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Abstract
Background: Censored data are increasingly common in many microarray studies that attempt
to relate gene expression to patient survival. Several new methods have been proposed in the last
two years. Most of these methods, however, are not available to biomedical researchers, leading
to many re-implementations from scratch of ad-hoc, and suboptimal, approaches with survival data.

Results: We have developed SignS (Signatures for Survival data), an open-source, freely-available,
web-based tool and R package for gene selection, building molecular signatures, and prediction with
survival data. SignS implements four methods which, according to existing reviews, perform well
and, by being of a very different nature, offer complementary approaches. We use parallel
computing via MPI, leading to large decreases in user waiting time. Cross-validation is used to asses
predictive performance and stability of solutions, the latter an issue of increasing concern given that
there are often several solutions with similar predictive performance. Biological interpretation of
results is enhanced because genes and signatures in models can be sent to other freely-available on-
line tools for examination of PubMed references, GO terms, and KEGG and Reactome pathways
of selected genes.

Conclusion: SignS is the first web-based tool for survival analysis of expression data, and one of
the very few with biomedical researchers as target users. SignS is also one of the few bioinformatics
web-based applications to extensively use parallelization, including fault tolerance and crash
recovery. Because of its combination of methods implemented, usage of parallel computing, code
availability, and links to additional data bases, SignS is a unique tool, and will be of immediate
relevance to biomedical researchers, biostatisticians and bioinformaticians.

Background
Many microarray studies involve human samples for
which survival data are available. In the last two years
there has been an increase in the number of new methods
proposed for this kind of data [1-11]. Many of these
papers have emphasized not only gene selection and sur-

vival prediction, but also "signature finding": discovering
sets of correlated genes that are relevant for survival pre-
diction. For end-users (e.g., biomedical researchers with
microarray data for a sample of patients for which survival
is known), however, most of these methods are not easily
accessible, which might explain why many papers in the
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primary biomedical literature implement from scratch
varied ad-hoc approaches in the context of survival predic-
tion.

Unfortunately, in many cases, survival data are reduced to
arbitrarily determined classes (such as dead or alive at a
given, arbitrary, time), with the consequent loss of infor-
mation, simply because tools for class prediction are
much more widely available. Thus, tools for end users are
badly needed that, while retaining user-friendliness, do
not compromise statistical rigor.

Statistically, and in addition to appropriate analysis of
censored data, such a tool should ensure that selection
biases [12-15] are accounted for, to prevent overoptimis-
tic assessments of the quality of the final model selected.
Moreover, such a tool should also present the user with
assessments of the stability of the results obtained: varia-
ble selection with microarray data (in general, in scenarios
where the number of variables Ŭ than the number of sam-
ples) can lead to many solutions that have similar predic-
tion errors, but that share few common genes [16-18].
Choosing one set of genes without awareness of the mul-
tiple solutions can create a false perception that the
selected set is distinct from the rest of the genes. Besides
the statistical features, interpretation of results is
enhanced if the tool provides additional information
about "the interesting genes" such as PubMed references,
Gene Ontology terms, and links to the UCSC and
Ensembl databases and KEGG and Reactome pathways.

Such a tool should also try to incorporate the increasing
availability of multicore processors and clusters made
with off-the-shelf components. Since CPU performance
has improved less than 20% per year since 2002 [19], the
major opportunities for significant speed gains and the
ability to analyze ever larger data sets with more complex
analysis methods do not lie in faster CPUs. Rather, it is
widely acknowledged that scaling to larger data sets and
reducing user waiting time depends crucially on our abil-
ity to efficiently use parallel, distributed, and concurrent
programming because of the increase in the available
number of CPUs and CPU cores [20-23]. This trend affects
even the laptop market (many laptops currently incorpo-
rate dual-core CPUs) and, therefore, the gains from paral-
lel computing can be realized not only on computing
clusters, but also in workstations and laptops.

Parallelization, such as provided by MPI [24], allows us to
distribute the computations over a computing cluster,
thus decreasing execution time. For an end user, paralleli-
zation can result in dramatic decreases in the time she/he
needs to wait for the analysis to complete (see Bench-
marking section). For developers, bioinformaticians, and
biostatisticians, parallelization results in speed increases

that ease method comparisons using extensive simula-
tions and provides an example for the parallelization of
further algorithms.

