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Abstract
In this review we give an overview of computational and statistical methods to reconstruct cellular
networks. Although this area of research is vast and fast developing, we show that most currently
used methods can be organized by a few key concepts. The first part of the review deals with
conditional independence models including Gaussian graphical models and Bayesian networks. The
second part discusses probabilistic and graph-based methods for data from experimental
interventions and perturbations.

Introduction
The success of genome sequencing projects has led to the
identification of almost all the genes responsible for the
biological complexity of several organisms. The next
important task is to assign a function to each of these
genes. Genes and gene products do not work in isolation;
rather, they are connected in highly structured networks of
information flow through the cell. The inference of such
cellular networks using computational and statistical
methods is the topic of this review.

The first two sections describe models based on correla-
tion and statistical dependence using the concept of condi-
tional independence. The objective of this kind of modeling
is to explain observed correlations between genes by the
presence of other genes. The set of models can be ordered
according to how deeply correlations are resolved: corre-
lation graphs are the most simple example, and Bayesian
networks the most sophisticated.

The last section discusses computational approaches
building on observed effects of external interventions into

the cell. In modern biology, perturbation experiments are
key to inferring gene function and regulatory pathways. A
common biological technique is to perturb a gene of
interest and to study which other genes' activities are
affected. Either, the effects of interventions can be
included into conditional independence models, or the
observed cause-effect relations can be used directly. We
also discuss the situation when instead of direct observa-
tions of intervention effects on pathway components,
only secondary effects on downstream genes are available.

Notation

Let V be a set of p network components. The biological
meaning of a "network component" depends on what
kind of data we analyze. We mostly speak of network
components as genes, since the primary data for inference
is microarray data and the network is a transcriptional
gene regulatory network. However, the methods are gen-
eral and can also be applied to protein data [1-3]. In prob-

abilistic models we treat each component v ∈ V as a
random variable Xv and the set of all components in the
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model as a random vector X = (X1,..., Xp). The dataset D

consists of N measurements, that is, realizations x1,..., xN

of the random vector X. Network components are identi-
fied with nodes in a graph. The goal is to find an edge set

 representing the dependency structure of the network

components. We call the graph T = (V, ) the topology
of the cellular network. Depending on the model, T can be
directed or undirected, cyclic or acyclic. In the important
special case, where T is a directed acyclic graph (DAG), we
call it G.

Conditional independence models
The first section describes statistical models to resolve the
correlation structure of genes. The methods can be distin-
guished by the way they remove influences of other genes
from the observed correlations. We first introduce coex-
pression networks, then discuss models building on state-
ments of full conditional independence or low-order
conditional independence.

Coexpression networks
Biological processes result from the concerted action of
interacting molecules. This general observation suggests a
simple idea, which has already motivated the first
approaches to clustering expression profiles [4,5] and is
still widely used in functional genomics. It is called the
guilt-by-association heuristic: if two genes show similar
expression profiles, they are supposed to follow the same
regulatory regime. To put it more pointedly: coexpression
hints at coregulation. Coexpression networks (also
known as relevance networks) are constructed by comput-
ing a similarity score for each pair of genes. If similarity is
above a certain threshold, the gene pair gets connected in
the graph, if not, it remains unconnected. Wolfe et al. [6]
argue that networks of coexpressed genes provide a widely
applicable framework for assigning gene function. They
show that coexpression agrees well with functional simi-
larity as it is encoded in the Gene Ontology [7]. Examin-
ing coexpression is an integral part of most methods
combining diverse data sources to uncover biological rela-
tionships between genes or proteins [8,9].

