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Abstract
Background: Innumerable biological investigations require comparing collections of molecules, cells or
organisms to one another with respect to one or more of their properties. Almost all of these
comparisons are performed manually, which can be susceptible to inadvertent bias as well as miss subtle
effects. The development and application of computer-assisted analytical and interpretive tools could help
address these issues and thereby dramatically improve these investigations.

Results: We have developed novel computer-assisted analytical and interpretive tools and applied them
to recent studies examining the ability of 3-repeat and 4-repeat tau to regulate the dynamic behavior of
microtubules in vitro. More specifically, we have developed an automated and objective method to define
growth, shortening and attenuation events from real time videos of dynamic microtubules, and
demonstrated its validity by comparing it to manually assessed data. Additionally, we have used the same
data to develop a general strategy of building different models of interest, computing appropriate
dissimilarity functions to compare them, and embedding them on a two-dimensional plot for visualization
and easy comparison. Application of these methods to assess microtubule growth rates and growth rate
distributions established the validity of the embedding procedure and revealed non-linearity in the
relationship between the tau:tubulin molar ratio and growth rate distribution.

Conclusion: This work addresses the need of the biological community for rigorously quantitative and
generally applicable computational tools for comparative studies. The two-dimensional embedding method
retains the inherent structure of the data, and yet markedly simplifies comparison between models and
parameters of different samples. Most notably, even in cases where numerous parameters exist by which
to compare the different samples, our embedding procedure provides a generally applicable computational
strategy to detect subtle relationships between different molecules or conditions that might otherwise
escape manual analyses.
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Background
Statement of Problem
Innumerable biological investigations require comparing
different members of a collection of entities with respect
to one or more properties. The conclusions to be drawn
from such studies are based on an analysis of the degree
of similarity or dissimilarity among the different mem-
bers. For example, one might compare the activity of dif-
ferent isoforms or fragments of a protein of interest, or
compare wild type protein(s) with various mutant ver-
sions of a protein that causes a disease state. Many addi-
tional examples come from comparisons of data sets
derived from microarray and proteomics studies, as well
as population genetics. Given the technical advances of
recombinant DNA technology and the explosion in
genomics over the past few years, it is a certainty that the
number of these sorts of comparative studies, and the
number of entities to be compared within each study, will
increase dramatically in the near future. Unfortunately,
the vast majority of such comparative studies are currently
performed manually, with investigators searching for sim-
ilarities and dissimilarities among different test entities
"by eye". This is especially difficult when each member of
the collection is being characterized by multiple criteria.
The analytical process is time consuming, likely to miss
subtleties and is susceptible to inadvertent bias and
human errors. Development and application of compu-
ter-assisted modeling and visualization can provide
extraordinarily valuable data analyses and interpretive
tools for assessing relationships among different mem-
bers in a study.

Microtubules and Microtubule Dynamics
Microtubules represent one of the three main compo-
nents of the eukaryotic cellular cytoskeleton [1]. They are
hollow, unbranched cylinders, formed by the non-cova-
lent association of αβ tubulin dimer subunits. Microtu-
bules serve a wide variety of essential structural and
transport functions, including the segregation of chromo-
somes during cell division and the transport of vesicular
cargo up and down long axonal processes in neurons.

Microtubules are highly dynamic structures, gaining and
losing tubulin dimer subunits by a stochastic process
known as dynamic instability [2,3]. A large body of data,
both pharmacological and somatic cell genetics, has led to
the conclusion that proper regulation of microtubule
dynamics is essential in order for microtubules to perform
their many critical cellular functions (for review, see [4]).
For example, the effectiveness of the anti-cancer drug taxol
derives from its ability to suppress microtubule dynamics,
thereby interfering with the ability of cancer cells to pro-
liferate [5]. Given the importance of properly regulated
microtubule dynamics, it is not surprising that cells have
evolved a host of regulatory proteins that finely tune

microtubule dynamics, including tau, MAP2, MAP4,
SCG10 and stathmin.

The Microtubule Associated Protein Tau
The microtubule associated protein tau is essential for the
normal development and maintenance of the nervous sys-
tem [6-8]. It binds directly to microtubules [9,10], and its
ability to regulate microtubule dynamics [11-13] is itself
tightly regulated by both alternative RNA splicing [14]
and phosphorylation (for review, see [15]). Alternative
RNA splicing leads to the synthesis of two classes of tau,
known as 3-repeat tau and 4-repeat tau (See Figure 1 for a
schematic). Whereas normal human fetal brain expresses
only 3-repeat tau, adult human brain expresses approxi-
mately equal amounts of 3-repeat and 4-repeat tau.
Despite this dramatic developmental shift in expression
profiles, the functional and mechanistic differences
between 3-repeat and 4-repeat tau remain poorly under-
stood. While it is well-established that 4-repeat tau is a
more potent regulator of microtubule dynamics than 3-
repeat tau, there have been indications over the years that
the two classes of tau isoforms may also have inherent
qualitative differences as well [12,16-19].

Abnormal tau action has long been correlated with neuro-
degeneration. Indeed, the classic neurofibrillary tangle
pathology of Alzheimers and many related dementias are
composed primarily of aberrant tau (for example, see
[20]). In 1998, a direct cause and effect relationship
between errors in tau action and/or regulation and neuro-
degeneration was established by the genetic linkage
between mutations in the tau gene and FTDP-17, a fronto-
temporal dementia with many similarities to Alzheimers
disease [21-23]. Two classes of tau mutations have been
described. The first collection of mutations are structural
in nature, caused by various amino acid substitutions in
tau. The second class of mutations are especially subtle
and provocative – they are caused by errors in alternative
tau RNA splicing that alter the expression ratio of other-
wise normal 4-repeat and 3-repeat tau molecules. Specifi-
cally, rather than a ~50/50 ratio in adult human brain, the
mutant ratio is closer to ~75/25. In both the structural and

Isoforms of tauFigure 1
Isoforms of tau. Schematic of two classes of tau isoforms – 
4-repeat tau and 3-repeat tau. In 3-repeat tau, the region 
between repeats 1 and 2 and the second repeat structures 
are missing by virtue of alternative RNA splicing.
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regulatory mutations, the result is early onset of neuronal
cell death and dementia.

