method. As shown, the less rigorous sliding win-
dow approach as well as EDGE and BATS have a satisfying
overlap among the gene list they select. We then consid-
ered the different methods from a statistical point of view,
analyzing benefits and drawbacks.

Sliding windows is of course the less statistically rigorous,
it does not take into account unequally spaced time points
or missing data nor provides a global measure of signifi-
cance for the whole time series. On the other hand, this is
very intuitive and computationally inexpensive, and may
be useful to detect local changes.

EDGE, on the other hand, suffers for the problem of the
granularity of p-values which can be only partially solved
by increasing the number of iterations, although at the
price of a high computational cost, which can become
prohibitive for large dataset. Moreover, the choice of an
appropriate threshold may become problematic, since
small changes lead to remarkable differences in the
selected gene lists. Furthermore, EDGE assumes the same
degree in the functional expansion of each gene and, as a
consequence, it may lack in adaptation. It has, however,
the merit of being the first tool to formalize the problem
of selection by a functional approach.

timecourse is mainly designed for a slightly different prob-
lem, hence its use in the context considered here does not
allow to take complete advantage of the methods itself.
Moreover, similarly to EDGE, timecourse does not account
for missing data, requiring the user to filter out incom-
plete datasets, missing time points, or to force the user to
employ preliminary procedures in order to impute them.
Furthermore, this method does not provide an automatic
cut-off for selecting significant genes, nor uses the quanti-
tative ‘time’ information in an explicit way.

Hence, we found BATS more appropriate for this experi-
mental setting, since it automatically accounts for various
technical difficulties which arise in microarray time course
experiments, such as limited number of observations, non
uniform sampling intervals or missing/multiple records,
all conditions which are not completely addressed by the
above mentioned alternative methods. Moreover, since
BATS does not require bootstrap and posterior inference
can be evaluated in closed form, and it is applicable also
to the larger datasets that are becoming more widely used
due to microarray technology improvements and diffu-
sion. Furthermore, it has the merit of providing an esti-
mate of the significant expression profile, which is not
explicitly provided by any of the other methods, while
being also very flexible, capable of handling gene specific
variance and, using the Bayesian paradigm, allowing bet-
ter adaptation of the estimates to the underlying data.

Cluster analysis

The biological model selected for this study is based on
the responsiveness of human breast cancer ZR-75.1 cells
to stimulation with estrogen, since it is well known that
under these conditions the hormone evokes in the cell
complex, timed gene regulation events that result in cell
cycle progression and inhibition of cell death [3,4] and
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changes in cell metabolism and function [2,5]. This is
accomplished by hormonal activation of different signal
transduction cascades leading, among other, to physical
and functional interactions of activated ERs with the
genome [1,37]. Correct identification of gene clusters that
shows synchronous responses to estrogen is thus a key
step to dissect the molecular mechanisms that underlie
cell regulation by these steroid hormones. We chose the
Splinecluster method [35] to identify homogeneous time
clusters within the final list of estrogen regulated genes
selected since we wanted to use a clustering approach
which also would take into account the temporal relation-
ship among samples, as a natural subsequent choice. Con-
sidering the amount of noise which usually affects
microarray experiments and the dimensionality of the
problem, we stress that in order to reduce the computa-
tional complexity of any clustering procedure, while
obtaining more significant results, it is of great impor-
tance to perform in any case the analyses only on data rel-
ative to the subset of genes which do respond to the
treatment. In Figures 2 and 3 are displayed the results of
cluster analyses carried out on the set of estrogen-regu-
lated genes from ZR-75.1 cells selected with BATS accord-
ing to the following parameter settings: normal error
model and A = 12. The actual data are provided in Addi-
tional file 2, which includes also the final gene list.

Conclusions
Microarray experiments enable to study at genome-wide
level the dynamics of gene regulation events. Since thou-
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sands of genes are spotted in modern platforms, the
amount of data provided is relevant, hence it is important
to have an automatic, statistically robust, computationally
fast and flexible procedure to select gene expression pro-
files which show significant changes in time.

We tested different methods tailored for analyzing data
derived from time-course microarray experiments, which
can be modeled under a ‘one sample’ framework, in order
to find the most appropriate analysis pipeline to use in
future experiments.

We evaluated advantages and limits of each method
assessed, in terms of usability, computational burden,
flexibility to characteristics of microarray experimental
designs, robustness to normalizations and overlap with
the other methods. We have found an analysis pipeline of
R/Bioconductor preprocessing and then selection of sig-
nificant genes with BATS to be the most appropriate in the
‘one sample’ case. Selected genes can then be clustered
with Splinecluster [35], which is a method which uses a
functional approach, coherently with the selection proce-
dure used.

To validate the biological significance of the gene expres-
sion profiles and gene clusters here identified, these were
compared with the results we obtained previously in
estrogen-stimulated ZR-75.1 cells under identical experi-
mental conditions [4]. The majority of the genes in com-
mon among the two lists showed very similar/identical

15 17 21 23

16 18 24 3032

Heatmap of co-regulated gene clusters. Hierarchical representation of the 32 clusters generated by Splinecluster.
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time (hrs)

time (hrs)

time (hrs)

Page 12 of 14

(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 2):S12

pattern of expression. This is evident, for example, when
comparing in Additional file 2 and Cicatiello et al. [4] the
data relative to: EGR1 (early growth response 1: cluster 1),
ZNF217 (zinc finger protein 217: cluster 1), MYC (c-myc:
cluster 32), FOS (c-fos: cluster 32), TFF1 (trefoil factor 1:
cluster 17), CCND1 (cyclin D1: cluster 18), CCNA2 (cyc-
lin A2: cluster 19) and CCNB1 (cyclin B1: cluster 19). All
these genes are known target of ERs, while their activity
relates to regulation of cell cycle phasing. The pattern of
induction/repression of these genes by estrogen over time
(see also Figure 1), as identified with the method here
described, perfectly corresponds to their known biological
role in these cells, providing a strong biological confirma-
tion of the reliability of the gene selection method pro-
posed.
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