Building coexpression networks
The first critical point in building a coexpression network
is how to formalize the notion of similarity of expression
profiles. Several measures have been proposed, the most
simple of which is correlation. In a Gaussian model, zero
correlation corresponds to statistical independence. Cor-
relation networks are easy to interpret and can be accu-
rately estimated even if p Ŭ N, that is, the number of genes
is much larger than the number of samples. Stuart et al.
[10] have used this approach to build a graph from coex-
pression across multiple organisms (humans, flies, worms
and yeast), finding that many coexpression relationships

are conserved over evolution. Correlation networks can be
enhanced in several ways. Bickel [11] generalizes them to
time series data by introducing a time-lag for correlation.
Kostka and Spang [12] introduce the concept of differential
coexpression, which can be interpreted as the gain or loss of
a regulatory mechanism. They formulate a method to find
sets of genes, which are highly correlated under one con-
dition (e.g. in healthy cells), but show random behavior
under a second condition (e.g. in tumor cells).

Correlation is a linear measure of independence, non-lin-
ear dependencies between genes are not necessarily
found. This problem can be addressed by using networks
built from more flexible similarity measures like pair-wise
mutual information [13], or non-linear kernel-functions
[14]. Yamanishi et al. [1] use kernel functions for super-
vised network reconstruction by tuning kernel parameters
in known parts of a protein-interaction graph and then
using them to infer unknown parts. Kato et al. [2] weight
different data sources according to noise and information
content and combine them into a single kernel function.

The second critical step in building coexpression networks
is assessing the significance of results. Many pairs of genes
show similar behavior in expression profiles by chance
even though they are not biologically related. A practical,
though time-consuming strategy consists of permuting
the data matrix and comparing the network obtained
from real data with the distribution of similarity scores
achieved in the permutations, as Bickel [11] does to esti-
mate the false discovery rate of spurious connections. In
the supervised setting of Yamanishi et al. [1] cross-valida-
tion can be applied to choose optimal parameters.

Problems of coexpression based approaches
Even high similarity of expression tells us little about the
underlying biological mechanisms. Coexpression net-
works include regulatory relationships, but we cannot dis-
tinguish direct from indirect dependencies based on the
similarity of expression patterns. Fig. 1 exemplifies this
problem on a small set of three highly coexpressed genes,
which form a clique (a completely connected subgraph)
in a coexpression network. The figure shows that several
regulatory mechanism can explain this observation, and
from coexpression data alone we have no way of choosing
between them. There are two possible solutions. Func-
tional genomics has a long tradition of perturbing the nat-
ural state of a cell and inferring a gene's function from the
observed effects. These interventions allow us to distin-
guish between the three models in Fig. 1, because each
model results in different predictions of effects, which can
be compared to those obtained in experiments. For exam-
ple, perturbing gene Y in the cascade X → Y → Z will only
have an effect on gene Z but none on gene X. In the case
where Y regulates both X and Z, perturbing it will result in
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changes at both regulatees. In the last case, where all three
genes are regulated by a hidden regulator, perturbing one
of them will not lead to changes at the other two. Methods
formalizing these considerations are covered in the sec-
ond part of this review. In the absence of perturbation
data statistical methods may be used to find which of the
possibilities is most likely. The theoretical background is
the concept of conditional independence.

Conditional independence
Let X, Y, Z be random variables with joint distribution P.
We say that X is conditionally independent of Y given Z (and
write X ⊥ Y | Z) if and only if

P(X = x, Y = y | Z = z) = P(X = x | Z = z)·P(Y = y | Z = z).

This is the same as saying

P(X = x | Y = y, Z = z) = P(X = x | Z = z)

and is a direct generalization of the independence condi-
tion for X and Y,

P(X = x, Y = y) = P(X = x)·P(Y = y).

The same definitions hold if conditioning is not on a sin-
gle variable Z but on a set of variables Z. For an interpre-
tation, we can think of random variables as abstract pieces
of knowledge obtained from, say, reading books [15].
Then X ⊥ Y | Z means: "Knowing Z, reading Y is irrelevant
for reading X"; or in other words: "If I already know Z,
then Y offers me no new information to understand X."
Variable Z can explain the correlation between X and Y.

The statistical models we discuss in the following all build
on the concept of conditional independence. Instead of
retrieving sets of coexpressed genes – as coexpression net-
works do – they try to recover the regulatory relationships
between genes. To decide on an edge between X and Y in
the graph, statistical models ask questions of the form "Is
X independent of Y given Z?", but differ with respect to
what Z stands for: either all other variables except for X
and Y, or single third variables, or any subset of all the
other variables. Coexpression networks can be seen as the
special case Z = ∅, which encodes marginal dependencies.