Unfortunately, the molecular mechanisms underlying
tau-mediated neuronal cell death remain unclear. One
widely held model suggests that errors in tau action lead
to the aggregation of tau into neurofibrillary tangles,
which are in turn cytotoxic [24]. An alternative model sug-
gests that tau-mediated neuronal cell death results from
the inability of tau to properly maintain microtubule
dynamics within a narrow range of activities required for
cell viability [4,13,19,25]. Additional models have also
been proposed (see http://www.alzforum.org/res/adh/
cur/default.asp).

Computational Perspectives
To quantitatively investigate the regulation of microtu-
bule dynamics under varying conditions (for example,
with different tau isoforms or tau:tubulin molar ratios),
cell biologists employ video microscopy to visualize and
record images of dynamic microtubules in real time. For
each condition being assessed, many different individual
microtubules must be imaged, tracked and analyzed [19].
From the resulting microtubule "life history plots" (Figure
2), the dynamic behaviors of similarly treated microtu-
bules can be determined, such as average growth or short-
ening rates. Subsequently, the behavior of microtubules
under different conditions can be compared.

Computer-assisted methods are especially attractive for
time series investigations of this sort. In the specific case
of analyzing the regulation of microtubule dynamics,
inadvertent bias and non-reproducibility in data interpre-

tation among different labs and different investigators
when defining the beginning and end points of individual
growth, shortening or attenuation events could become
significant. Despite the fact that these events are explicitly
defined, investigators must make many judgment calls. In
contrast, computer-assisted methods offer a faster and
more objective assessment of the data. More importantly,
these methods can also provide analytical tools as much
as determine the fit of the data to various statistical mod-
els, thereby testing various conceptual representations of
the underlying molecular mechanisms of action of the
system under study. Modeling can also generate testable
mechanistic predictions for subsequent investigations. In
a general sense, sophisticated computational tools have
the potential to make major contributions to many areas
of biological research.

Results
The main goal of this work is to develop general compu-
tational tools to quantitatively assess the differences
among samples of interest and to visualize those differ-
ences in a manner that facilitates their comparison. The
data being analyzed is derived from an earlier work in
which video microscopy was used to visualize and assess
the abilities of 3-repeat and 4-repeat tau to regulate vari-
ous parameters of microtubule dynamics in in vitro reac-
tions (Levy et al., 2005) [19]. Samples contained purified
tubulin dimers and purified recombinant human tau. The
two primary variables were (i) the presence of 3-repeat
tau, 4-repeat tau or no tau, and (ii) the molar ratio of tau
to tubulin. In vivo, the molar ratio of tau:tubulin varies
from cell to cell. Further, the ratio can vary even among
different regions within single cells, such as cell body ver-
sus axon versus growth cone. The different ratios exam-
ined are likely to span the range of biologically
meaningful values [26].

Automated Life History Plot Analysis
We first developed an automated method to identify the
different events – growth, shortening, and attenuation
("pause") – on microtubule life-history plots, using a set
of pre-defined rules (see the Methods section for details).
We then compared the ability of this automated method
to determine average microtubule growth rates with
standard manual analysis, using data sets assessing the
ability of tau to regulate microtubule dynamics from [19].
In this earlier work, microtubule dynamics were assayed
under nine different experimental conditions. As seen in
Table 1, the deviation between automatic and manually
determined rates ranges from 3.33% to 12.68%, with an
average deviation of 6.59%. Statistically, the differences
between the manually determined values and the auto-
matically measured values are not significant (as shown
by the p-values), except for one condition. The p-value is
computed by performing a t-test of the manually deter-

Example life history plotFigure 2
Example life history plot. An example of a typical "life his-
tory" plot of a microtubule, i.e., microtubule length as a func-
tion of time plot. The microtubule shown here is from the 3-
repeat tau sample at a tau:tubulin molar ratio of 1:38.
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mined growth rates against the automatically computed
ones for each condition (details are in the Methods sec-
tion). More importantly, the relative order of the condi-
tions do not change, and the degrees of separation are well
maintained. Table 2 shows the comparison for the same
set of conditions using a different tubulin preparation
from [19]. Again, our automated method accurately reca-
pitulates manual analysis with increased objectivity. Addi-
tionally, it markedly reduces the time required to conduct
these investigations.

It is also important to note that inherent biological varia-
bility exists in the microtubule growth rate data. This
likely results from biochemical variations between differ-
ent tubulin preparations, such as different tubulin iso-
form expression ratios and/or varying degrees of post-
translational modifications, such as phosphorylation,

acetylation or tyrosination. For example, assuming each
growth rate determination is within a variation of ± 0.1
μm/min, the rank order of the conditions for each of the
two data sets is quite similar, although the 4R-1:55 and
3R-1:38 conditions are reversed (see Table 3). This inher-
ent biological variability could limit the utility of some
sophisticated and highly sensitive statistical models to
make testable predictions regarding mechanisms underly-
ing the regulation of microtubule dynamics. At the mini-
mum, multiple data sets might be necessary and all
predictions would need to be considered tentative until
tested directly by other biological means.