Regarding the user interface, web-based applications have
been gaining popularity in bioinformatics among other
reasons because they allow the development of user-
friendly applications that do not require software installa-
tion or upgrades from the user [25]. In addition, web-
based applications, if run in a computing cluster and
implemented appropriately, make it possible to exploit
parallelization.

Finally, source code availability under an open-source
license allows researchers to improve upon the method,
fix bugs, and verify claims by method developers, encour-
ages reproducible research, and ensures that tool owner-
ship resides in the international research community.
These are all issues of particular concern in bioinformat-
ics, where expedite progress builds upon previous
research [26,27]. Moreover, the value of code availability
is further enhanced when standard best practices in soft-
ware development (see review and references in [28]) and
the usual open source development mode [29], are fol-
lowed.

We have developed a web-based tool, SignS (Signatures
for Survival data), to fulfill the above needs. We know of
no equivalent tool, and only BRB-ArrayTools [30], by R.
Simon and A. P. Lam, provide somewhat similar function-
ality, but it is not web-based, does not ease accessing addi-
tional information, does not use parallel computing, and
source code is not available. Thus, SignS is a unique tool,
of immediate utility for biomedical researchers studying
gene expression and its relation to survival (as is common,
for example, in many cancer studies), and of broad appeal
also to computational biologists, biostatisticians, and bio-
informaticians because of the methods it implements and
the combination of parallelization with web-based com-
puting in an open-source application.

Implementation
SignS is as a web-based application (and underlying R
package) that provides four methods for gene selection
with survival data: the method by Gui and Li [2], the
approach of Dave et al. [1], a method that uses random
forests with conditional inference trees [3,31], and a
boosting method with component-wise univariate Cox
models [3,32]. There are few methods that explicitly
attempt to perform gene selection with survival data while
preserving the identity of the individual genes and allow-
ing the recovery of highly correlated genes. Moreover,
there are few comparisons among the available methods,
except those from [2,8,33-37]. In this context, we chose to
implement these four very different approaches. The avail-
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able comparisons indicate that penalization methods,
specially those based on the L1 penalty, such as Lasso and
LARS, tend to perform well and return results with rela-
tively few genes, thus enhancing interpretation
[33,35,36]. The method of Gui and Li can approximate
the Lasso or LARS estimates, while selecting more relevant
genes [2]. On the other hand, relatively heuristic and sim-
ple approaches such as those based on clustering and the
idea of signatures can sometimes perform remarkably
well, compared to sophisticated penalization approaches
[36]. The method of Dave et al. [1] is one such method
that attempts to explicitly return signatures for survival
data. Finally, ensemble approaches are currently gaining
popularity. The recent review by [34] has found that ran-
dom forest-based methods, as in [31], can yield the best
survival time predictions and, thus, we have also included
this method. An alternative approach to using ensembles
is via boosting, as in [3,32,38]; this approach has the
advantage of providing for explicit variable selection and
being computationally efficient, and has been shown to
be competitive for at least some microarray data sets [3].
We have parallelized all the algorithms, providing signifi-
cant decreases in user wall time (see below).

Algorithms
Briefly, the steps of the method by Dave et al. [1] are: A)
genes are filtered by p-value using a gene-by-gene Cox
model. B) The retained genes are divided into two groups,
those with a positive coefficient in the Cox model and
those with a negative coefficient, and a hierarchical cluster
is built for each of these two groups separately. C) A
potential signature is a group of genes (a cluster) such that
the minimal correlation between any two genes in the sig-
nature is above a (user-selected) threshold, and such that
this cluster has between a minimum and a maximum
number of genes (again, parameters set by the user). D)
The numeric value of a component, signature in the sense
of [1], is the average expression level of all the genes in a
given component (i.e., for each sample, we compute the
value of a signature as the average value, for that sample,
of all the genes in that signature). E) Finally, we carry out
variable selection using as starting point the best two-sig-
nature model; the variables used are the signature values
computed in step D) above. Variable selection is carried
out on the signatures, not on individual genes, and no
gene can belong to multiple signatures. The main advan-
tages of the approach of [1] are that it is easy to under-
stand, that it explicitly attempts to return sets of correlated
genes (signatures), and that the user is both forced to be
explicit about, and allowed to choose, parameters with
relatively straightforward interpretation (such as the min-
imum correlation of genes within a signature, or the max-
imum and minimum number of genes in a signature).
Thus, the method of [1] is ideal for exploratory analysis,
which is further enhanced by our additions, in particular

the assessment of stability of solutions and functional
annotation via IDconverter and PaLS (see "Results" sec-
tion).