Full conditional models
Full conditional models (also called Markov networks,
undirected graphical models, or Markov random fields)
ask: "Can the correlation observed between two genes be
explained by all other genes in the model?" Nodes i and j
are connected by an edge if and only if

Xi Xj | Xrest,

where "rest" denotes the set of all variables in V without i
and j. Full conditional models become especially simple

in a Gaussian setting. Assume that X ~N (μ, Σ), where μ, is

the mean vector and the covariance matrix Σ is invertible.

Let K = Σ-1 be the concentration matrix of the distribution

(also called the precision matrix). The value -kij/  is

called the partial correlation coefficient between genes i and

j [15]. Then it holds for i, j ∈ V with i ≠ j that

Xi ⊥ Xj | Xrest ⇔ kij = 0.

This relation is used to define Gaussian graphical models
(GGMs) [15,16]. A GGM is an undirected graph on vertex
set V. Each vertex i ∈ V corresponds with a random varia-
ble Xi ∈ X. The edge set of a GGM is defined by non-zero
partial correlations. Vertices i and j are adjacent if and only
if kij ≠ 0. An example is shown in Fig. 2.

To estimate a GGM from data we need to know which ele-
ments of the precision matrix K are zero. This can be either
done jointly for all edges, or by using non-exhaustive
search algorithms like forward and backward search [15-
17]. Alternatively, hypothesis testing-based model selec-
tion can be pursued by testing each edge separately for
inclusion [18].

Comparison to correlation networks
Correlation graphs visualize the structure encoded in the
correlation matrix Σ, which tells us about the similarity of
expression profiles. In GGMs, we model using the preci-
sion matrix K = Σ-1, which shows correlation after correct-
ing for the influence of all other genes. GGMs not only
filter out all high correlations, which can be attributed to
other genes, but may also draw attention to genes which
are only very weakly correlated with a gene of interest, but
highly related in terms of partial correlations in the con-
text of the other neighboring genes in the GGM. These
genes can be overlooked in correlation networks [19,20].
GGMs have a second clear advantage over correlation net-
works. Whether directly or indirectly, almost all genes will
be correlated. Thus, the correlation coefficient is a weak cri-
terion for dependence, but zero correlation is a strong
indicator for independence. On the other hand, partial cor-
relation coefficients usually vanish. They provide a strong
measure of dependence and, correspondingly, only a
weak criterion of independence [21].

Problems with GGMs
Full conditional relationships can only be accurately esti-
mated if the number of samples N is relatively large com-
pared to the number of variables p. If the number of genes
to be analyzed exceeds the number of distinct expression
measurements (that is, if p Ŭ N), the correlation matrix of

/⊥

k kii jj
Page 3 of 17
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 6):S5 http://www.biomedcentral.com/1471-2105/8/S6/S5
expression profiles between genes does not have full rank
and cannot be inverted [21]. The p Ŭ N-situation is true
for almost all genomic applications of graphical models.
Therefore, one must either improve the estimators of par-
tial correlations or resort to a simpler model. The basic
idea in all of these approaches is that biological data are

high-dimensional but sparse in the sense that only a small
number of genes will regulate one specific gene of interest.

Several papers suggest ways to estimate GGMs in a p Ŭ N-
situation. Kishino and Waddell [22] propose gene selec-
tion by setting very low partial correlation coefficents to
zero. As they state, the estimate still remains unstable. In
one study, Schäfer and Strimmer [21] use bootstrap resa-
mpling together with the Moore-Penrose pseudoinverse
and false discovery rate multiple testing, while in another
[23], they discuss a linear shrinkage approach to regulari-
zation. Li and Gui [24] prospose a threshold gradient
descent regularization procedure for estimating a sparse
precision matrix.