Modeling and Embedding Strategy
Next, we sought to develop mathematical and statistical
models to capture different dynamic aspects of microtu-
bule behavior and to embed them in a two-dimensional
space for visualization and easy comparison of different
conditions. We used the Sammon projection method [27]
for embedding and visualization. In short, the embedding
process displays each experimental condition with an (x,
y) position; the relative distance between the (x, y) posi-
tions of any pair of experimental conditions corresponds
to their relative degree of relatedness (details are in the
Methods section). The conditions of interest can be com-
pared based on numerous parameters and the computa-
tional method is applicable to all kinds of numerical
parameters.

The outline of our method is as follows. First, the experi-
mental measurements are analyzed based on an appropri-
ate mathematical model. Then, an appropriate
dissimilarity function is applied to calculate the relative
distances between the models of each pair of conditions.
Finally, the conditions are embedded on a two-dimen-
sional space such that the inherent structure of the data is
approximately preserved. This is achieved by assigning
points (x and y coordinates) to the models such that the
Euclidean distance between any pair of points in this
space is as close to the original dissimilarity measure
between their models as possible. Unlike principal com-
ponent analysis (PCA) [28], this method works with any
distance matrix. The quality of the embedding is meas-
ured by distortion. For ideal embeddings, where all dissim-
ilarity values are maintained exactly as Euclidean
distances in the embedded space, the distortion is 1. The
details of the models, the dissimilarity functions, the
embedding algorithm, and the distortion computations
are presented in the Methods section.

Two-Dimensional Embedding Analysis
Microtubule Growth Rate
As a proof-of-principle exercise, we used the automatically
measured values from Table 1 and applied our embed-
ding strategy to compare the abilities of each tau isoform

Table 1: Growth rates of tau conditions (sample 1)

Condition Manual Automatic Difference Deviation P-value

3R-1:20 3.99 4.19 0.20 4.93% 0.15
3R-1:38 3.58 3.76 0.18 4.80% 0.05
3R-1:45 2.02 2.27 0.25 12.58% 0.05
3R-1:55 2.02 2.28 0.26 12.68% 0.03
4R-1:20 4.71 4.56 0.15 3.33% 0.85
4R-1:38 3.96 4.19 0.23 5.86% 0.15
4R-1:45 3.51 3.65 0.14 4.14% 0.23
4R-1:55 2.59 2.84 0.25 9.45% 0.05
No-Tau 2.30 2.53 0.23 10.13% 0.27

Average 0.21 6.59%

The manual data is reproduced from Table III of (Levy et al., 2005) 
[19]. The third column shows growth rates (in μm/min) automatically 
computed from the manually tracked tips of the microtubules using an 
objective set of rules with no human interference. The relative ranks 
of the conditions remain the same.

Table 2: Growth rates of tau conditions (sample 2)

Condition Manual Automatic Difference Deviation P-value

3R-1:20 3.90 4.02 0.12 3.07% 0.22
3R-1:38 2.67 2.87 0.20 7.49% 0.73
3R-1:45 2.16 2.39 0.23 10.65% 0.13
3R-1:55 2.34 2.47 0.13 5.56% 0.35
4R-1:20 4.93 4.99 0.06 1.22% 0.63
4R-1:38 4.39 4.63 0.24 5.47% 0.43
4R-1:45 3.87 3.87 0.00 0.00% 0.75
4R-1:55 3.25 3.47 0.22 6.77% 0.14
No-Tau 2.77 2.95 0.18 6.50% 0.36

Average 0.15 4.55%

The manual data is reproduced from Table II of (Levy et al., 2005) 
[19]. The third column shows growth rates (in μm/min) automatically 
computed from the manually tracked tips of the microtubules using an 
objective set of rules with no human interference. The relative ranks 
of the conditions remain the same.
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to regulate the growth rate of microtubules. Since these
growth rate data are one-dimensional, the distortion is 1,
and the embedding procedure should yield a straight line.
Figure 3 shows the two-dimensional embedding of the
conditions. The requirement for the distances are fulfilled
and the points are on a straight line. Additionally, consist-
ent with [19], we observe that very low ratios of 3-repeat
and 4-repeat tau:tubulin have opposite effects on the
dynamic behavior of microtubules. More specifically,
while 1:55 and 1:45 3-repeat tau and 1:55 4-repeat tau are
all relatively close to the control (no-tau) point, the two 3-
repeat tau conditions decrease the microtubule growth
rate while the 1:55 4-repeat tau condition increases it as
compared to the no-tau condition. Additionally, any

increase in the tau:tubulin ratio beyond these low levels
causes a relatively large increase in growth rate, since the
distance between the no-tau point and all other tau points
is relatively large. Thus, there are two clusters of growth
rates rather than a simple linear relationship, consistent
with a threshold effect. Further, as the tau:tubulin ratio
increases (for both tau isoform classes), the difference
with the no-tau point increases. Finally, for any given
tau:tubulin ratio, 4-repeat tau is always more distant from
the no-tau point than 3-repeat tau is; this demonstrates
that 4-repeat tau is a more potent regulator of microtubule
dynamics than 3-repeat tau. Thus, these data establish the
validity of our automated life history analytical method
and the two-dimensional embedding method.

Figure 4 shows the plot for another set of samples corre-
sponding to the values in Table 2. This second sample cor-
responds to tubulin preparation 1 mentioned in Table II
of [19]. The low ratios of 3-repeat and 4-repeat tau:tubulin
behave similar to the control (no-tau) point. The higher
ratios cluster separately.