In contrast, the approach of Gui and Li [2] has two param-
eters but they rarely need to be tuned, and can instead be
chosen by cross-validation. The complete method, includ-
ing the dimensional reduction and the ability to capture
correlated genes, follows from the penalization used
(penalization is a general approach–with other examples
being the Lasso and ridge regression– used to obtain esti-
mates of the regression coefficients in high-dimensional
spaces such as these, with few subjects and thousands of
features). The solutions of this method depend on two
parameters: a threshold parameter τ and an infinitesimal
increment Δυ. The threshold parameter τ, constrained
between 0 and 1, is related to the amount of penalization,
and larger values lead to a larger numbers of coefficients
in the Cox model being set to 0 (i.e., to the selection of a
smaller number of genes). The infinitesimal increment Δυ
affects the rate of change of the coefficients at each itera-
tion of the algorithm. Note that, operationally, we can
instead choose a sufficiently small Δυ, and modify the
number of iterations. [2] use cross-validation to choose
the optimal parameters: a set of τ is decided in advance,
and cross-validation is used to select the Δυ (or, alterna-
tively, the number of iterations), that minimizes the cross-
validated partial likelihood (CVPL). The CVPL is a func-
tion of the difference in the log Cox's partial likelihoods
for the models with and without the ith group of subjects.
Once the optimal parameters are decided, it is immediate
to obtain the fitted coefficients for the genes and the
scores for subjects not in the sample. Thus, if we choose a
sufficiently small Δυ, no parameters need to be chosen by
the user, as these are selected via cross-validation.

The approach of Hothorn et al. [3,31] for using random
forests utilizes conditional inference trees as base learners.
A conditional inference tree is built by recursively splitting
the data into two groups according to the value of the cov-
ariables. First, we test the global null hypothesis of inde-
pendence between any of the variables and the response.
If this hypothesis is rejected, we select the variable with
strongest association with the response, and implement a
binary split in the selected input variable. We continue
recursively (in each branch of the tree) until the global
null is no longer rejected. The tests are carried out in a con-
ditional inference framework (for details see [31]). A for-
est is built by fitting a conditional inference tree to each of
the many (in our case, 500) bootstrap samples of the data.
The type of response returned by these forests are Kaplan-
Meir curves. In contrast to the previous two methods,
there is no variable (gene) selection performed here
although, implicitly, the construction of each tree
involves choosing the best variable for a split. Following
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[34], by default we fit the forests to the best 200 genes, as
determined from gene-wise Cox models, but the actual
number of genes used is a parameter that can be chosen
by the user of the application.

The last method included in SignS has been developed by
Hothorn and colleagues [3,38] and uses boosting to ana-
lyze survival data when the number of variables is much
larger than the number of samples. Boosting is a general
iterative optimization method that, at each iteration, fits
the best predictor variable (to reduce the appropriate loss
function) and updates the estimates. The algorithm used,
L2 Boosting, is equivalent to refitting residuals multiple
times [32]. For survival data, [3,38] use component-wise
univariate Cox models. Boosting requires choosing the
number of boosting iterations, but as shown in [32], we
can use cross-validation to select this parameter. This
method performs variable selection, similar to the Lasso
and other L1-penalty methods [32]. The genes selected are
those with non-zero coefficients at the optimal number of
boosting iterations.

Implementation and parallelization
The method of [1] is available in both the web-based
application and the underlying R code. The method of [2],
as originally proposed, is only available in the R code
because it is too slow for routine use in the web-based
application; following a suggestion by J. Gui, the web
application provides an implementation where only one
threshold is used (see below). The core statistical func-
tionality of both methods is written in R [39]. Where pos-
sible, computations have been parallelized using MPI (its
LAM [Local Area Multicomputer]/MPI implementation)
via the R-packages Rmpi [40], by H. Yu, and papply [41]
by D. Currie. For the web-based application, the CGI
(Common Gateway Interface), initial data validation, the
setting-up and closing of the parallel infrastructure (boot-
ing and halting the LAM/MPI universes), and the fault-tol-
erance and crash recovery mechanisms, are written in
Python.