Heuristic regression-based estimation
Full conditional independence models are closely related
to a class of graphical models called dependency networks
[25]. Dependency networks are built using sparse regres-
sion models to regress each gene Xi onto the remaining
genes XV \ i. The genes, which predict the state of gene Xi
well, are connected to it by (directed) edges in the graph.
In general, dependency networks may be inconsistent, i.e.
the local regression models may not consistently specify a
joint distribution over all genes. Thus, the resulting model
is only an approximation of the true full conditional
model. Still, dependency networks are widely used
because of their flexibility and the computational advan-
tage compared to structure learning in full conditional
independence models. When learning dependency net-
works, a variety of sparse classification/regression tech-
niques may be used to estimate the local distributions,
including linear models with an L1-penalty on model
parameters [20,26], classification trees [25,27], or sparse
Bayesian regression [19,28]. We will see later that these

Different mechanisms can explain coexpressionFigure 1
Different mechanisms can explain coexpression. The left plot in the dashed box shows three coexpressed genes form-
ing a clique in the coexpression graph. The other three plots show possible regulatory relationships that can explain coexpres-
sion: The genes could be regulated in a cascade (left), or one regulates both others (middle), or there is a common "hidden" 
regulator (right), which is not part of the model.
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A small Gaussian graphical modelFigure 2
A small Gaussian graphical model. Example of a full con-
ditional model. Missing edges between nodes indicate inde-
pendencies of two genes given all the other genes in the 
model. We can read from the graph that X ⊥ W | {Y, Z} and 
Y ⊥ W | {X, Z} and X ⊥ Z | {Y, W}.
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approaches are very similar to the local regression models
used in Bayesian networks. The difference is that in Baye-
sian networks an additional order of the variables is
enforced.

Low-order conditional independence
Full conditional models are hard to estimate if the
number of samples is small compared to the number of
genes. While the last section described different statistical
techniques for p Ŭ N-situations, this section introduces
the complementary approach. Instead of enhancing the
estimation procedure, one can ask a simpler question:
"Can the correlation between two genes be explained by a
single third gene?" In contrast to GGMs, low-order condi-
tional independence models condition not on the rest of
the genes, but only on single third genes. An edge between
vertices i and j(i ≠ j) is drawn if the correlation coefficient
ρij ≠ 0 and no third gene can explain the correlation:

Xi Xj | Xk for all k ∈ V\{i, j}.

This general idea can be implemented in different ways: In
a Gaussian setting, first order conditional independence
models were proposed by several authors [29-32]. Testing
for first order conditional independence involves only tri-
ples of genes at a time; thus, the problem for GGMs in
high dimensions no longer exists. Wille et al. [30] use
sparse Gaussian graphical modelling to identify modules
of closely related genes and candidate genes for cross-talk
between pathways in the Isoprenoid gene network in Ara-
bidopsis thaliana.

In another approach, Margolin et al. [33] use conditional
mutual information to test for first-order independence.
The resulting method is called ARACNe and has been
applied to expression profiles of human B cells [34]. The
advantage of this approach is that the Gaussian assump-
tion is dropped. However, this increased flexibility comes
at a prize: ARACNe involves a number of computational
approximations and Monte Carlo simulations, which
could make the method unstable.

Bayesian networks
In the last sections we have seen methods to build graphs
from marginal dependencies (Xi Xj), full conditional

dependencies (Xi Xj | Xrest), or first order dependencies

(Xi Xj | Xk for all k ∈ rest). The logical next step is to ask

for independencies of all orders. In the resulting graph, two
vertices i and j are connected if no subset of the other vari-
ables can explain the correlation, that is, if

Xi Xj | XS for all S ⊆ V\{i, j}.

This includes testing marginal, first order and full condi-
tional independencies. Thus, the number of edges will be
smaller compared to the models in the previous sections.
The graph encoding the above independence statements
for all pairs of nodes is still undirected. It can be shown
that knowing independences of all orders gives an even
higher resolved representation of the correlation struc-
ture. The collection of independence statements already
implies directions of some of the edges in the graph [35-
37]. The resulting directed probabilistic model is called a
Bayesian network.