Microtubule Growth Rate Distribution Histogram
Next, we used two-dimensional embedding to compare
the effects of 3-repeat tau and 4-repeat tau upon the distri-
bution of growth rates within the growing population of
microtubules. As demonstrated in [19], a histogram anal-
ysis of control populations of growing microtubules
yields two pools – a more abundant and slower growing
pool and a less abundant and faster growing pool. Based
on fitting mixture of two Gaussians to the histograms, the
authors concluded that both tau isoforms cause an
increase in the abundance of the faster growing pool and
a decrease in the abundance of the slower growing pool,
with 4-repeat causing the population change at lower
tau:tubulin ratios than 3-repeat tau. Other than these con-
clusions, there was no other comparison possible between
the histograms.

Table 3: Rank order of different conditions

Rank Condition (growth rate)

Table III of (Levy et al., 2005) [19] (Table 1 of this paper) Table II of (Levy et al., 2005) [19] (Table 2 of this paper)

1 4R-1:20 (4.7) 4R-1:20 (4.9)
2 4R-1:38 (4.0) 4R-1:38 (4.4)
3 3R-1:20 (4.0) 3R-1:20 (3.9)
4 4R-1:45 (3.5) 4R-1:45 (3.9)
5 3R-1:38 (3.6) 4R-1:55 (3.3)
6 4R-1:55 (2.6) 3R-1:38 (2.7)
7 No-Tau (2.3) No-Tau (2.8)
8 3R-1:45 (2.0) 3R-1:45 (2.2)
9 3R-1:55 (2.0) 3R-1:55 (2.3)

The ranks of the conditions remain almost the same across the two samples (considering a variation of 0.1 μm/min) except that the 4R-1:55 and the 
3R-1:38 conditions are reversed.

Growth rate (sample 1)Figure 3
Growth rate (sample 1). Embedding of the growth rates 
of tau conditions for sample 1 (corresponding to Table 1). 
The distortion is 1, indicating no error in embedding. The 
automatically computed growth rates maintain the relation-
ship of the conditions as described in the Results section and 
in [19]. Distortion = 1.00.
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We subjected the growth rate distribution data to our two-
dimensional embedding analysis method (Figure 5). Each
distribution histogram had 19 bins (similar to the analy-
sis in [19]), and the dissimilarities among the histograms
were computed by the match distance [29]. Conceptually,
the match distance takes into account both the height of a

histogram bin and the spatial position of the bin in the
histogram; two histograms that differ in far-off bins are
more distant than histograms that differ in adjacent bins.
The details of the procedure are presented in the Methods
section. As was true for the growth rates (Figure 3), the his-
togram distribution data reveals that there are only minor
differences among the control (no-tau) sample and low
levels of tau (3-repeat tau at both 1:55 and 1:45 tau:tubu-
lin ratio and 4-repeat tau at a 1:55 tau:tubulin ratio).
Moreover, in a manner parallel to the growth rates, 3-
repeat and 4-repeat tau regulate microtubule dynamics in
different directions, as indicated by the fact that the 4-
repeat tau (1:55 ratio) is closer to the no-tau point than it
is to either of the 3-repeat tau (1:55 or 1:45) samples.

Additionally, it is also clear that 4-repeat tau is more
potent than 3-repeat tau at any given tau:tubulin ratio
(i.e., the distance between the 4-repeat tau point and the
no-tau point is greater than the distance between the 3-
repeat tau point and the no-tau point for all molar ratios).
Finally, similar to the growth rate analysis in Figure 3,
there are two clusters of behaviors rather than a contin-
uum. One cluster contains the no-tau point and the lower
tau:tubulin ratio samples and the other cluster contains
the higher tau:tubulin ratio samples. Such non-linearity
coupled with different functional effects could have sig-
nificant mechanistic effects in the alternative RNA splicing
class of tau FTDP-17 mutations in which relatively subtle
increases in the 4-repeat tau concentration have dramatic
consequences. By assessing the histogram landscape of
the conditions, the two-dimensional embedding proce-
dure complements the previous analyses using Gaussian
mixture models [19]. The two-dimensional embedding
plot is more sensitive in picking out the differences
between a pair of conditions or among multiple condi-
tions; on the other hand, it shows distances that lack phys-
ical meaning.

Figure 6 shows the corresponding embedding plot of the
growth rate distribution histograms for another set of
samples. This second sample corresponds to tubulin prep-
aration 1 mentioned in Table II of [19]. Similar to the case
presented in Figure 5, the low ratios of 3-repeat and 4-
repeat tau:tubulin cluster together with the control (no-
tau) point. The higher ratios of tau:tubulin induce shifts
in the growth rates.

Additional file 1 shows the effect of the number of bins on
the embedding plots. Histograms were generated by vary-
ing the number of bins from 4 to 29 in variations of 5. The
plots show only minor differences. In all of them, the
lower tau:tubulin ratios (4-repeat tau at 1:55, and 3-repeat
tau at 1:55 and 1:45) and the control (no-tau) point are
far away from the higher tau:tubulin ratios.