The implementation of the approach in [1] follows
closely the description of their method in the supplemen-
tary material to their paper. Our main departures from
their implementation are: a) we do not split the data into
two halves, but instead use cross-validation to assess
model selection; b) it is unclear how the initial two-signa-
ture model was selected by the authors, and we choose the
one with the largest likelihood, which in this case would
be identical to using AIC, Akaike Information Criterion, as
a criterion, since all two-signature models have the same
number of parameters; c) it seems, from the supplemen-
tary material, that the authors used p-values in their for-
ward variable selection, whereas we use AIC, generally a
preferred criterion for model selection [42] (i.e., at each

step we re-evaluate if any variables removed in previous
steps should be incorporated, or any variables previously
introduced into the model should be eliminated, using
AIC as the criterion).

For this algorithm, we have parallelized computations
over cross-validation runs, after experimenting with alter-
native parallelization schemes. Parallelizing the initial
computation of gene-by-gene Cox models leads to
decreases in speed because, in our setup, the communica-
tion costs are larger than the decrease in computing time;
for instance, with a data set of 60000 genes and 160
arrays, the non-parallelized algorithm takes about 49 sec-
onds in contrast to the 78 seconds of a parallelized algo-
rithm that distributes the computational load evenly over
62 CPUs. Parallelization of the next step, clustering genes
with positive and negative coefficients independently,
could be split into two within each run, but the final step
(stepwise model selection via AIC) is inherently sequen-
tial. Thus, we can minimize communication costs and
simplify further modifications of the algorithm if the algo-
rithm is parallelized at the cross-validation level. With this
scheme, the total user wall time is the sum of the comput-
ing time of two runs of the algorithm –a first run with all
the data, and another run corresponding to one of the
cross-validations– plus the time invested in communica-
tion and data handling. In contrast, the user wall time of
the purely sequential algorithm would be the sum of 11
runs of the algorithm –one for all data, and one for each
of the cross-validation runs. For the method of [2] our
code is based on the original code by the authors, with
many modifications for speed improvement and paralleli-
zation. First, several common operations in the code were
implemented using faster (sequential) code (e.g., using
"crossprod" instead of the naive X'y, vectorizing loops,
rewriting expressions to use fewer steps, etc). Next, the
code was parallelized. Taking into account the number of
nodes we had available and the number of nodes that can
often be used in off-the-shelf computing clusters, we par-
allelized the computations that search for the best τ. Fol-
lowing [2], we explore the six possible τ values 0, 0.2, 0.4,
0.6, 0.8, 1.0 and select the one that minimizes the CVPL,
using 10-fold crossvalidation. Thus, we can parallelize the
finding of the best t into 60 independent computations
(10 searches at each of the candidate τ). Notice that paral-
lelizing at this level yields increased speed even if no glo-
bal/double/full cross-validation is performed. The speed-
ups achieved with the code changes are discussed below.
Because of speed issues with this method, the web-based
application does not explore a range of τ values, but
instead uses a single one, chosen by the user. J. Gui made
us notice that, since their approach can only include
genes, not delete them, it can result on small τ thresholds
leading to the selection of many genes which can be false
positives, and he suggested using only one or a few large t
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thresholds, and skipping cross-validation over the entire τ
range, if time is at a premium (as in the web-based appli-
cation). By default, therefore, the web-based application
uses a t threshold of 0.9.

Adding other algorithms: random forests and boosting
The above two methods have been implemented either
almost from scratch, or after extensive modifications of
the original code, including careful tuning of how to con-
duct the parallelization. To show how SignS can be
extended with other algorithms, I have included the addi-
tional two methods in a much simpler way that also pro-
vide examples on how further methods can be
incorporated. In both cases, there are R packages that
implement each method, so essentially all we need to do
is write several wrapper functions that call the necessary
pre-existing functions, and that provide output in a way
that can be used by SignS.

