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Abstract
Background: A biomedical entity mention in articles and other free texts is often ambiguous. For
example, 13% of the gene names (aliases) might refer to more than one gene. The task of Gene
Symbol Disambiguation (GSD) – a special case of Word Sense Disambiguation (WSD) – is to assign
a unique gene identifier for all identified gene name aliases in biology-related articles. Supervised
and unsupervised machine learning WSD techniques have been applied in the biomedical field with
promising results. We examine here the utilisation potential of the fact – one of the special features
of biological articles – that the authors of the documents are known through graph-based semi-
supervised methods for the GSD task.

Results: Our key hypothesis is that a biologist refers to each particular gene by a fixed gene alias
and this holds for the co-authors as well. To make use of the co-authorship information we decided
to build the inverse co-author graph on MedLine abstracts. The nodes of the inverse co-author
graph are articles and there is an edge between two nodes if and only if the two articles have a
mutual author. We introduce here two methods using distances (based on the graph) of abstracts
for the GSD task. We found that a disambiguation decision can be made in 85% of cases with an
extremely high (99.5%) precision rate just by using information obtained from the inverse co-
author graph. We incorporated the co-authorship information into two GSD systems in order to
attain full coverage and in experiments our procedure achieved precision of 94.3%, 98.85%, 96.05%
and 99.63% on the human, mouse, fly and yeast GSD evaluation sets, respectively.

Conclusion: Based on the promising results obtained so far we suggest that the co-authorship
information and the circumstances of the articles' release (like the title of the journal, the year of
publication) can be a crucial building block of any sophisticated similarity measure among biological
articles and hence the methods introduced here should be useful for other biomedical natural
language processing tasks (like organism or target disease detection) as well.

Background
Biological articles provide a huge amount of information
about genes, proteins, their behaviour under different
conditions, and their interactions. The handling of huge
amounts of unstructured data (free text) has increased in
interest along with the application of automatic Natural
Language Processing (NLP) techniques to biomedical arti-

cles. Named Entity (NE) recognition is the first and crucial
step of an Information Extraction (IE) system and a major
building block of an Information Retrieval (IR) system as
well.

The task of biological entity recognition is to identify and
classify gene, protein, chemical names in biological arti-
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cles [1]. Taken one step further, the goal of Gene Name
Normalisation (GN) [2] is to assign a unique identifier to
each gene name found in a text. The GN task is challeng-
ing for two main reasons. First, although synonym (alias)
lists which map gene name variants to gene identifiers
exist like that given in [3], they are incomplete and they do
not contain all the spelling variants [4]. On the other
hand one name can refer to different entities (for example
IL-21 can refer to the genes with EntrezGeneID 27189,
50616 or 59067). Chen et al. [5] investigated gene name
ambiguity in a comprehensive empirical study and
reported an average of 5% overlap on intra-species syno-
nyms, and ambiguity rates of 13.4%, and 1.1% on inter-
species and against English words respectively. In general,
the Word Sense Disambiguation (WSD) approaches (for a
comprehensive study, see [6]) are concerned with this cru-
cial problem. Their goal is to select the correct sense –
from a well-defined sense inventory – of a term according
to its context. A special case of WSD task is the Gene Sym-
bol Disambiguation (GSD) [7] task where the terms are
gene names, the senses are genes referred by unique iden-
tifiers and the contexts are biological articles.

There are several earlier studies on general biomedical dis-
ambiguation tasks like [8-10], to name but a few. Weeber
et al. [8] annotated manually a UMLS-WSD corpus for
supervised learning purposes. Savova et al. [9] introduced
the utility of unlabeled data in general biomedical entity
disambiguation. Their unsupervised approach looked for
clusters among MedLine abstracts containing the target
word, based on single word and bigram, first- and second
order co-occurrence information. Liu et al [10] built a
train set automatically for each target term based on the
co-occurrences of unambiguous synonyms in other docu-
ments. He also mentioned that disambiguation on this
domain has several features which distinguish it from the
general English WSD task, mainly the granularity and
nature of sense distinctions. In this paper we will examine
the potential utilisation of another particular fact, namely
that the authors of the documents are known.