Growth rate (sample 2)Figure 4
Growth rate (sample 2). Embedding of the growth rates 
of tau conditions for sample 2 (corresponding to Table 2). 
The distortion is 1, indicating no error in embedding. The 
automatically computed growth rates maintain the relation-
ship of the conditions as described in the Results section and 
in [19]. Distortion = 1.00.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.4 -0.2  0  0.2  0.4  0.6

Growth Rate: Sample 2

3R-1:20

3R-1:38

3R-1:45 3R-1:55

4R-1:20

4R-1:38

4R-1:45

4R-1:55

No-Tau
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Growth rate distribution histogram (sample 1). 
Embedding of the microtubule growth rate distributions at 
varying tau:tubulin molar ratios for sample 1. The growth 
behavior of microtubules for low molar ratios of tau:tubulin 
for both 4-repeat and 3-repeat taus are similar to those in 
no-tau conditions. In higher molar ratios, however, the 
behavior is quite different. Distortion = 1.84.
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Microtubule Dynamics and Haar Wavelets
Finally, we compared the two-dimensional embeddings
of the Haar wavelet features [30] to 3-repeat tau, 4-repeat
tau and the control (no-tau) samples. Wavelets [31] are
powerful statistical tools that are used for a wide range of
applications, including signal description and data com-
pression. One of the main advantages of wavelets is that
they offer a simultaneous localization in both time and
frequency domains. Further, they can provide a multi-res-
olution view of the original time-series by changing the
width of the "window" over which the coefficients are
computed. Haar wavelets [30] are the simplest and the
fastest to calculate among all the different types of wavelet
functions. The specific window sizes and the details of
how the dissimilarities among the conditions are com-
puted are described in the Methods section. Additional
file 2 shows the plots for the two different samples. The
disparity in the two plots likely arises from the inherent
variability in the biological data. The first plot (corre-
sponding to the data set presented in Table 1) suggests
two distinct clusters, one corresponding to the 3-repeat
tau conditions and the other to the 4-repeat tau condi-
tions, consistent with the notion that 3-repeat and 4-
repeat tau might interact with microtubules in qualita-
tively distinct manners. The lack of similar behavior for
the second data set (see Table 2) makes the conclusions
from the plots tentative, requiring independent corrobo-
ration.

We also used two-dimensional embedding to compare
the effects of 3-repeat and 4-repeat tau with respect to the

Markov Chain models. A Markov Chain (MC) [32] cap-
tures the underlying dynamics of the physical phenomena
or entity by a generative model that emits a sequence of
symbols. The primary advantage of Markov Chains over
other models of time-series data is their ability to charac-
terize an entire family of sequences. MCs are fairly easy to
build, require a small set of sequences and allow very fast
searching and comparison. There was no obvious cluster-
ing of points with respect to either the tau:tubulin ratio or
3-repeat tau versus 4-repeat tau (plot not shown). We
used other time-series models as well, like the Lomb-Scar-
gle periodograms [33,34] that can assess periodic behav-
iors (akin to Fourier analysis [35]) even in the presence of
missing data and unequal sampling frequencies. Unfortu-
nately, the embedding plot did not reveal any clear pat-
terns, with the exception that the control (no-tau) point
was on a distant corner of the plot and the tau samples
with lower molar ratios of tau:tubulin are closer to the no-
tau point than the samples with higher ratios (data not
shown). Another class of models – the auto-regressive
moving average (ARMA) models [36] – has often been
used in analyzing time-series data. These models assume
that the data is stationary, i.e., both the mean and the var-
iance is fixed. Since the microtubules are clearly growing,
we did not consider these models.

Discussion
This work addresses the need of the biological research
community for rigorously quantitative and generally
applicable computational tools to compare the complex
behaviors of individual members of groups of molecules,
cells or even organisms. Presently, the vast majority of
such comparisons are performed manually, or "by eye".
As such, they are time-consuming, susceptible to inadvert-
ent bias and errors and can be insensitive to subtleties.
Using the regulatory effects of the microtubule associated
protein tau upon the dynamic behavior of microtubules
as a system of study, we have developed a novel modeling
and visualization strategy allowing investigators (i) to
assess the relative degree of similarity/dissimilarity among
individual tau isoforms with respect to numerous param-
eters of interest under varying experimental conditions,
and (ii) to visualize all the conditions with respect to each
other. More importantly, the same computational strategy
should be generally applicable to a great many other
applications.

The validity of the two-dimensional embedding strategy
presented in this paper is established by comparing the
plot presented in Figure 3 with the growth rate data in
Table 1. The relative positions of all points in Figure 3 are
in complete agreement with the quantitative growth rate
data determined both automatically and manually. Addi-
tionally, the semi-quantitative analysis of the histograms
shown in Figure 4 of [19] are confirmed and extended by
the more rigorous quantitative analysis leading to the

Growth rate distribution histogram (sample 2)Figure 6
Growth rate distribution histogram (sample 2). 
Embedding of the microtubule growth rate distributions at 
varying tau:tubulin molar ratios for sample 2. The growth 
behavior of microtubules for low molar ratios of tau:tubulin 
for both 4-repeat and 3-repeat taus are similar to those in 
no-tau conditions. In higher molar ratios, however, the 
behavior is quite different. Distortion = 1.69.
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two-dimensional embedding plot shown in Figure 5. In
this case, 19 different bins of microtubule growth rates
were integrated into the analysis for each of the nine
experimental conditions tested. The resulting two-dimen-
sional plot in Figure 5 presents the investigator with novel
perspectives on the data set, including the existence of two
clusters of histogram distributions based on growth rate as
well as the distinct behavior of low ratios of 3-repeat
tau:tubulin relative to all other tested reactions.

Finally, although the molecular mechanisms underlying
behaviors suggested by various statistical models may not
be clear, these models could suggest mechanisms that
could not be drawn using the standard manual analytical
methods generally utilized in biological investigations.
Indeed, one of the most important and generally applica-
ble features of our computational strategy is the ability to
detect subtle relationships between different molecules or
conditions that might escape manual investigation.

