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Abstract
Background: Laboratory techniques used to determine haplotypes are often too expensive for
large-scale studies and lack of phase information is commonly overcome using likelihood-based
calculations. Whereas a number of programs are available for that purpose, none of them can
handle loci with both multiple and null alleles.

Results: Here we present a description of a modified Expectation – Maximization algorithm as well
as its implementation (NullHap) which allow to effectively overcome these limitations. As an
example of application we used Nullhap to reanalyze published data on distribution of KIR
genotypes in Polish psoriasis patients and controls showing that the KIR2DS4/1D locus may be a
marker of KIR2DS1 haplotypes with different effects on disease susceptibility.

Conclusion: The developed application can estimate haplotype frequencies for every type of
polymorphism and can effectively be used in genetic research as illustrated by a novel finding
regarding the genetic susceptibility to psoriasis.

Background
Laboratory techniques used to determine haplotypes [1]
are often too expensive for large-scale studies. The lack of
phase information provided by the popular typing meth-
ods could be overcome using likelihood-based calcula-
tions [2], which estimate haplotype frequencies in a
population, and reconstruct the haplotype pair in each
individual. This approach is more cost-effective and pow-
erful than linkage analysis [3], and gives more informa-
tion than single marker-based methods [4].

Haplotype estimation procedures typically use maximum
likelihood approach. The most popular algorithm imple-
mented for example in Arlequin [5] is The Expectation –
Maximization algorithm (EM) [6] but other methods

were also proposed: Bayesian method using a pseudo-
Gibbs sampler [7], partition-ligation [8], Monte Carlo [9]
and Hidden Markov Model [10].

A frequent shortage of available software packages [5,7] is
the lack of possibility to analyze loci where null variants
occur with an appreciable frequency. In a diploid organ-
ism, a null allele is a variant which is not detected in gen-
otyping, because of a deletion of an entire locus or
because of a mutation interfering with analysis. This
makes it impossible to distinguish between some hetero-
zygous and homozygous genotypes [11]. For example, if
there is only one alternative allele A1 besides the null
allele A0, then there are three possible haplotype pairs: A1/
A1, A1/A0 and A0/A0, but only two kinds of experimental
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observations: A0 and A1. An example of a genetic system,
which is at present intensely studied [11] and which con-
tains null alleles, is the locus encoding killer immu-
noglobulin-like receptors (KIR) of natural killer (NK)
cells.

To our knowledge, the only available computer program
designed to handle null alleles is Haplo-IHP [12], which,
however, has a shortcoming of being applicable only to
biallelic loci. The purpose of our work was to design a ver-
satile application for estimation of haplotypes from
unphased population data useful for multiallelic poly-
morphism with and/or without null alleles.

Implementation
The null variants decrease the number of different geno-
types G which can be observed, equation (1), when the k
polymorphic loci are analyzed and each locus has li differ-

ent variants (optionally including a null variant) for i-th

locus, δi = 1 if i-th locus has null allele, otherwise δi = 0.

The number of haplotypes is .

The average number of haplotype resolutions which give
genotype j (when phase information is lost) grows expo-
nentially with the number of observed loci, thus full space
search algorithm cannot be used to find the best haplo-
type frequencies. The equation (2) provides the number
of haplotype resolutions rj which give genotype j, where sj
is the number of observed heterozygous and tj is the
number of observed (not null) alleles for loci with null
allele(s).

Maximum likelihood approach to estimate haplotypes

In the maximum likelihood approach haplotype frequen-
cies hi are estimated to maximize the probability of the

given sample of genotyping data. The sample of genotyp-
ing data from n individuals is simplified to a vector S =
(n1, n2,..., nG), where G is the number of different genotyp-

ing data (with a lack of phase information, equation (1)),
and nj is the number of individuals having j-th genotype,

.

The conditional probability of sample S, given each geno-
type probability gi, and assuming unrelatedness of indi-
viduals in the sample is provided in equation (3), where
α does not depend on gj.

The frequency of genotype gj is the sum of frequencies of
respective haplotype pairs zmn, and with Hardy-Weinberg
equilibrium (HWE) assumption, it is calculated from hap-
lotype frequencies as shown in equation (4), where zmn is
the frequency of haplotype pair m and n, rj is the number
of haplotype pairs for the j-th genotype (equation 2), and
hm, hn are the frequencies of haplotypes m and n respec-
tively.

The estimation of haplotype frequencies to maximize the
probability of the observed sample can be described as
optimization, the equation (5) summarizes the consid-
ered approach.