Definition of a Bayesian network
A (static) Bayesian network is a graphical representation
of the dependency structure between the components of a
random vector X. The individual random variables are
associated with the vertices of a directed acyclic graph
(DAG) G, which describes the dependency structure. Each
node is described by a local probability distribution
(LPD) and the joint distribution p(x) over all nodes fac-
tors as

where θv denotes the parametrization of the local distribu-
tion and xpa(v) is the vector of parent states denoting the
activity levels of a gene's regulators. The DAG structure
implies an ordering of the variables. The parents of each
node are those variables that render it independent of all
other predecessors. The factorization of the joint distribu-
tion is the key property of Bayesian networks. It allows to
segment the set of variables into families, which can be
treated individually. This basic definition of Bayesian net-
works poses a number of further questions, which are
addressed in the following: (1.) How do the local proba-
bility distributions p(xv | xpa(v), θv) look like? (2.) How is
conditional independence defined for DAGs? (3.) How
can we learn a Bayesian network structure from data? (4.)
Are there natural limits to structure learning?

Local probability distributions (LPDs)
Bayesian network models differ with respect to assump-
tions about the local probability distributions p(xv | xpa(v),
θv) attached to each node v ∈ V. There are two types of par-
ametric LPDs used in practice: multinomial distributions
for discrete nodes and Gaussian distributions (normal
distributions) for continuous nodes. A discrete node with
discrete parents follows a multinomial distribution para-
metrized by a set of probability vectors, one for each par-
ent configuration. A continuous node with continuous
parents follows a Gaussian distribution, where the mean
is a linear combination of parent states. Conditional
Gaussian (CG) networks are a combination of discrete
and Gaussian networks. Continuous nodes follow a Gaus-
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sian distribution and are allowed discrete and continuous
parents, while discrete nodes follow a multinomial distri-
bution and are restricted to discrete parents. CG networks
constitute the general class of graphical models studied in
statistics [15].

Another kind of parametric LPDs are regression trees, as
used by Segal et al. [38,39]. Each regression tree is a rooted
binary tree with parents in the DAG as internal nodes and
leaf nodes associated with univariate Gaussian distribu-
tions. The regression trees capture the local structure in
the data, whereas the DAG describes the global structure
[40,41].

Instead of the parametric approaches discussed so far, the
relationship between parents and children in the DAG can
also be modeled by non-parametric regression models
[42-45]. The result is a non-linear continuous model. This
is an advantage over multinomial or Gaussian Bayesian
networks, which are either discrete or linear.

Bulashevska and Eils [46] constrain LPDs to noisy logic
functions modelling activatory or inhibitory parent-child
relations. This has the advantage of simplifying and regu-
larizing the model, while at the same time making it easier
to interpret.

Nachman et al. [47] use non-linear Michaelis-Mentens
dynamics to model how the transcription rate of a gene
depends on its regulators. This approach combines Baye-
sian networks with a biochemically realistic quantitative
model of gene regulation.

Conditional independence in directed graphs

In Fig. 2 we saw how to read off independence statements
from a full conditional independence graph. How does
this work in the case of Bayesian networks? The answer is
given by the definition of d-separation [36] ("d" for
directed), also called the directed Global Markov condition
[15]. The three archetypical situations of d-separation
(chain, fork, and collider) can be seen in Fig. 3. In a chain

X → Y → Z, the middle node Y blocks the information

flow between X and Z and thus it holds that X ⊥ Z | Y. In
a fork, where X and Z are both regulated by Y, knowing the
state of the regulator renders the regulatees conditionally

independent and thus again X ⊥ Z | Y. The last case is more
surprising: If X and Z are independent regulators with a
common target Y, then the state of Y gives us information
about X and Z. For example, imagine that Y is only
expressed if only one of its regulators is active, then seeing
Y expressed and X active implies Z being inactive. Thus, in

the collider X → Y ← Z the middle node Y "unblocks" the
path between X and Z and thus X Z | Y.

