
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
GBParsy: A GenBank flatfile parser library with high speed
Tae-Ho Lee1,2, Yeon-Ki Kim*2 and Baek Hie Nahm*1,2

Address: 1Division of Bioscience and Bioinformatics, MyongJi University, Yongin, Kyonggido, Republic of Korea and 2Genomics Genetics Institute,
GreenGene BioTech Inc., Yongin, Kyonggido, Republic of Korea

Email: Tae-Ho Lee - thlee@bio.mju.ac.kr; Yeon-Ki Kim* - kim750a11@gmail.com; Baek Hie Nahm* - bhnahm@mju.ac.kr

* Corresponding authors

Abstract
Background: GenBank flatfile (GBF) format is one of the most popular sequence file formats
because of its detailed sequence features and ease of readability. To use the data in the file by a
computer, a parsing process is required and is performed according to a given grammar for the
sequence and the description in a GBF. Currently, several parser libraries for the GBF have been
developed. However, with the accumulation of DNA sequence information from eukaryotic
chromosomes, parsing a eukaryotic genome sequence with these libraries inevitably takes a long
time, due to the large GBF file and its correspondingly large genomic nucleotide sequence and
related feature information. Thus, there is significant need to develop a parsing program with high
speed and efficient use of system memory.

Results: We developed a library, GBParsy, which was C language-based and parses GBF files. The
parsing speed was maximized by using content-specified functions in place of regular expressions
that are flexible but slow. In addition, we optimized an algorithm related to memory usage so that
it also increased parsing performance and efficiency of memory usage. GBParsy is at least 5 - 100×
faster than current parsers in benchmark tests.

Conclusion: GBParsy is estimated to extract annotated information from almost 100 Mb of a
GenBank flatfile for chromosomal sequence information within a second. Thus, it should be used
for a variety of applications such as on-time visualization of a genome at a web site.

Background
Large volumes of information have been rapidly accumu-
lating since the shotgun DNA sequencing technology was
introduced [1,2]. Currently, GenBank volume size is rap-
idly increasing, with more than 370 complete microbial
genomes and over 104 assemblies of eukaryote genomes
deposited over the year 2006 alone [3]. This has led to the
question of how this invaluable information can be dealt
with by computer programs. One of the primary concerns
is how to efficiently convey huge volumes of sequence
data and their annotated information to researchers. For

these reasons, many sequence formats such as Abstract
Syntax Notation One (ASN.1), Extensible Markup Lan-
guage (XML) and GenBank flatfile (GBF) format have
been used to manage sequences for distinct purposes and
usages. Among these, the ASN.1 and XML format files are
generally known to be difficult for a user to directly get
information since the formats are designed to specify
complex data structures in a machine and programming
language. Thus, they are used for storing and exchanging
data between computer systems. In contrast, GBF format
has become one of the most popular because of its

Published: 25 July 2008

BMC Bioinformatics 2008, 9:321 doi:10.1186/1471-2105-9-321

Received: 15 May 2008
Accepted: 25 July 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/321

© 2008 Lee et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18652706
http://www.biomedcentral.com/1471-2105/9/321
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:321 http://www.biomedcentral.com/1471-2105/9/321
detailed sequence features and ease of readability and
accessibility unlike machine-friendly ASN.1 or XML for-
mat. The format has been widely adopted to describe not
only a relatively short individual gene sequence, but also
long sequences, such as eukaryotic genome sequences in
animals and plants [4,5]. To use the data in the file by a
computer, a parsing process is required and is performed
according to a given grammar for the sequence and the
description in a GBF. Therefore, the GBF parser has
become a routine program in bioinformatics. NCBI C/
C++ toolkit [6] provides a lot of functions to deal with a
sequence including parsers for ASN.1 format since NCBI
employed the format as a central data format, but the
toolkit does not provide a parser for the GBF. Thus, cur-
rently, several parser libraries for the GBF have been devel-
oped by other groups, such as BioPython [7], BioPerl [8]
and the AJAX library in the EMBOSS package [9]. How-
ever, parsing a large GBF file (such as a eukaryotic genome
sequence) with these libraries inevitably takes a long time
since the parser libraries were not designed just for parsing
speed. For example, parsing time for the GBF of a chromo-
somal sequence of Arabidopsis thaliana by the GBF parser
of BioPython is estimated to be 109.2 seconds (Table 1).
Thus, the biological community needs a faster parser that
can parse a large GBF file, such as a eukaryotic chromo-
some, in a single-digit number of seconds at the personal
computer level. We developed the GBParsy library [see
Additional file 1], a C language-based parser with
improved speed and efficient use of memory. In addition,
we developed GBParsyPy, a GBParsy wrapper for the
Python programming language.