Extended EM algorithm
The EM alternates between performing an expectation
step E(t), which computes an expectation value of
unknown parameters, here the frequencies of haplotype
pairs, and a maximization step M(t), which computes the
value of parameters by maximizing the probability of
observed data. The parameters found on the M(t) step are
then used to begin another E(t+1) step, and the process is
repeated until the parameters are changed.

The description of algorithm details for the observed gen-
otype data of k linked loci, li variants for i-th locus, and the
sample S = (n1, n2,..., nG) is given below.

Initiation
The EM algorithm could be trapped into a local maxi-
mum, therefore multiple random starts are employed
(any number determined by the user) in order to help the
algorithm reach the global maximum. If n > 1 starting
points are specified, for i-th point, the program calculates
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the mean error between the first and i-th estimate, and if
this exceeds a predefined value (default = 0.05) a message
is displayed about possible multiple local maxima. Since
this feature increases computational time, it is optional.

If no random starts are used, the initial haplotype pair fre-
quencies are set as described in equation (6) (the E0 step).
For each haplotype resolution, the initial frequency
depends only on the number of haplotype pairs for the
given genotype. A similar initiation is described in [6].

Maximization step
In this step, the typical EM algorithm was adopted, the
only modification consisting of the fact that the genotype
frequency calculation was performed as a sum of corre-
sponding haplotype pair frequencies, equation (4), taking
into account that the heterozygotes with null allele are
genotyped identically as homozygotes without null allele.

Next, the haplotype pair frequencies are corrected, to max-
imize the probability of a given sample. Details are given

in equation (7), where  is the input haplotype pair fre-

quency,  is the calculated genotype frequency (inclu-

sive of appropriate heterozygous genotypes with null

variants),  is the output haplotype pair frequency,

corrected to maximize the observed sample, nj is the

number of observed genotypes gj in sample and n is the

number individuals in the sample.

Expectation step
Haplotype frequencies hms are calculated from the given
haplotype pair frequencies zmns, as a half of the sum of fre-
quencies of all pairs of haplotypes in which given haplo-
type occurs. The next expected haplotype pair frequencies
are calculated using haplotype frequencies as described in
equation (8).

Stop conditions
The algorithm stops, when the stability of estimations
between the following steps is obtained, i.e. the absolute

difference between the calculated frequencies is less then
ε (equation 9). The default threshold value for epsilon is
10-5, and can be changed by a program option.

The final step is calculation of the haplotype frequencies
(another E step), and of the conditional probability of the
haplotype pair, given genotype estimation (equation 10).

Results and Discussion
The described algorithm was implemented using C++ and
the Boost libraries [13] and called NullHap. The main
advantage of our application is the ability to handle prob-
lems, when one or more multiallelic loci containing null
variant occur.

NullHap was tested on simulated and real data sets and its
performance was compared with those of previously
described programs: Arlequin [5], PHASE [7] and Haplo-
IHP [12].

Test on generated data sets
Firstly, the simulated data sets were obtained as the most
probable samples generated for polymorphisms with var-
ying locus characteristics, and accuracy of estimated fre-
quencies for different computer programs was analyzed.
An example of assumed and estimated frequencies used in
one such simulation is shown in Table 1. In Table 2,
results of six simulations are summarized by giving a
mean absolute percentage error, calculated as shown in
equation (11), where x is the assumed frequency, and x*
is the calculated one.

Since it may not be known beforehand, whether a locus
has a null allele, we also checked performance of NullHap
which was run assuming the presence of a null allele in
each locus. Such an approach allows to screen the likeli-
hood of the presence of a null allele in a given locus by
evaluating the frequencies of haplotypes containing this
allele. An appreciable frequency of any such haplotype in
the output indicates the need to include a null allele in
this particular locus. Otherwise, the conclusion is, that
given locus most likely does not contain a null variant.
Alternatively, genotypes of each locus could be analyzed
for deviation from HWE by any of the available programs.
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When typing mistakes are excluded, deviation from HWE
strongly indicates the presence of a null allele.

Secondly, the effect of sample size on the performance of
the method was investigated. This was done by generating
k random samples of 25, 50, 100, 200, 500 and 1000 indi-
viduals from an infinite population in HWE. The haplo-
type frequencies were estimated and median of k mean

absolute errors (calculated as ,

where N is the number of individuals in the sample) was

calculated. The results obtained for haplotype distribu-
tions such as those given in examples 5 and 6 in Table 2
are illustrated in Figure 1. As can be seen, with a sample
size of 200 individuals, an error of approximately 2% can
be expected in haplotype frequency estimation, whereas a
lower sample size may lead to substantially higher errors.