When handling the GSD task, the AZuRE system [11]
automatically assigns gene names to their LocusLink IDs
based on the Naive Bayes model and contextual similar-
ity. It extracted the training sets automatically from
MedLine references in the LocusLink and SwissProt data-
bases. Schijvenaars et al [12] also generates the training set
automatically from several existing databases. They build
up their vector space from MeSH terms and gene names
identified by string-matching then a cosine similarity met-
ric based disambiguation is applied. The ProMiner system
[13] GN system contains a disambiguation module as
well. It utilises the synonyms of the target gene name
which are present in the document of the test gene. In this
study we present experimental results on the GSD datasets

built by Xu et al [14,15]. In [14] Xu and his colleagues
took the words of the abstracts, the MeSH codes provided
along with the MedLine articles, the words of the texts and
some computer tagged information (UMLS CUIs and bio-
medical entities) as features while in [15] they experi-
mented with the use of combinations of these features.
They used them to get manually disambiguated instances
(training data) and applied a vector space model with
cosine similarity measure between the abstracts in ques-
tion and the gene profiles which were in fact the centroids
of the training instances. As they pointed out, there was
not any significant information gain using the texts them-
selves along with the manually added MeSH codes, so we
decided to just use these codes along with some novel fea-
tures like author information and the year of publication.

The GSD datasets for yeast, fly and mouse are generated
using MedLine abstracts and the Entrez 'gene2pubmed'
file [3], which is manually disambiguated [14]. The data-
set for human genes was derived [15] from the training
and evaluation sets of the BioCreative II GN task [16].

Our main idea here is that an author uses gene names con-
sistently, that is they employ a gene name to refer exclu-
sively to one gene in their publications, hence the co-
authorship between articles may contain very useful infor-
mation. In this study we built an inverse co-author graph
on MedLine abstracts and have introduced two methods
based on the graph for the GSD task. Our methods utilise
unlabelled instances (which are not manually tagged on
gene meanings) by looking for paths in the graph, thus it
can be regarded as a semi-supervised approach in the mid-
dle of supervised (e.g. vector space based similarity mod-
els) and fully unsupervised techniques.

Results
The inverse co-author graph
Generalising the hypothesis that an author habitually uses
a gene name to refer exclusively to one gene, we can
assume that the same holds true for the co-authors of the
biologist in question. But what is the situation for the co-
authors of the co-authors? To answer this question – and
utilise the information obtained from co-authorship in
the GSD problem – we decided to use the so-called co-
author graph [17]. The co-author graph represents the
relationship between authors. The nodes of the graph are
authors, while the edges represent mutual publications. In
the GSD task we basically look for an appropriate distance
(or similarity) metric between pairs of abstracts, hence we
define the inverse co-author graph as a graph whose nodes
are abstracts from MedLine (we usually just used their
PMID and not their actual text) and there is an undirected
edge between two nodes if and only if the intersection of
their author sets is not empty.
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Evaluation issues
We carried out experiments utilising the inverse co-author
graph on the human, fly, yeast and mouse GSD tasks. For
each test instance a geneId set (the sense inventory) along
with several manually disambiguated abstracts for these
geneIds (the train set) were present. For details of the eval-
uation data sets and experimental design, see the Methods
section.

We used two evaluation metrics in our study, namely pre-
cision and coverage. They are the standard measures in the
document classification community and this allowed us
to make a direct comparison between our results and
those in [14,15]. As the goal of our first set of approaches
was to construct a system with good precision and then
extend its results to obtain full coverage, we decided to
examine both measures and not apply their aggregation
(like the F measure). Precision is defined as the ratio of the
correctly classified (disambiguated) test gene names and
the number of total test examples for which the disam-
biguation method could make a decision, while coverage
is defined as the ratio of test instances with a decision and
the number of total test examples. Simply put,

where nc is the number of correctly disambiguated exam-
ples, nd is the number of cases where a decision was made,
and na is the size of the total test set.