Implementation
In the design of the GBParsy library, we focused on the
speed and the efficient use of system memory. At first, we
improved parsing speed by using customized parsing
functions in place of the regular expression functions.
Although regular expressions are frequently used to parse

strings because of their flexibility, they lower the speed of
a program as a trade-off for their flexibility. Further
enhancement was achieved by optimizing an algorithm
related to memory usage. We tried to reduce the number
of functions in the GBParsy that were for allocating new
memory space and for moving data between the memory
spaces, which are both time-consuming processes; thus,
we were able to save system memory as well as increase
performance.

The functions in GBParsy are categorized into three
groups. The functions in the common group perform gen-
eral operations, such as handling white spaces or lines.
Each field, such as features or sequences in GBF, is han-
dled by distinct functions included in the parsing group.
The functions included in the common and parsing
groups are only used internally. The functions in a user
group are directly used by the user, and are implemented
to handle a GBF file or parsed data. For example, the user
can get a parsing result of a GBF file by calling the 'parseG-
BFF' function with the file name.

Whole entry fields of a GBF file are parsed by calling the
'parseGBFF' function with the file name (Figure 1), and
the parsing results are stored in 5 types of structures (Fig-
ure 2), which is a collection of variables and a kind of data
type in C language. Gb_data structure is a main structure
and a gb_data structure contains one GBF data. Each
record in the reference entry and in the feature table of the
GBF data is stored gb_reference and gb_feature structure,
respectively. Gb_location and gb_qualifier, which is a
substructure of gb_feature, contain information of a loca-
tion and qualifiers, respectively. In the case of GBParsyPy,
while the parser uses proper data types of the Python pro-
gramming language (such as dictionary and tuple type in
place of structure type of the C language), the formation
of a parsing result by GBParsyPy is generally similar to
that by GBParsy. For example, the main structure of
GBParsy, gb_data, is implemented as a dictionary where
each element in the dictionary is matched to each variable
in the main structure.

Results & Discussion
Benchmarking test
The two largest GBF files of A. thaliana chromosome 1
(NC_003070) and Mus musculus chromosome 2
(NT_039207) were downloaded from GenBank ftp://
ftp.ncbi.nih.gov/genomes/ for the performance test. The
performance of GBParsy was ascertained by benchmark
testing with an Athlon 64 Processor 3200+ system with 2
GB main memory in Linux for the two publicly available
chromosome sequences. To test the performance, we used
an incorporated program in the EMBOSS (ver. 5.0.0)
package, 'extractfeat', which parses GBF with the AJAX
library and extracts specific sequences from the file. Also,

Table 1: Comparative performance of GBParsy and other
publicly available GBF parsers

Source A. thaliana M. musculus
Accession NC_003070 NT_039207

Sequence Length (Mbp) 30.4 116.4
File Size (MB) 59.0 144.0

GBParsy 0.9 ± 0.1 (1.0) 2.4 ± 0.3 (1.0)
GBParsyPy 1.7 ± 0.1 (1.8) 3.0 ± 0.5 (1.2)
EMBOSS 9.7 ± 0.2 (10.7) 12.7 ± 0.3 (5.3)
BioPerl 45.7 ± 0.4 (50.3) 38.7 ± 0.3 (16.0)
BioPython 109.2 ± 0.4 (120.3) 39.7 ± 0.2 (16.4)

Elapsed time (sec) taken by each program was measured in 50
separate runs; mean ± standard deviation (SD) for these runs are
shown. Average fold slowness in parenthesis is the ratio of each
observed mean time to the one taken by the GBParsy test program.
Page 2 of 6
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_003070
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NT_039207
ftp://ftp.ncbi.nih.gov/genomes/
ftp://ftp.ncbi.nih.gov/genomes/
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_003070
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NT_039207

BMC Bioinformatics 2008, 9:321 http://www.biomedcentral.com/1471-2105/9/321

Page 3 of 6
(page number not for citation purposes)

Example of a parsing resultFigure 1
Example of a parsing result. Each box represents a datum as a result of parsing the GBF file, NT_039207. A number in
parenthesis is denoted as such in Figure 2.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NT_039207

BMC Bioinformatics 2008, 9:321 http://www.biomedcentral.com/1471-2105/9/321
we developed testing programs generating similar output
with the 'extractfeat', for GBParsy, GBParsyPy, BioPerl
(ver. 1.4) and BioPython (ver. 1.43), respectively. To com-
pare the performance of each library, we extracted whole
tRNA sequences from a GBF file with each testing program
and determined the elapsed time. The average and stand-
ard deviation of the elapsed times (sec) for each program
were measured in 50 separate runs. Slower folds for each
parser were calculated against that of GBParsy to represent
the performances.