Thirdly, tests of the effect of different levels of HWE viola-
tion on the accuracy of the algorithm were performed. The
degree of HWE violation was modeled by increasing val-
ues of inbreeding coefficient f as defined by Weir [14,15],
equation (12).

As can be seen from Figure 2, there was a linear correlation
of inbreeding coefficient f with the accuracy of estimation
of haplotype frequencies.

Finally, to evaluate the effect of haplotype frequency on
the error of the estimation, 10 samples of 1000 individu-
als were generated from a population in HWE, for a sim-
ple two loci polymorphism: A with variants A0, A1, A2 and
B with variants B0, B1. The frequencies of haplotypes A0B1,
A1B0, A1B1, A2B0, A2B1 were fixed and equal to 0.19, 0.18,
0.16, 0.1, 0.04 and 0.02 respectively, whereas the fre-
quency of haplotype A0B0 varied from 0.05 to 0.9. Results
expressed as median of mean absolute percentage error
(equation (11)) are shown in Figure 3. As can be seen, the
lowest error occured with haplotype frequency close to
0.5.

Performance tests
We also performed analysis of computational time in dif-
ferent scenarios. Results presented for appropriate appli-
cations are shown in Table 3. All computations were
achieved on Celeron M 1.6 GHz, 1 GB RAM, under
Debian Linux or Windows XP.error x xN i
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Table 1: Assumed and estimated haplotype frequencies

haplotype frequency hi
assumed Arlequin PHASE Haplo-IHP NullHap

A0B1C0 0.2 0.068 0.068 0.294 0.20
A0B1C1 0.2 0.172 0.172 0.294 0.20
A0B2C0 0.1 0.034 0.034 0.147 0.10
A0B2C1 0.02 0.038 0.038 0.029 0.02
A0B3C0 0.02 0.007 0.007 0.0 0.02
A0B3C1 0.02 0.017 0.017 0.0 0.02
A0B4C0 0.02 0.007 0.007 0.0 0.02
A0B4C1 0.02 0.017 0.017 0.0 0.02
A1B1C0 0.1 0.089 0.089 0.147 0.10
A1B1C1 0.02 0.125 0.125 0.029 0.02
A1B2C0 0.02 0.028 0.028 0.029 0.02
A1B2C1 0.02 0.042 0.042 0.029 0.02
A1B3C0 0.02 0.015 0.015 0.0 0.02
A1B3C1 0.02 0.035 0.035 0.0 0.02
A1B4C0 0.02 0.015 0.015 0.0 0.02
A1B4C1 0.02 0.035 0.035 0.0 0.02
A2B1C0 0.02 0.028 0.029 0.0 0.02
A2B1C1 0.02 0.078 0.078 0.0 0.02
A2B2C0 0.02 0.019 0.019 0.0 0.02
A2B2C1 0.02 0.039 0.039 0.0 0.02
A2B3C0 0.02 0.013 0.013 0.0 0.02
A2B3C1 0.02 0.033 0.033 0.0 0.02
A2B4C0 0.02 0.013 0.013 0.0 0.02
A2B4C1 0.02 0.033 0.033 0.0 0.02

error - 79% 79% 82% 0%

The assumed and estimated haplotype frequencies for a 
polymorphism with 3 loci: A(multiallelic with null variant), 
B(multiallelic), C(biallelic with null variant).

Table 2: Haplotype estimation frequency error

No example description error
Arlequin PHASE Haplo-IHP NullHap

1 biallelic loci: A(A1, A2), B(B1, B2), C(C1, C2) no null variants 0% 0% 0% 0%
2 biallelic loci: A(A0, A1), B(B0,B1), C(C0, C1), null variants: A0, B0 and C0 61% 50% 1% 0%
3 multiallelic loci: A(A1, A2, A3), B(B1, B2, B3), no null variants 0% 1% 78% 0%
4 multiallelic loci: A(A0, A1, A2), B(B0,B1, B2), null variants: A0 and B0 62% 62% 100% 0%
5 multiallelic and biallelic loci with null variants: A(A0,A1,A2), B(B0,B1), C(C0,C1) 62% 48% 64% 0%
6 details in Table 2, A(A0,A1,A2), B(B1,B2,B3,B4), C(C0,C1) 79% 79% 82% 0%

Haplotype estimation frequency error for six polymorphisms with varying locus characteristics.
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Because the number of haplotypes grows exponentially
with the number of considered loci, there is a practical
restriction to approximately 50,000 haplotypes, e.g. 15
biallelic loci. We noted with moderate number of loci the

restriction is due to computational time, whereas for the
very large number of loci (e.g. 100 loci) the memory
becomes a limiting factor.