The path between the test and train articles
In our first approach we examined how strong the co-
authorship was between the test article and the train arti-
cles. The strength of the co-authorship can be measured as
the distance between two nodes in the inverse co-author
graph. When two nodes are neighbours the two articles
have a mutual author. When a node can be reached in two
steps, starting from a node means that the two articles
have no mutual authors, but some of the authors have a
mutual publication (excluding the two articles in ques-
tion). We looked for the shortest path from the test node
to each train example in the inverse co-author graph.
Among the closest training points (we gathered all train-
ing samples which had the same minimal distance) a
majority voting was applied i.e. we made a disambigua-

tion decision in favour of the gene with the closest
labelled nodes. Table 1 lists the precision and coverage
values we obtained by this method using non-weighted
path lengths. A coverage over 90% was achieved on the
mouse, fly and yeast datasets by just considering the
neighbours of the test nodes, which implies that test
nodes and most of the train nodes have a co-author. Sig-
nificantly fewer articles deal with these organisms than
with human and these articles can be processed in a
higher coverage by the Entrez group.

In our experiments we found that if there was a path
between the test node and one of the train nodes (this is
true in over 90% of the cases) its length was at most 3. We
did not examine this property on the complete graph, but
– interpreting training and test nodes as a random sample
of node pairs from the graph – we can suppose that the
average minimum path length between nodes (articles) is
surprisingly small (3 or 4).

Filtering and weighting of the graph
Table 1 tells us that the noise is considerable in cases
where the distance between the closest training node and
the test node is 3. We tried to eliminate the noise of these
distant training points hence we left out the less reliable
edges from the graph. Our hypothesis was that the authors
who have a large number of publications do not have a
bigger influence and correspondence in articles, hence the
edges originating from them are less reliable. To test this
hypothesis we ignored the last 10% of the authors from
each article, and then repeated each experiment by ignor-
ing those authors who had over 20, 50 or 100 MedLine
publications. We investigated two edge-weighting meth-
ods on the human dataset along with the filtering process.
We calculated the weight w for each edge as a function of
the number of mutual authors of the two given articles
like so:

where A and B are the sets of the authors of the articles. To
get an aggregated, weighted distance for a path we
summed the edge-weights (Dsum = ∑i wi) or used the min-
imum of the edge-weights, i.e. the bottleneck of the path
(Dmin = mini wi).
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Table 1: Results obtained using the path-length-based method. Column 1 lists the maximal path distance allowed for each given 
experiment. The results are presented in a Precision – Coverage format.

Distance Limit Human Mouse Fly Yeast

1 100%–44.35% 99.88%–97.59% 99.84%–92.19% 100%–99.26%
2 100%–49.19% 98.67%–99.32% 94.58%–97.72% 100%–99.26%
3 85.29%–82.26% 98.64%–99.51% 94.44%–98.10% 100%–99.26%
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After calculating the weighted path lengths for each train
node we chose (instead of the closest training examples'

majority voting) the label of the node with the maximal
weight as the final disambiguation prediction.

The different degrees of filtering resulted in different pre-
cision and coverage value pairs. Figure 1 shows the preci-
sion-coverage curves obtained using the three weighting
methods (i.e. non-weighted, Dsum and Dmin). According to
these results, ignoring more authors from the co-author
graph yields a higher precision but at the price of lower
coverage. Thus this filtering approach is a parametric

trade-off between precision and coverage. A 100% preci-
sion can be kept with a coverage of 54.42% while the best
coverage achieved by this method was 84.67% with a
decrease in precision to 84.76%. The difference between
the performance of the three weighting (or non-weight-
ing) methods is significant. The right choice of a method
can yield a 2–3% improvement in precision at a given
level of coverage. The minmax method seems to outper-
form the other two, but it does not perform well on the
unfiltered graph hence we cannot regard it as the ultimate
'winning' solution here.