First, I have written some convenience functions that
make it easier to produce formatted HTML with the results
from the fits, and to obtain figures ("print.selected.genes",
"print.cv.results", "writeForPaLS", "print.valida-
tion.results", "kmplots", "kmplots.validation"). These
convenience functions will be used with the two new
methods, and could be used directly, or with very minor
modifications, if other algorithms are implemented.

Next, we will use the pre-existing code. The random for-
ests method is available from the R package "party" [31],
and can be downloaded from the R repositories. Likewise,
the boosting method is available from the "mboost" R
package [43]. For random forests, all we need to do is to
wrap-up the existing function ("cforest") together with the
other needed elements for SignS to operate. Following
[34] we will perform a preliminary gene selection step,
and after the model is fitted we will need to obtain predic-
tions for each subject, to assess predictive performance
(see below). Gene selection is carried out with a straight-
forward function, very similar to the one used in the
method by Dave et al. to select genes. Subject prediction
(either for cross-validation or with validation data) is
based on the expected survival time, as explained in p. 109
and ff. of [44]; the mean survival time can be computed
(although it is a biased estimate) even if survival at the
largest observed time is much larger than 0.5. These three
parts of the algorithm (gene selection –function "geneSe-
lect"–, random forest –the original "cforest" function in
package "party"–, prediction –"cf.mean.survtime") are
wrapped in a single function ("my.cforest").

Next, we write another wrapper that will call this function
repeatedly for cross-validation ("my.cforest.cv"). It is in
the cross-validation where the algorithm is parallelized,
so the 10 calls to cforest, one for each cross-validation

fold, are run concurrently. The parallelization is straight-
forward since we are using the "papply" function (from
the R package "papply"; see above).

Similar steps are followed for the boosting method. We
define a function ("my.glmboost") that carries out all the
needed steps: it calls the "glmboost" function in the
mboost package for the initial boosting fit, and then the
"cvrisk" function to select the best number of boosting
iterations. The selected genes are the ones with non-zero
coefficients at that best number of boosting iterations,
and subject predictions (glmboost's linear predictors) are
obtained using the model with that best number of boost-
ing iterations. As above, we also write another wrapper
function ("my.glmboost.cv") that will be used for cross-
validating the predictive capacity of the approach and that
is parallelized using "papply".

All the above code is available in the "SignS2.R" file (from
the repositories, under SignS2/R) and is called from the
"f1.R" file. The "f1.R" file is the actual R script, whereas
SignS2.R is the underlying R package (by building a sim-
ple package, we not only make R namespace usage and
management cleaner, but also ease the task of loading the
code in multiple nodes when using parallelization).
Finally, for the web-based application to operate, the
Python code needs to be modified so that the user can
select the newly implemented method and pass the
appropriate parameters (only the number of genes to
select for random forest).

Crash recovery and fault tolerance
In distributed applications, partial failure (e.g., failure of
one or more of the computing nodes) is unavoidable [45-
47]. In our installation, we follow several complementary
strategies to provide fault tolerance and crash recovery.

Shared storage space that uses RAID 50 provides protec-
tion against hard-disk failure, as well as access to results
and data from nodes different from the one where com-
putations started. Redundancy and load-balancing of the
web-service is achieved with Linux Virtual Server with
heartbeat and mon [48]. This setup ensures redundancy if
one of the master nodes fails, and monitors the server
nodes so that no HTTP requests are sent to non-respond-
ing nodes.

In addition to problems in the web-service and hard-
disks, three sources of partial failure that can affect an
ongoing calculation are network problems (which upset
the LAM/MPI universe), MPI (or Rmpi) errors, and a crash
in one of the nodes that are running a slave MPI job. All
of these are recoverable errors and, therefore, there is no
need to stop the complete calculation (forcing the user to
relaunch the process) or halt indefinitely. Instead, SignS
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provides mechanisms to continue an ongoing calculation
in case of the above sources of failure. First, the web-based
application periodically examines MPI and Rmpi logs and
existing LAM/MPI daemons to determine if any of the
above problems have occurred. If a problem is found, a
new LAM/MPI universe is booted. Before booting the new
LAM/MPI universe, a script determines which nodes are
currently alive and can run MPI processes and, if neces-
sary, modifies the LAM/MPI configuration files accord-
ingly. Once the new LAM/MPI universe is successfully
created, a new R process is launched. The R code includes
checkpoints so that calculations are not started again from
the beginning but only continued from the point they
were stopped.