Conclusion
In this manuscript, we present (i) an automated method
for quantitatively characterizing microtubule dynamics as
a function of time, and (ii) a novel and generally applica-
ble computational tool for two-dimensional visualization
and modeling of entities of interest for comparative stud-
ies. Comparison of our automated tracking method with
manually acquired data demonstrates its accuracy. This
tool greatly increases the rate at which microtubule track-
ing data can be acquired as well as improve upon its objec-
tivity and accuracy. Our embedding strategy accurately
recapitulates and extends previous biological observa-
tions that were collected and analyzed manually. Impor-
tantly, our methods facilitate the integration of
sophisticated statistical modeling with biological investi-
gations, which should promote novel and deeper mecha-
nistic insights into biological phenomena as well as the
development of testable hypotheses for subsequent inves-
tigation. In the future, we anticipate applying these meth-
ods to compare wild-type tau action versus various tau
mutants causing neurodegeneration and dementia, seek-
ing to identify novel mechanistic effects. Additionally, we
envision using new models and embedding strategies.

Methods
Modeling
The different models described in this section capture dif-
ferent characteristics of microtubule dynamicity. Compar-
ison of conditions across these models highlights
different features of tau action.

Microtubule Events
Three kinds of events are used to characterize microtubule
dynamics: growth, shortening and attenuation ("pause").
Each kind of event can be simple or complex. An event is

simple when it is characterized between two consecutive
tracked time-points. Simple events are coalesced together
to form bigger complex events. Complex events, therefore,
can be defined over a contiguous set of more than two
time-points. Identification of simple events are easy, but
identifying the start and end points of complex events
require sub-sequence analysis.

The simple events are classified in the following manner.
The different parameters for defining these events used in
this particular study are indicated next. An event is a simple
growth if and only if: (i) the rate of increase of microtubule
length is at least 0.5 μm/min, and (ii) the increase in
length is at least 0.05 μm. The corresponding parameters
for a simple shortening event are: (i) the rate of decrease of
length is at least 0.5 μm/min, and (ii) the decrease in
length is at least 0.5 μm. A simple attenuation event must
have (i) a rate of change of length outside the range for
simple growth and simple shortening events, i.e., between
-0.5 μm/min and +0.5 μm/min, and (ii) a total time dura-
tion of at least 4 s. Any event that does not fall in any of
the above categories are excluded from the analysis. Due to
errors in human tracking and image resolution issues,
such events are likely to be part of the input noise, and are
hence, discarded. Simple events are used for Markov
Chain analysis.

The complex events have their corresponding parameter
cut-offs as well. However, the more important considera-
tion in the analysis of complex events is the identification
of where it starts and where it ends. A survey of such meth-
ods from the time-series literature can be found in [37].
These methods have been successfully used to segment
time-series streams into different partitions in various
application domains, most notably for stock market anal-
ysis. An interesting way to combine different segmenta-
tion outputs has been proposed in [38]. However, none of
these methods have employed priority rules to analyze
adjacency relationships.

We now describe our bottom-up approach of identifying
complex events by merging together simple events. First,
all consecutive simple events of the same type are merged
together to form a longer complex event of the same type.
Next, each complex event is subjected to the rule set for
classifying into growth, shortening, and attenuation. An
event that does not pass any of the three rule sets is classi-
fied temporarily as an error. Also, the cause of its failure is
noted. More specifically, any event where there is an
increase in length but which cannot be classified as a
growth is assigned into two kinds of failure: (i) rate, where
it did not pass the growth rate threshold, and (ii) length,
where it did not pass the growth length threshold. The
failed shortening events are classified similarly. Note that
there are no attenuation failure classes.
Page 8 of 13
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The priority rules are applied next. A growth rate failure
event is most likely to be part of an attenuation. Thus, its
neighbors are examined and if possible, it is combined
with adjacent attenuation events to form a bigger attenu-
ation event. If this fails, then attempts to incorporate with
neighboring growth events, if any, are made. If, however,
the growth failure event is due to the length cutoff and not
the rate, then this event is most likely to be part of a
growth event. The error in length may be due to human
tracking and image resolution issues. Hence, attempts to
combine this with neighboring growth events are first car-
ried out. The rules for absorbing the shortening failure
events are similar.

The complex event cut-offs are: (i) Growth: rate ≥ 0.5 μm/
min, length ≥ 0.06 μm; (ii) Shortening: rate ≤ -0.5 μm/min,
length ≤ -0.6 μm; and (iii) Attenuation: rate between -0.5
μm/min and +0.5 μm/min, time ≥ 30 s. The growth rates
and the growth distributions are calculated using the com-
plex events.

Figure 2 shows a comparison of the manually marked
complex events and the automatically measured ones. The
solid line indicates the simple events. As evident from the
figure, these tracked lengths are noisy. The complex events
get rid of the noise by smoothing over a range of simple
events. However, while the automatic method marks
three events – two growth events separated by a shorten-
ing event – a human may simply mark the entire time-his-
tory as a single growth event. Clearly, this human bias will
differ from one experimenter to another, and may even
vary from time to time. Note that this explains why
growth rates obtained from the automatic measurements
vary (become slightly higher) from those obtained
through the manual method.

The parameters for the different events have been chosen
empirically by biologists based on experimenting with
different kinds of microtubule samples. The event defini-
tions have been used consistently and have become the de
facto "industry standard," as evident from [4].

Growth Rate
The growth rate for a particular experimental condition
was calculated as the average of the growth rates of all the
complex growth events of the microtubules for that con-
dition.

In order to understand whether the differences between
the automatically computed growth rate values using the
above event analysis technique and the manually meas-
ured ones are statistically significant, we calculated the p-
values in the following way. Two groups were formed, one
with the automatically identified growth events, and the
other with the manually marked growth events. We then

performed a t-test [39] to determine whether the means of
the growth rates of the two groups are different. The p-val-
ues thus obtained are reported in Tables 1 and 2.