Automatic expansion of the training set
The absence (or small number) of training examples in
several cases (especially on the human evaluation set)
makes the GSD tasks intractable. To overcome this prob-
lem, we extended the labelled set automatically by articles
based on the inverse co-author graph. We assumed here
that the probability of an author dealing with the same
gene in more articles is higher than the probability of
dealing with different genes which share an alias. Thus we
looked for gene aliases among the articles of the authors
and hoped that they used a synonym (or long form) of the
target gene name. For example, CASPASE in
PMID:12885559 can refer to genes with EtrezGeneID
37729 or 31011 and the document does not contain any
synonym belonging to them. One of the authors (McCall
K.) has two other publications PMID:999799 and
PMID:9422696 which contain DCP-1 (EntrezGeneId
37729), so we assumed that CASPASE refers to DCP-1 in
the test abstract. Our assumption is questionable but as
our experiments show it is true in over 90% of the cases.

We labelled each article in the neighbourhood of the test
node with a gene identifier if a synonym of the target gene
name was found (with exact string matching) in the doc-
ument. Note that the test abstract (distance 0) can also
contain synonyms of the target gene name. In these cases,
we made a decision based on this information as well (the
special case of distance 0 is equivalent to the disambigua-
tion procedure described in [13]).

After this expansion we made the disambiguation deci-
sion via the non-weighted majority voting method on the
new set of train samples. Table 2 shows the precision and
coverage values we got with this procedure on the four

Table 2: Results obtained using the automatic labelled set expanding heuristic. Column 1 refers to the maximal distance allowed in the 
path finding phase. The results are presented in a Precision – Coverage format.

Distance Limit Human Mouse Fly Yeast

0 93.3%–12.11% 96.28%–8.57% 100%–7.06% 83.70%–10.23%
1 92.56%–32.82% 91.41%–18.82% 96.56%–10.78% 69.75%–18.79%
2 91.53%–37.88% 91.31%–20.07% 96.56%–10.78% 69.75%–18.79%

Precision-coverage curves on the human GSD datasetFigure 1
Precision-coverage curves on the human GSD data-
set. The three curves represents different weighting strate-
gies and their points for different levels of filtering of the 
inverse co-author graph. The authors who had over 100, 50 
or 20 MedLine publications were ignored yielding 3 points on 
the precision-coverage space, while the fourth point of each 
curve shows the case without any filtering.
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datasets. These values tell us that the articles with a dis-
tance of two hardly ever contain gene aliases, which leads
to a slight improvement in the coverage rate. We should
add that there is a strong statistical connection between
the achieved coverage by this method on the particular
organism and the size of the available synonym list and
labelled train sets.

We combined the two co-author graph-based methods
(minimal path finding and training set expansion) to
exploit the advantages of both via the following strategy:
when there is at least one training node in the neighbour-
hood of distance 3 of the test node on the filtered graph,
we accept the decision of that model. If there is no such
close train node we try to label new documents with the
synonym list and make a decision based on these auto-
matically labelled instances. We got some results by
applying two filtering and weighting procedure combina-
tions, one yielding a maximal precision and the other a
maximal coverage. The precision and coverage values we
got of the combined co-author based method can be
found in Table 3.

Achieving the full coverage
In a real world biomedical application the aim is usually
to make a disambiguation decision on every gene men-
tion found. As the last rows of Table 2 and 3 make clear,
the maximum coverage which can be achieved by our best
inverse co-author graph based methods is about 85% on
human (and over 98% for the other 3 species). In the last
part of our experiments we investigated what effect our co-
author graph based heuristics has in a gene disambigua-
tion system which runs on 100% coverage.

We employed two methods, namely the similarity-based
procedure introduced by [12] and a supervised machine
learning (employing the C4.5 decision tree) approach. We
used information provided by MedLine as features includ-
ing the MeSH headings and information about the release
of the articles, the journal title, and the year of publica-
tion. Table 4 summarises the results of these two methods
applied separately and in combination with the co-
author-based heuristics. In this final hybrid system we
first applied these two co-author graph-based procedures
with filtering to get the highest precision. Then as a second
step, we applied a similarity or machine learning tech-
nique on the instances where the first step could not make
any decision.