Note that errors in our R code, since they are not recover-
able, are functionally equivalent to completion of the cal-
culations. The application monitorizes R logs and
currently running R processes and, if any errors are
detected, the calculation is aborted immediately, a mes-
sage returned to the user, and the problem logged to allow
for prompt fixing.

To ensure that the application is working properly a test is
launched every hour from a machine external to the clus-
ter. The test is one from the functional testing suite (see
above) and verifies both the user interface and the paral-
lelization infrastructure. If there are any errors, an email is
immediately sent to the author and other system admin-
istrators.

Results
Functionality
SignS provides estimates of the performance of the final
model using 10-fold CV (cross-validation). To assess pre-
dictive performance we use a simple and common [1,2,6-
8,10,11,33,49-51] strategy: splitting the test samples into
several (2, 3, or 4) groups based on their predicted scores
(or predicted survival for random forests), and comparing
the survival functions of these groups. It must be empha-
sized that the predicted scores are obtained from a full (or
double: [15]) cross-validation, so the predicted scores for
a sample correspond to the CV-fold for which that sample
never participated in any of the steps leading to the final
model.

If a validation data set is provided, the performance of the
final model is also evaluated against this validation data
set. The validation data set is only used to assess predictive
performance, and is not used in any way to build the
model.

To assess the stability of the results obtained, we report the
number of signatures and the identity of the genes in each
signature for the run with the original sample and the 10

CV runs, as well as tables with number (and percentages)
of common genes in different runs. The list of these signa-
tures and genes can be sent to our application PaLS [52]
to examine PubMed references, Gene Ontology terms,
KEGG pathways or Reactome pathways that are common
to a user-selected percentage of genes and/or signatures.
In other words, the shared features of each signature or set
of selected genes can be examined with respect to Gene
Ontology terms, KEGG and Reactome pathways, and
PubMed references. Tables with output from each run
include clickable links to our application IDClight [53]
which provides additional information, including map-
ping between gene and protein identifiers, PubMed refer-
ences, Gene Ontology terms, and KEGG and Reactome
pathways.

SignS can run in platforms that range from a laptop to a
cluster of workstations. Our installation runs on a cluster
of 30 computing nodes, each with two dual-core AMD
Opteron CPUs and 6 GB of RAM. In our implementation,
additional nodes provide load-balancing, high-availabil-
ity, and shared storage. We also incorporate a careful
scheme for fault tolerance and crash recovery (see section
"Crash recovery and fault tolerance"). The input for the
web-based application are either plain text files, or files
that come from other tools of the Asterias suite [54]. Fur-
ther documentation and examples for the web-based
application are available from its on-line help [55]. SignS
has been running in production use for over a year and a
half; monthly users in the last seven months, from 1 May
to 30 November of 2007, are 490 (May), 490 (June), 270
(July), 390 (August), 680 (September), 780 (October),
and 800 (November). Bug-tracking is available from [56].
SignS also includes a test suite that uses FunkLoad [57];
the tests allow to verify that the user interface and numer-
ical output are working, thus ensuring appropriate quality
control and regression testing.

The web-based application is accessible from [58]. All
source code, including the web-based application, R code,
and functional tests, are available from Launchpad [59]
and [60] under open source licenses, GNU GPL for the R
package (required for compatibility with the R and Bio-
Conductor packages used) and the Affero Public license
for the rest of the code.

Benchmarking
The speedups achieved in the method by [2] with our
code changes (see "Implementation and parallelization")
and parallelization are shown in Figure 1a), using realistic
ranges of numbers of genes and samples (arrays). Before
any parallelization, rewriting the sequential code leads to
speed improvements of factors between 2 (= 1/0.5) and 5
(= 1/0.2). These speed improvements are larger as we
increase the number of arrays and, specially, the number
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of genes. Parallelization leads to further, and large,
increases in speed, which are almost linear with the
number of slave processes (concurrently running R proc-
esses). With 60 slave processes, there is a speed improve-
ment of a factor of about 50: in parallel computing
[24,61] other factors in addition to number of CPUs can
become limiting, in our case most likely bandwith and
latency of inter-node communication, and potential bot-
tlenecks from memory and cache in nodes made of dual-
core processors [22]. Moreover, the rewritten code (either
on a single CPU or parallelized) shows good scalability:
running time increases sublinearly with both number of
arrays and number of genes (e.g., doubling the number of

genes results in an increase in computing time which is
less than double).