Growth Rate Distribution Histogram

For each condition, a growth rate distribution histogram
was computed in the following manner. The rates for the
complex growth events were divided into 18 bins of width

0.4 μm/min each (consistent with analysis by [19]), start-

ing from 0.5 μm/min up to 7.7 μm/min. Once again, these
parameters conform to the standards set in the microtu-
bule event analysis literature [4]. All the higher growth
rate events were collected in another bin. Thus, the histo-
grams had 19 bins in total. The bin heights were normal-
ized such that they add up to 1, yielding a growth rate
distribution. In order to generate histograms with a fixed
number of bins, say b, the width of each bin was specified

as .

Haar Wavelets
Wavelets are mathematical functions that describe time-
series data in terms of various frequency components with
resolutions matched to their scales [31]. The orthonormal
basis vectors, called the mother wavelets, that describe the
various wavelet components are given by:

ψs,l(x) = 2-s/2ψ(2-s x - l)

where s denote the scaling factor and l the localization in
time. The Haar wavelet basis functions [30] are the sim-
plest:

Haar wavelets are also the fastest to calculate with respect
to other wavelet bases. They work by progressively retain-
ing the most important parameters of a signal. The first
coefficient is the "sum" (actually, scaled average) of the
entire signal and the next gives the "detail" (difference of
the two halves) of the signal. The later coefficients give
more and more details about each half of the signal they
model.

In general, more wavelet parameters mean more detailed
description; however, they also mean more data and more
noise. Further, the error in embedding is directly propor-
tional to the number of parameters of the original data.
Thus, 16 coefficients of each microtubule time-series were
retained. These 16 coefficients were then averaged over all
the microtubules from a particular experimental condi-
tion to yield the coefficients for that condition.
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Markov Chain
A Markov Chain (MC) [32] is a discrete time stochastic
process that models the observations of a dynamic system
(such as the growth or the shortening of a microtubule) as
the states of the system. The number of states is finite and
there is a state corresponding to each observation symbol.
In a first-order MC, the probability of occurrence of the
future state (or observation) depends only on the current
state; past states are inconsequential. This property is
called the Markov property. (In a kth order Markov Chain,
the future state depends on the current state and k - 1 past
states.)

Formally, an MC λ is defined as:

λ = {n, π, τ}

where n is the number of states, π is the start state probability
vector of length n, and τ is the n × n transition matrix; π(u)
denotes the probability of being in state u in the first time-
step; and, τ (u, v) denotes the probability of reaching state
v from state u in a single time-step.

In the work of [19], microtubules were in a non-equilib-
rium phase, exhibiting very little shortening and many
microtubules never shortened at all. Therefore, the micro-
tubule events were discretized into two symbols: G for
growth, and N for non-growth (shortening or attenua-
tion). The Markov Chains were built with these two states
– growth and non-growth. Since shortening events were
very rare, modeling it as a separate state would have
lacked statistical validity.

The transition probabilities for the MCs were estimated in
the following manner. Every microtubule time-series was
denoted as a string of symbols, with each symbol repre-
senting a simple event. Then, pairs of consecutive symbols
(states) were read and appropriate entries in the transition
matrix were incremented. When all the microtubules in
an experimental condition were processed, the transition
matrix was normalized such that the sum of transition
probabilities from each state form a probability distribu-
tion (adds up to 1). The start state probabilities were esti-
mated in a similar manner by reading the first symbol for
every microtubule time-series; if it is growth, the entry for
G is incremented, otherwise that for N is incremented.
Finally, normalization was performed such that the prob-
abilities add up to 1. Since most of the microtubules
started with growth, these vectors were very close to [1, 0].

Lomb-Scargle Periodograms
The periodicity analysis of the microtubule data was per-
formed by extracting Lomb-Scargle coefficients [33,34]
from each time-series. Lomb-Scargle periodograms cap-
ture the different frequency components in a time-series
and can handle missing values and unequal sampling

intervals. Four low frequency components (correspond-
ing to periodicities of 4, 8, 16, and 32 s) were retained for
each microtubule. The Lomb-Scargle coefficients for the
condition were computed as the average of the corre-
sponding coefficients of the individual microtubules.

Dissimilarity Functions
In order to compare a pair of models, an appropriate sim-
ilarity or dissimilarity function is necessary. The dissimi-
larity or distance measure is used to compute the distance
matrix among the conditions; this distance matrix is then
embedded in a two-dimensional vector space as described
later in the Visualization section.

Growth Rate
The dissimilarity between a pair of conditions with respect
to the growth rates was measured by their difference. The
difference can be also viewed as a Minkowski form of dis-
tance or Lk norm. The Lk norm between two vectors p and
q of length k each is defined as:

Growth Rate Distribution Histogram
Growth rate histograms can be viewed as vectors and Lk
norms can be employed to capture the dissimilarity
between a pair of histograms. These measures, however,
do not capture the relationship among the different histo-
gram bins. For example, suppose there are three bins in
each histogram corresponding to low rate of growth,
medium rate of growth and high rate of growth. If A = [1,
0, 0], B = [0, 1, 0] and C = [0, 0, 1], then Lk norms treat
these histograms as equidistant from each other, even
though A should be more different from C than B. To cap-
ture such spatial properties of the bins, match distance
[29,40] was employed.

To calculate the match distance between a pair of histo-
grams p and q, a distance matrix among the bins of the
histogram are specified – the distance between two bins i
and j is cij = |i - j|. The match distance is defined as the min-
imum work required to be done in order to transform the
histogram p into the histogram q by moving values or
"flows" from the bins of p to those in q and vice versa.
Having a flow fij from bin i of p to bin j of q or vice versa
is considered as cij·fij amount of work. Finding the match
distance then reduces to finding the flows fij such that the
total work done is minimum. The minimum work done is
the match distance:
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For the example histograms A, B, and C mentioned above,
the match distances are MD(A, B) = 1, MD(B, C) = 1, and
MD(A, C) = 2. Clearly, this captures the relatively larger
dissimilarity of A from C as compared to that from B.