The first row of Table 4 lists the precision and coverage
values of a baseline method. As a standard in WSD, we
used the baseline of choosing the majority sense (the gene
having the most training examples) of each gene mention.

¿From a supervised learning point of view the co-author
graph-based heuristics eliminate 80% of the errors
(decreasing the average error from 18.67% to 4.5% for the
similarity measure and from 19.85% to 2.8% for the deci-
sion tree), while from the co-author graph point of view
the doubtful examples can be predicted with an 80% pre-
cision by supervised techniques, thus yielding a full cover-
age with an aggregated precision of 97.22%.

Discussion
Differences among species
There are quite significant differences among the tasks of
the given species. The human GSD evaluation set is with-
out doubt the most difficult one for the co-authorship-

Table 3: Results obtained using the combined co-author-based methods

Method Human Mouse Fly Yeast

With max precision 100%–52.42% 99.76%–97.80% 99.59%–92.42% 100%–99.25%
With max coverage 84.76%–84.67% 99.48%–98.74% 97.94%–95.68% 100%–99.25%

Table 4: Overview of systems which aimed at full coverage. The most frequent sense was used as the baseline method. We represent 
the results of Xu et al by using MeSH codes in the second row for the sake of comparability. The results of a C4.5 decision tree using 
the MeSH features are present in the third row. The systems of the two last rows first apply the combined co-author graph based 
heuristics and when they cannot decide they use the supervised prediction of the cosine similarity metric or the decision tree.

Method Human Mouse Fly Yeast

Baseline 59.3%–99.1% 79% 66.7% 65.5%
Xu et al [14, 15] MeSH 86.3%–94.4% 90.7%–99.4% 69.4%–99.7% 78.9%–98.4%

Decision tree 84.68%–100% 90.90%–99.84% 72.53%–99.85% 74.49%–100%
Co-author heuristics + 

similarity
91.87%–99.19% 98.54%–99.75% 97.20%–100% 94.15%–99.70%

Co-author heuristics + 
decision tree

94.35%–100% 98.85%–99.91% 96.05%–99.85% 99.63%–100%
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based approaches because of the extremely large number
of articles which focus on this organism and the relative
modest number of average training samples available. The
co-authorship method achieves precision values over 99%
with a coverage of over 92% on the other three datasets.
The final results with a complex method (co-authorship-
based heuristics along with supervised techniques) corre-
late with the baseline values (and the ones simple super-
vised methods) i.e. mouse is the best performing one and
a lower precision is obtained on human and fly. The final
results on yeast are surprising as baseline methods on this
dataset performed the worst but achieved the best results
when the co-authorship-based methods were applied
(and in the final one as well). We think that this is because
of the small amount of articles which focus on this organ-
ism, which might imply a smaller author society with
stronger relationships.

Features and methods used
In our experiments we used several kind of features. The
main contribution of this work, the path-length in the
inverse co-author-based method, just uses the authorship
information of the whole MedLine corpus and some man-
ually annotated abstracts (by the Entrez group). The
extension of the training set based on the co-author graph
and synonym lists is one step closer to the "classical" con-
text-based approaches – namely looking for gene names
in the text of the abstracts. This method can be regarded as
a generalization of the one in [13] because we search co-
authored documents as well, but it is less sophisticated
those described in [12] and [14], both of which use exter-
nal general MeSH term indexing software. In the final
supervised learning phase we used a feature set which
included MeSH headings (manually annotated in the
MedLine), the title of the journal and the year of publica-
tion but we did not make use of the text itself. There were
several reasons for this. First of all, the manually added
MeSH headings represents very well the biological con-
cepts of the article in a normalised and disambiguated
way. Second, the empirical results of [15] on two evalua-
tion sets shows that using the words of the text along with
MeSH headings could not achieve any significant
improvement. We also examined the potentials of the
combined usage of headings and text (we lemmatised the
text and ignored stop words) in preliminary experiments
but no significant improvement was found either hence
the text itself was left out for time complexity reasons.