Tests on real data sets
To perform a test on real data, we first used HLA-DRB1
and HLA-DQB1 allele distributions among 99 Poles as
supplied by [5]. Both loci are multiallelic (36 and 14 var-
iants, respectively) without null variants. The difference
between estimated frequencies among programs Arle-
quin, PHASE and NullHap (i.e. programs handling such
loci) was less than 2%.

To test the application in the presence of biallelic loci with
null variants, the KIR genotypes for 200 Irish subjects [12]
were analyzed with NullHap and Haplo-IHP (the only
available program suitable for such loci). The difference of
estimated frequencies between programs was about 3%.

Reanalysis of published data indicates that the KIR2DS4/
1D locus may be a marker of KIR2DS1 haplotypes with 
different effects on psoriasis susceptibility
In order to apply NullHap to real data from an association
study we reanalyzed the results of Luszczek et al. on distri-
bution of KIR genotypes in Polish psoriasis patients and
controls [16]. In the original report these authors
described an association between KIR2DS1 and psoriasis,
which was also observed in two subsequent studies from
Japan and the US [17,18], but not in a study a of Chinese
population [19]. Further analysis of genotype data of
Luszczek et al. [16] indicated a role for KIR gene variants
other than KIR2DS1 in conferring susceptibility to psoria-
sis, suggesting, that distinct KIR haplotypes could be
responsible for observed associations [20].

The distributions of KIR haplotypes among patients and
controls obtained with NullHap are given in Table 4.
Because the structure of the KIR region is very complex, it
is not fully known which genes are truly allelic, i.e. occupy
precisely the same chromosomal locus. At first, in our
analysis, the K2DL2/KIR2DL3, KIRDS4/KIR1D, and
KIR2DS3/KIR2DS5 genes were treated as alleles. Since in
the case of KIR2DS3 and KIR2DS5 this may be controver-
sial due to some haplotypes which harbor both genes in
cis [21], we also repeated the analysis after exclusion of
these variants. In all loci a null allele was allowed [21].

As can be seen from Table 4, two haplotypes (#1, #2) were
strongly overrepresented among the patients. The fact that
these haplotypes encoded KIR2DS1 is consistent with the
association between this gene and psoriasis [16-18]
whereas the lower OR associated with haplotype #2 vs. #1
(27 vs. 52.5) supports the protective effect of KIR2DS3
suggested previously [20]. In contrast to haplotypes #1
and #2 other haplotypes encoding KIR2DS1 (#4, #6) were

Effect of sample size on accuracy of estimationFigure 1
Effect of sample size on accuracy of estimation. Effect 
of sample size on accuracy of estimation of haplotype fre-
quencies. Ten samples of 25, 50, 100, 200, 500, 1000 individ-
uals were generated from population in HWE. The error in 
function of sample size is shown. The haplotype distribution 
is given in example 5 (red) and example 6 (blue) in Table 2, 
respectively.

Effect of HWE violation on accuracy of estimationFigure 2
Effect of HWE violation on accuracy of estimation. 
Effect of HWE violation on the accuracy of the algorithm. 
The figure shows the error in function of inbreeding coeffi-
cient f for two polymorphisms characterized in Table 2 
(example 5 – red line, example 6 – blue line).
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not overrepresented among the patients. Both haplotypes
encoded KIR2DS5 which could be interpreted as the pos-
tulated protective effect of this variant [20]. However,
whereas the presence of KIR2DS5 or KIR2D3 offers one
explanation of the heterogeneity of the effects of KIR2DS1
haplotypes, the inspection of Table 4 shows that the risk –
conferring and neutral KIR2DS1 haplotypes are also dis-
tinguished by the KIR2DS4/1D locus, which is a novel
observation. As can be seen, the haplotypes #1, #2 share

the 1D variant, whereas the haplotypes #4, #6 both have
the KIR2DS4 null allele. These effects of KIR2DS4/1D
locus were also apparent in analysis performed after the
exclusion of KIR2DS3 and KIR2DS5 genes (haplotypes #8
and #9 vs. haplotypes #12 and #17, Table 4).