For one-dimensional histograms where the sum of the bin
values add up to the same number (here, 1), match dis-
tance can be calculated more easily as the L1 distance
between the cumulative bin values of the two histograms:

MD(p, q) = L1(P, Q)

where  and  are the cumulative

histogram bin values.

Haar Wavelets
Since the relative importance of the wavelet parameters
differ, a simple distance function such as L1 would be
inappropriate. Coefficients that summarize the entire
time-series, such as the "sum" value and the overall
"detail" value is more important, and therefore, should
get higher weights than the coefficients describing parts of
the time-series.

Thus, in order to determine the dissimilarity between two
conditions with respect to their Haar wavelet coefficients,
we used the weighted L1 norm or the weighted Manhattan
distance. The levels of the wavelet tree were weighted such
that the overall sum and the overall detail coefficient were
the most significant values, the next level detail coeffi-
cients getting an exponentially lower weight and so on.
The weight vector, of length 16, was [8, 8, 4, 4, 2, 2, 2 2, 1,
1, 1, 1, 1, 1, 1, 1]. For two vectors p and q, and a weight
vector w, all of length k, the weighted L1 distance between
p and q is measured as:

The L2 norm or the Euclidean distance was applied to
measure the distances between a pair of conditions for
both the Markov Chain parameters and the Lomb-Scargle
coefficients.

Visualization
The distances among the experimental conditions, calcu-
lated by using the above methods, were visualized by plot-
ting the conditions onto a two-dimensional vector space.
This allows for easy comparison of the conditions and
immediate comprehension of the structure of the data.
The aim of the embedding method is to assign coordi-
nates such that the Euclidean distance between any pair of
conditions in the embedded space is as close as possible
to the dissimilarity calculated between their models. The
method can embed a given set of points into any dimen-

sional space; here, we have chosen two for easy visualiza-
tion purposes.

Formally, suppose there are two models, α and β, and the
dissimilarity between them is d(α, β) according to some
dissimilarity function d. If the embeddings of these two
models in the two-dimensional vector space (x, y space) is
given by e(α) = (xα, yα) and e(β) = (xβ, yβ), then the aim of
the embedding function is to choose the coordinates e(α)
and e(β) such that the relative difference between L2(e(α),
e(β)) and d(α, β) is minimum. When there are n such
models, the embedding function should be chosen such
that the relative cumulative difference for all the n(n - 1)/
2 pairs is minimized.

Principal component analysis (PCA) [28] can also be used
to project data onto a two-dimensional space. PCA
chooses the axes along which the original data shows the
highest variance. It does not take into account the dis-
tances among the points. More importantly, PCA cannot
work with any general distance matrix and is used mostly
as a dimensionality reduction technique.

We used the Sammon projection method [27] as the
embedding procedure. This method has been successfully
used to embed proteins on a two-dimensional space for
clustering purposes [41]. The method starts with a ran-
dom point (random x, y coordinates) for each model. In
each iteration, the points are updated according to a steep-
est descent algorithm such that the following error function
E(x, y), which measures the relative differences between
the original distances and the embedded distances, is
decreased.

where

In each iteration, a correction step is added to every
dimension of every point. The direction of the correction
is towards the gradient of the error. The coordinates of the
point α in iteration i + 1 are updated as follows:
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where E(i) is the error after iteration i and f is a factor to
control the step sizes. We used f = 0.2. The method stops
after a certain number of steps or when there is no signif-
icant improvement in the error. We stopped the iterations
either when the change in error went below 0.01% or up
to a maximum of 1000 steps. The number of steps was set
as an additional check in order to come out of any local
error problems, e.g., oscillating error values. In practice,
after 250–300 iterations, the error stopped changing, and
the algorithms stopped. In addition, in order to counter
the problem of bad initialization, the algorithms were run
5 times for each embedding and the one with the lowest
error was picked. The final coordinates or the directions of
the axes do not have any significance; only the Euclidean
distances among the embedded points matter.

For any dimensionality reduction or embedding tech-
nique, an important measure of quality is distortion. Dis-
tortion measures the largest amount of discrepancy from
an original distance value to the corresponding embedded
distance. It is measured as

where original dist refers to an original dissimilarity meas-
ure between two models and embedded dist refers to the
Euclidean distance between the corresponding embedded
points. For ideal embeddings, where all the original dis-
tances have been maintained exactly, the distortion is 1.
For others, the distortion is greater than 1. In general,
lower the distortion value, better the embedding. The
individual distortions are measured by the ratio of embed-
ded dist to original dist.

For models with only a single parameter, any dissimilarity
between a pair of them is equal to the difference between
their single parameters. Such distance matrices can be
always embedded into two dimensions with distortion
equal to 1. The models have to be simply embedded as
points on a straight line with the order and the distances

maintained, e.g., as (parameter, 0) or (parameter/ ,

parameter/ ) points. In our implementation, we have
not forced this explicitly; the method itself converges to a
straight line plot. For models with two parameters, if the
dissimilarity function is Euclidean, then, it is again possi-
ble to devise an embedding with distortion 1. The original
parameter values will form the coordinates in the embed-
ded space. For higher number of parameters or with other
dissimilarity functions, in general, it is not possible to
design embeddings with distortion 1. The distortions of

each of the graphs are mentioned in the captions. Addi-
tional file 3 reports the individual distortions for each of
the distances for all the embeddings.
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