GenBank flatfile parser
Elapsed times were measured for each program in parsing
two GBF files containing large chromosomal sequences
and annotation of the A. thaliana chromosome
(NC_003070) and M. musculus chromosome

(NT_039207), (Table 1), which are known to be the larg-
est files with proper annotation in plants and animals,
respectively. When GBParsy was used, it took 0.9 sec and
2.4 sec to parse the chromosomal sequences from Arabi-
dopsis and mouse, respectively. For the chromosomal
sequences of Arabidopsis, the average fold slowness indi-
cates that it was two orders faster than the parser of BioPy-
thon and more than 10 times faster than the AJAX parser
of the EMBOSS package. In the case of the mouse chromo-
some sequence information, GBParsy was 16 times faster
than the parser of BioPython and was five times faster
than the AJAX library of the EMBOSS package. The differ-
ence in parsing performance, between the two GBF files,
by GBParsy and the others resulted from percent sequence
portion and/or the likewise annotation portion in the
files. Since the structure of the sequence region is simpler

Structures of a parsing result of GBParsyFigure 2
Structures of a parsing result of GBParsy. The parsing result of GBParsy is organized with five structures that are repre-
sented by a box. A large bold title such as gb_data represents the name of the structure and items in a box represent elements
of the structure. A variable name and its data type in C language are denoted on the left- and the right-side of the colon,
respectively. A number in parenthesis links with the number in Figure 1 and it represents a datum block stored in the variable.
Page 4 of 6
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_003070
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NT_039207

BMC Bioinformatics 2008, 9:321 http://www.biomedcentral.com/1471-2105/9/321
than the annotation region of the feature fields, the differ-
ence in parsing efficiency between parsers while parsing a
sequence region is small. The sequence portion of chro-
mosomal information in Arabidopsis is about half of the
file, while that in the mouse is over 80%. Therefore,
GBParsy is more effective for a GBF file containing a large
volume of annotated information than a file with poor
annotation.

When the main memory is not sufficient, a computer sys-
tem generally uses virtual memory, which is substantially
slower than main memory. Thus, a program requiring a
large volume of memory needs a long time for its execu-
tion on a system such as a personal computer. Accord-
ingly, we tested whether the more limited use of memory
by GBParsy influenced the speed of the program. This can
also be estimated by measuring elapsed times. For exam-
ple, when we parsed the chromosomal sequence file from
mouse using a system with 512 MB main memory, the
AJAX library consumed 150 seconds while GBParsy proc-
essed in eight seconds. The result reflects that GBParsy
efficiently uses system memory.

GBParsyPy is a GBParsy for Python, which is a representa-
tive scripting language. Because GBParsyPy adopted
GBParsy as a core parser, it inherited all of its features
from GBParsy, performing at almost paralleled speed and
with efficient use of memory. Thus, in the case of the M.
musculus chromosome, GBParsyPy was over 10 times
faster than the parser of BioPython or that of BioPerl.
Although we did not develop a Perl version, GBParsy
could be easily adopted by the language. To test usability
of GBParsyPy in an application program, we developed a
new program, ChrDiagram http://gbfp.googlecode.com/
files/chrdiagram-0.1.1.tgz which parses a GBF file with a
parser either GBParsyPy or BioPython and draws a
sequence diagram from the parsed result with GenomeDi-
agram [10]. GBParsyPy just took about 7 seconds in pars-
ing the five Arabidopsis chromosome sequences whereas
BioPython took over 5 minutes, when we drew genome
diagrams of the chromosomes [see Additional file 2] with
ChrDiagram at the benchmarking test system. Conse-
quently, to draw the chromosome diagrams with full-fea-
tures it took about 1 minute with GBParsyPy whereas it
took over 6 minutes with BioPython. These results show
that usability of application programs can be enhanced
with a high speed parser.

Conclusion
As more rapid genome sequencing technologies emerge,
and more information is accumulated, the size of the GBF
flatfile will be increased. As exemplified for parsing GBF
files of eukaryotic chromosomes, GBParsy and GBParsyPy
would be expected to significantly improve the parsing
speed and the efficient use of system memory. Thus, our

program would be useful for various applications that are
difficult or impossible with a slow parser, such as on-time
visualization of a chromosome sequence in an annotation
program or web-based server.