The difference between the baselines and the purely
supervised models and the difference between supervised
models and final models which employ co-author graph-
based heuristics are statistically significant, due to the
McNemar's test with a p < 0.05 confidence level, but the
difference between the two supervised models was below
the statistical level of significance. This holds true for the

cases of their usage in the final cascade systems as well.
The decision tree (when sufficient amount of training data
is available) can differentiate the features in a more
sophisticated way than the vector space model can. Fur-
thermore, the decision tree can learn complex rules like
"the papers released before 2002 and containing Mesh
code X but not containing Mesh code Y are...". However,
with these complex modeling issues it could not achieve a
statistically significant difference compared to the similar-
ity-based approach. This could be because of the small
training sets and overfitting. But we suggest using decision
trees because its learnt model is human readable so a
domain expert can understand and modify it when neces-
sary.

Our results are directly comparable just to Xu et al's
results. Table 4 lists the situation where just the features
embedded in MedLine were used by both systems, but we
achieved better results (with an average precision of 9.5%
together with an average improvement of 1.5% in cover-
age) than the best system of Xu et al [14,15], who
employed external automatic annotation tools (MetaMap
and BioMedLee) as well.

Limitations of the approach
The most obvious limitation of our co-authorship based
approach is that it is dependent on a training set derived
from manual disambiguated annotation by the Entrez
group. On viewing Table 1, we see that if the number of
annotated articles were higher the GSD task would
become a trivial one. There are two factors of the graph
construction approach which seem to be negligible but
nevertheless deserve a mention here. First, an edge is
drawn between nodes because of string matching of the
author names. Of course, the names of the authors are
also ambiguous as two authors with the same name does
not necessary mean they are one and the same person.
Second, there should be author-gene pairs which occur in
just one publication. In these cases the inverse co-author
graph could not help and contextual information has to
be taken into account.

When we analysed the misclassified entities we found that
most of the errors of two co-author graph-based methods
could be eliminated by a sophisticated synonym match-
ing algorithms. Our simple string matching approach, it
transpires, has two main shortcomings. It does not handle
the spelling variants of the gene aliases (an excellent work
handling this task is [4]) and it does not deal with embed-
ded named entities i.e. it matches gene names that are just
a substring of a longer name like the name of a protein.
The errors of the supervised systems (both the similarity-
based and the decision tree-based ones) could probably
be eliminated if bigger training sets were available.
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Conclusion
In this paper we examined the utility of co-authorship and
experimentally demonstrated the utility of co-authorship
analysis for the GSD task. Our hypothesis was that a biol-
ogist refers to exactly one gene by a fixed gene alias, and
in experiments we found evidence for this. Moreover, we
found that a disambiguation decision can be made in
85% of the cases with an extremely high precision rate
(99.5%) by just using information obtained from the
inverse co-author graph. If we need to build a GSD system
with a full coverage we can incorporate the co-authorship
information into the system and by doing so eliminate
about the half of the errors of the original system.

Based on the promising results obtained so far from our
study, we suppose that for abstracts the co-authorship
information, the circumstances of the article's release (the
journal, the year of publication) and a graph constructed
above, can all be crucial building blocks for a sophisti-
cated similarity measure among biological articles and
therefore the methods introduced here ought to be useful
for other biomedical natural language processing tasks as
well. For example, we can reasonably assume that a biol-
ogist or biologist author group usually deals with the
same special species. Hence a co-author graph-based
method could be a powerful tool in the identification of
the organism dealing with in an article. In addition, all
text classification and clustering tasks can achieve better
results with a sophisticated similarity measure. Besides the
biological named entity disambiguation tasks (which is
also a document classification task), a task could for
instance be one for target disease identification or proto-
col detection.

Methods
Evaluation sets used
We evaluated our methods on four different GSD datasets
(human, yeast, fly and mouse) which were derived from
the two BioCreative Gene Normalisation challenges by
[14] and [15]. The evaluation set contained the PMIDs
and word forms of the test instances (target words) along
with a list of possible gene identifiers (senses) which can
be referred to by this name. The most important statistics
of these evaluation sets are listed in Table 5.