For the other three methods (FCMS, random forests,
boosting) parallelization results in more modest gains
(see Figure 1b). First, there is no gain in speed when we
use more than 10 slave processes. This is what we would
expect, since we parallelize over cross-validation runs (see
"Implementation and parallelization" and "Adding other
algorithms" for rationale) and adding further nodes can
not result in increased speed since those are not used. In
all three cases, however, the increases in speed with only
2 CPUs are almost equivalent to doubling execution
speed. For FCMS, the scaling with number of genes is

Fold increase in speed (ratio of user wall times) of R code from code changes to sequential code (in a) and parallelization (a and b)Figure 1
Fold increase in speed (ratio of user wall times) of R code from code changes to sequential code (in a) and par-
allelization (a and b). a) Timings from functions "gdcvpl" (original code) and its equivalent "tauBestP" (SignS), which use 
cross-validation to find the best parameters. b, c, d) Timings using analysis that include cross-validation of the final model. 
Numbers on top of points: user wall times in seconds. Benchmarks obtained in an otherwise idle cluster with 30 nodes, each 
with two dual-core AMD Opteron 2.2 GHz CPUs and 6 GB RAM, running Debian GNU/Linux and a stock 2.6.8 kernel, ver-
sion 7.1.2 of LAM/MPI and version 2.1.4 (patched) of R. DLBCL data set from [4]; when number of arrays, n, ≤ 160 and number 
of genes, p, ≤ 7399, we use the first n arrays and the first p genes of the data set. For number of genes p > 7399 we expand the 
data set creating new genes from the previous (real) ones with Gaussian noise added.

a) TG D ( Gu i and Li ) b) F CM S (Dave et al.)
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superlinear (e.g., doubling the number of genes results in
increases in computing time which are more than dou-
ble), a result of the superlinear scaling of clustering and
model selection with number of genes; changes in com-
puting time with number of arrays, however, do not show
a consistent increase with number of arrays and, with
small number of arrays, computing time can be much
larger, because the model selection step takes much longer
(the number of models to consider is often much larger
with 20 arrays than with 80 or 100 arrays). For random
forest, increases in number of genes only result in notice-
able changes in computing time for large numbers of
genes (6000 and over), which is to be expected since the
random forest algorithm, itself, always uses at most 200
genes, so we will not notice the increase in computing
with number of genes through random forest, but rather

through the preliminary gene selection step (and possible
communication costs). Increases in computing time with
number of arrays, when using random forests, are modest
and sublinear. With boosting, increases in computing
time with number of genes are more noticeable, but only
become linear over 6000 genes; increases in computing
time with number of arrays are almost linear. Figure 2
shows the time a user will wait for the web-based applica-
tion to complete (user wall time) as a function of the
number of simultaneous users using the application in
that very moment. (When using a slow internet connec-
tion these numbers will increase and, e.g., uploading a
data set of 8.5 MB, such as DLBCL, to the application can
take over 5 minutes). As can be seen from the figure, SignS
can handle a large number of simultaneous users and
shows excellent scalability with number of users. This is

User wall time of the web-based applicationFigure 2
User wall time of the web-based application. User wall time as a function of number of simultaneous users for two dif-
ferent (and real) data sets, obtained from [4]. To increase the realism of simultaneous accesses, there is delay of 5 seconds 
between simultaneous accesses, as might be expected, for example, from a classroom demonstration (i.e., when simulating 10 
simultaneous users, the cluster is actually receiving new connections over a 10 * 5 second period, with one new connection 
every 5 seconds). Shown are box-plots of user wall times from several runs: 5 runs for 1 and 5 users, 10 runs for 10 users and 
15 runs for 15 users. Hardware and software the same as in Figure 1.

a) TG D ( Gu i and Li ) b) FC MS (D ave et al.)
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c) Random forests (Hothorn et al., 2006a) d) Boosting Cox models (Hothorn et al., 2006b)
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the result of both the parallelization of the computations
and the load balancing of the non-parallelized code. Note
that situations with 10 or more simultaneous users are
completely unrealistic, since the average number of daily
users of SignS is less than 30. The above benchmarks,
though, show that SignS can handle even those high num-
bers of users, which makes it suitable for classroom use.