Availability and requirements
Project name: GBParsy (A GenBank flatfile parser library
with high speed)

Project home page: http://code.google.com/p/gbfp/

Operating system(s): any OS that supports GCC environ-
ment

Programming language: GCC

Other requirements: Python

License: GNU GPL

Any restrictions to use by non-academics: None

Authors' contributions
T–HL developed the parser and drafted the manuscript.
Y–KK provided substantial advice and revised the manu-
script. BHN provided substantial advice and guidance
during all phases of the project and assisted in the drafting
of the manuscript. All authors read and approved the final
manuscript.

Additional material

Acknowledgements
This work was supported by the Crop Functional Genomics Center of the
21st Century Frontier Research Program, funded by the Ministry of Science
and Technology (grant to B.H. Nahm) and by the BioGreen21 Program

Additional file 1
GBParsy (and GBParsyPy) version 0.60. This compressed file contains
GBParsy and GBParsyPy source codes and additional files such as exam-
ple programs and instruction for installation. The latest version is availa-
ble at GBParsy homepage http://code.google.com/p/gbfp/.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-321-S1.tgz]

Additional file 2
Diagram of Arabidopsis chromosome 1–5. The diagrams were drawn by
ChrDiagram, in which sequence data were parsed by GBParsyPy and
handled with GenomeDiagram. An orchid bar, orange red bar and olive
bar on the 1st, 2nd and 3rd track denote a gene, a tRNA and a miscella-
neous feature such as transposable element, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-321-S2.zip]
Page 5 of 6
(page number not for citation purposes)

http://gbfp.googlecode.com/files/chrdiagram-0.1.1.tgz
http://gbfp.googlecode.com/files/chrdiagram-0.1.1.tgz
http://code.google.com/p/gbfp/
http://code.google.com/p/gbfp/
http://www.biomedcentral.com/content/supplementary/1471-2105-9-321-S1.tgz
http://www.biomedcentral.com/content/supplementary/1471-2105-9-321-S2.zip

BMC Bioinformatics 2008, 9:321 http://www.biomedcentral.com/1471-2105/9/321
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

(grants to Y.-K. Kim and B.H. Nahm), RDA of the Republic of Korea. T.-H.
Lee and B.H. Nahm were supported by BK21. We thank the staff of the
GCC and Python programs for granting access to the open source soft-
ware, and Dr. Jonathan Kans at National Center for Biotechnology Infor-
mation (NCBI) for helpful advice.

References
1. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-

terminating inhibitors. Proc Natl Acad Sci USA 1977,
74:5463-5467.

2. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanati-
des PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis
SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman
JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej
RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G,
Nelson CR: The genome sequence of Drosophila melanogaster.
Science 2000, 287:2185-2195.

3. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL:
GenBank. Nucleic Acids Res 2007, 35:D21-D25.

4. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal
P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE,
Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B,
Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown
SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P: Initial
sequencing and comparative analysis of the mouse genome.
Nature 2002, 420:520-562.

5. Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O,
Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan
A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Con-
way AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feld-
blyum TV, Feng J, Fong B, Fujii CY, Gill JE: Sequence and analysis
of chromosome 1 of the plant Arabidopsis thaliana. Nature
2000, 408:816-820.

6. NCBI C/C++ Toolkit [http://www.ncbi.nlm.nih.gov/books/
bv.fcgi?rid=toolkit.TOC]

7. BioPython [http://www.biopython.org/]
8. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C,

Fuellen G, Gilbert JG, Korf I, Lapp H, Lehvaslaiho H, Matsalla C, Mun-
gall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD,
Stupka E, Wilkinson MD, Birney E: The Bioperl toolkit: Perl mod-
ules for the life sciences. Genome Res 2002, 12:1611-1618.

9. Rice P, Longden I, Bleasby A: EMBOSS: the Euro-pean Molecular
Biology Open Software Suite. Trends Genet 2000, 16:276-277.

10. Pritchard L, White JA, Birch PR, Toth IK: GenomeDiagram: a
python package for the visualization of large-scale genomic
data. Bioinformatics 2006, 22:616-617.
Page 6 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=271968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=271968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17202161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17202161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11130712
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC
http://www.biopython.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16377612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16377612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16377612
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results & Discussion
	Benchmarking test
	GenBank flatfile parser

	Conclusion
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