We downloaded the manually annotated 'gene2pubmed'
file from the Entrez website [3] to obtain some labeled
articles for each gene. We handled each test instance –
along with a given train set – as a separate decision task.
The size of the training set (amount of available labelled
abstracts) varied from 3 to 500 (there were several gene
identifiers with an empty labeled set), which resulted in
simpler and harder tasks.

The construction of the inverse co-author graph
To get the inverse co-author graph we downloaded (in
April of 2007) all MedLine abstracts, which contained
some 11.7 million instances. We could not construct the
whole graph due to space and time restrictions, but we
constructed the subgraph of each test example surround-
ings (nodes reachable in five steps). The number of arti-
cles reached in 3 steps (7.2 million for human, 0.7 million
for mouse, 0.7 million for yeast and 50 thousand for fly)
gives an indication of the amount of studies dealing with
each species in question and helps explain the difficulties
we had when processing the human dataset.

Path to the labelled abstracts
To get the distance values we started a breadth-first search
from the test node until the closest training nodes (or
limit of distance 5) were reached. We kept each node
whose distance was minimal and ignored every other
training example which had a bigger distance value. The
disambiguation decision was made on the majority voting
of these closest labeled abstracts, i.e. the gene (sense) that
had the most known instances among the closest articles
was selected. We found that the training samples obtained
in one or two steps were trustworthy, but when the dis-
tance of the closest labeled node was three the informa-
tion we got became noisier.

Searching for aliases of the target gene name
To get new automatically labeled examples, we made use
of the synonym lists provided by the organisers of the Bio-
Creative II task [16] for the human task and the lists of
extracted synonyms from the Entrez 'gene_info' file [3] for
the mouse, fly and yeast tasks. These lists contain several
aliases (synonyms) for each gene. We used the union of
these lists of each gene among which the disambiguation
is done (we removed those aliases which were ambiguous
among the genes in question). These lists are not com-

Table 5: The characteristics of the evaluation sets used

Organism # of test cases Avg # of senses Avg size of train set Avg # of synonyms available

Human 124 2.35 122.09 12.36
Mouse 7844 2.33 263.0 5.36

Fly 1320 2.79 35.69 9.51
Yeast 269 2.08 11 2.32
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plete and do not contain every spelling variant but they
still proved quite useful in our study.

We gathered all documents which were reachable in at
most two steps from the test node in the co-author graph
and which contained one of the synonyms of the genes in
question. Here we performed exact string matching. Han-
dling the spelling variants or fuzzy matching could further
extend the automatically labeled article set. We then
labeled those articles with the gene identifier whose alias
was found. As the test article sometimes contained syno-
nyms as well, we labeled these cases (with a distance of
zero) based on the alias.

Supervised techniques
There are several cases where the inverse co-author graph
based methods cannot make any decision. In a real world
biomedical language processing task the goal is to make a
clear choice from among several possible meanings in
each particular case. In order to achieve a 100% coverage
and to examine the behaviour of the graph-based heuris-
tics as a part of a complex GSD system, we applied the fol-
lowing two supervised learning procedures:

• We chose the gene with the maximal cosine similarity
between the test article and the centroid of the training
samples belonging to a given gene (gene profile). This
method was used earlier by [14] and we re-implemented
it for the sake of making a comparison between their
approach and ours.

• We trained a C4.5 decision tree [18] from the WEKA
package [19] on the training examples and accepted its
forecast on the test example as a final disambiguation
decision. We used the default parameters of the tree learn-
ing. Spending some time fine tuning parameters could
further improve our results. We employed decision trees
(from among the great range of machine learning tech-
niques available) for two reasons. First, this technique is
designed to handle discrete features (as in our situation)
efficiently and the second was that the learned models are
human readable hence human experts can verify or mod-
ify them later on if they so wish.

We employed the same feature set in both cases, each fea-
ture used being available in the MedLine database. The
features we chose to apply were the MeSH headings, the
journal title, where the article was released, and its year of
publication. We did not use any external knowledge or
tagging tool, however.
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