Scripts for all benchmarks are available from the reposi-
tories.

Discussion
We have developed a web-based tool (and underlying R
package), SignS, for gene selection and signature building
from microarray data when we have censored and survival
data. SignS presents several unique features that make it
very relevant for both applied and methodological work.

First, there are no alternative web-based applications for
these types of analysis. Source code and packages are
available from some other approaches (e.g., [3,4,8,31]),
but most of them are out of the direct reach of biomedical
researchers, as they all require a minimal proficiency with
R and BioConductor. There is only one alternative appli-
cation with biomedical researchers as target users, BRB-
ArrayTools [30]. In contrast to BRB-ArrayTools, SignS is
available as a web-based application (BRB-ArrayTools is
only available as an Excel add-on) and, therefore, SignS
does not require any specific operating system or applica-
tion, just a web browser. In addition, the complete code
of SignS is available as open source (and we follow stand-
ard best practices in software development and the usual
open source development mode). Moreover, SignS imple-
ments four very different, complementary methods of
analysis. Finally, the availability of both the source code
and the scripts for each run immediately provide for
"reproducible research": the complete results can be
reconstructed as the user has the code that implements the
entire sequence of steps and the parameter settings used.
"Reproducible research" is a problem of great importance
with complex analysis sequences that is gaining attention
in the analysis of genomic data [62]. By themselves, these
features make SignS a unique and pioneering tool.

Second, SignS is one of the very few genomic analysis
tools to use parallel computing. Parallel computing is cru-
cial to allow further improvements in user wall time and
to analyze ever larger data sets: betting on single CPU per-
formance improvements is no longer reasonable, given
both the slow increase in CPU speed in the last five years,
and the increased availability of multi-core and multi-
CPU computers, from laptops and workstations to clus-
ters. Our results, using realistic scenarios regarding
number of genes and samples, show that: a) our web-
based implementation of SignS can handle a large

number of simultaneous users with good scalability (see
Figure 2); b) the performance improvements of paralleli-
zation can be harvested even in dual-core laptops and per-
sonal computers: relative speed increases of the R code
with 2 CPUs are around 2× for TGD, and 1.8× for the
other three methods (see Figure 1).

Moreover, by its usage of parallel computing, SignS sets a
standard in terms of implementing tools that take advan-
tage of recent advances in hardware and computer science.
SignS represents a rare case example of combining a user-
friendly web-based interface with parallel computing,
–including fault-tolerance and crash recovery– that, by
making the full source code available, allows other
researchers to build upon our work and, by the usage of
open source licenses, ensures that the code remains
owned by the research community. Extending upon our
work is further eased because we use no Python-specific
web-frameworks nor R extensions as a web-based applica-
tion; therefore, the logic of the application (including the
web-based application and the fault tolerance mecha-
nisms) could be programmed in any other language and
the computational engine could be different from R.

Third, SignS strives to ease the biological interpretation of
results using functional annotation of results via links to
additional data bases that allow mapping between gene
and protein identifiers, PubMed references, Gene Ontol-
ogy terms, and KEGG and Reactome pathways. Moreover,
SignS further enhances the critical assessment of results by
allowing the examination of possible multiple equivalent
solutions (using cross-validation and analysis of similari-
ties among results of the different runs).

Conclusion
SignS fills an important need as a user-friendly, web-based
application for gene selection and signature finding with
survival data. It is also a unique tool (by its combination
of methods implemented, usage of parallel computing,
code availability, and links to additional data bases), and
thus it will be of immediate interest to biomedical
researchers, biostatisticians and bioinformaticians. More-
over, SignS sets a high standard for future applications of
this kind.

Availability and requirements
Project name: SignS

Project home page: http://signs2.bioinfo.cnio.es

Operating system: Platform independent (web-based
application)

Programming language: R, Python
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Other requirements: A web browser.

License: None for usage. Web-based code: Affero GPL
(open source). R code: GPL (open source).

Any restrictions to use by non-academics: None.
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CGI, Common Gateway Interface; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; LAM,
Local Area Multicomputer; MPI, Message Passing Inter-
face.
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