The fact that KIR2DS4/1D and KIR2DS1 loci are physically
adjacent [21] suggests that the strong predictive effect of
their haplotypic combinations may be caused by linkage
disequilibrium with an unknown variant in the region,
which is primarily associated with psoriasis. The indirect
association is particularly plausible for KIR2DS4/1D
because KIR 1D and KIRDS4 null (which mark KIR2DS1
haplotypes with distinct effects on disease susceptibility)
are both non functional and thus should be equivalent
physiologically [21]. In case of the KIR2DS1 it would be
tempting to speculate that the susceptibility conferring
effect is limited to a rare allele (absent in controls) being
in strong linkage disequilibrium with 1D. Interestingly,
such a theory could explain a lack of association between
KIRDS1 and psoriasis recently reported in a Chinese pop-
ulation [19].

Conclusion
The developed application can effectively estimate haplo-
type frequencies with a performance that is similar or bet-
ter than those of other available computer programs. It
should be emphasized, that the main advantage of the cre-
ated application is the ability to estimate haplotypes for
every type of polymorphism, in particular polymor-
phisms with multiallelic loci with null variants.

The presented application is under development, and
some improvements are planned, such as an additional
step removing unimportant haplotypes or the partition-
ligation algorithm [8] to speed-up computations for a
large number of loci. Other planned improvements are a

Effect of haplotype frequency on the error of the estimationFigure 3
Effect of haplotype frequency on the error of the esti-
mation. Effect of haplotype frequency on the error of the 
estimation. Ten samples of 1000 individuals were generated 
for population in HWE, for a 2 locus polymorphism: A with 
variants A0, A1, A2 and B with variants B0, B1. The graph shows 
the error of haplotype frequency estimation in function of 
assumed frequency of this haplotype.

Table 3: Computational time comparison

loci number of haplotypes observ. null alleles time for application
Arlequin Phase HaploIHP NullHap

2 6 100 no 0.13 s 46 s 0.5 s 0.07 s
2 9 100 no 0.06 s 47 s 0.15 s 0.04 s
3 8 100 no 0.04 s 69 s 0.58 s 0.02 s
2 504 99 no 0.22 s 53 s - 37 s
2 540 99 no 0.34 s 58 s - 39 s
5 32 200 yes - - 14 s 0.78 s
7 128 200 yes - - 145 s 13 s
8 256 200 yes - - 450 s 61 s
9 512 200 yes - - 1300 s(8 s) 209 s

10 1024 200 yes - - 3 h (8 s) 2300 s
11 2048 200 yes - - 24 h (10 s) 3 h
15 32768 100 yes - - - 48 h

Computational time for considered applications (HaploIHP in parenthesis with greedy algorithm). Results presented only for applications able to 
handle the given polymorphism, otherwise '-'.
Page 6 of 8
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:330 http://www.biomedcentral.com/1471-2105/9/330
graphical user interface as well as an import/export mod-
ule for popular data formats. The new versions will be
available at project homepage.

Availability and requirements
Project name: NullHap

Project homepage: http://nullhap.sourceforge.net

Operating systems(s): OS Portable

Precompiled binaries: Windows NT/2000/XP, Debian
Linux

Programming language: C++

License: GNU LGPL
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Table 4: The distribution of KIR haplotypes

Haplo-type # KIR 2 Psoriatis N = 116 (%) Controls N = 123 (%) OR P value*
DS2 DL2/3 DS3/5 DL1 DS1 DS4/1D

1 null 3 null 1 1 1D 20 (17) 0 52.5 0.00018
2 1 2 3 null 1 1D 11 (9.6) 0 27 0.0058
3 null 3 3 null null 1D 6 (5.3) 2 (1.5) 2.9 NS
4 null 3 5 1 1 null 6 (5.2) 7 (5.6) 0.9 NS
5 null 3 3 1 null 1D 15 (13) 30 (24) 0.5 NS
6 1 2 5 null 1 null 3 (2.5) 7 (6.4) 0.5 NS
7 null 3 null 1 null 1D 0 16 (13) 0.03 0.00018
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*with Bonferroni correction (correction factor = 18)
The distribution of KIR haplotypes among psoriasis patients and controls obtained with NullHap based on genotypes reported by Luszczek et al. 
[16]. Only haplotypes with frequency > 5% in either group are shown. Odds ratio (OR) calculated according to Haldane [22], P value calculated by 
Fisher exact test. NS -not significant.
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