Markov equivalence
Many Bayesian networks may represent the same state-
ments of conditional independence. They are statistically
undistinguishable and we call them Markov equivalent. All
equivalent networks share the same underlying undi-
rected graph (called the skeleton) but may differ in the
direction of edges that are not part of a collider (also
called a v-structure) [48]. Markov equivalence poses a the-
oretical limit on structure learning from data: even with
infinitely many samples, we cannot resolve the structures
in an equivalence class. In biological terms this means:
even if we find two genes to be related it may not be clear
which one is the regulator and which one is the regulatee.
Without perturbation experiments this situation can not
be further resolved.

Acyclicity in a cyclic world
Bayesian networks allow the highest resolution of correla-
tion structure. Still, they suffer from a severe shortcoming:
they are acyclic. With cycles, we cannot decompose the
joint distribution as in the definition of Bayesian net-
works. Biological networks are all known to contain feed-
back loops and cycles [49]. Modeling the cell cycle with an
acyclic model [50] can only be a preliminary step. One
extension of Bayesian networks that encompasses cyclic
structures is the factor graph network model of Gat-Viks
et. al. [51]. A second way to address the cycle problem is
by assuming that the system evolves over time. This is
shown in Fig. 4. We no longer model a static random vec-
tor X but a time series X [1],..., X [T] of observing X at T
timepoints. If we assume that Xv at time t + 1 can only have
parents at time t, then cycles "unroll" and the resulting
model is again acyclic and tractable: it is called a Dynamic
Bayesian network (DBN) [52,53]. DBNs have found many
applications in network reconstruction [54-56]. They are
often augmented with hidden nodes [57], which can
describe transcription factor activity [47] or any other
kind of environmental or non-transcriptional effects in
the cell [58-61]. In summary, DBNs provide one of the
most flexible frameworks for modeling cellular networks.

Score based structure learning
In correlation networks, GGMs and sparse GGMs we use
statistical tests for each gene pair to decide whether the
data support an edge or not. The number of tests to be
done in these models is limited, even though it can be big
in the case of sparse GGMs. For Bayesian networks we
need to test independence of a gene pair for every subset
of the other genes. This is called constraint-based learning
of Bayesian networks [36,37]. For problems with more
than a handful of variables testing becomes infeasible very
quickly. In applications in computational biology the net-
work structure is therefore mostly estimated by score
based techniques. In the following we review maximum
likelihood scores and Bayesian scores to evaluate model
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fit to data. Once the score is defined, model selection is
posed as an optimization problem over the discrete space
of possible model structures. Additional topics are how to
fight overfitting and how to encode prior information.

Maximum likelihood
A straight-forward idea for model selection is to choose
the DAG G, which allows the best fit to data D. The best fit
for a given DAG G is determined by maximizing the like-
lihood p(D|G, θ) as a function of θ, the parameters of the
local probability distributions. A score for DAG G is then
given by

Unfortunately, the likelihood is not an appropriate score
to decide between models since it tends to overfitting.
Richer models with more edges will have a better likeli-
hood than simpler ones, since the additional number of
parameters allows a better fit to the data. A standard solu-
tion to this problem is to penalize the maximum likeli-
hood score according to model complexity. An often used
example of this general strategy is scoring with the Baye-
sian information criterion.

Bayesian information criterion (BIC)
Contrary to what the name suggests, the BIC score [62] is
not a Bayesian score. It is a regularized maximum likeli-
hood estimate, which controls overfitting by penalizing
the maximal likelihood of the model with respect to the
number of model parameters. It is defined as

where d is the number of parameters and the factor log N
scales the penalty with respect to the likelihood. The BIC
score can also be used to learn Bayesian networks with

missing values or hidden variables. The likelihood has
then to be maximized via the Expectation-Maximization
(EM) algorithm. In such a scenario, the BIC score is used
by Nachman et al. [47] to learn kinetic models of tran-
scription factors and their targets. They treat protein activ-
ities and kinetic constants as hidden variables.

Bayesian scores
In most cases a full Bayesian approach is preferred over
ML or BIC. In Bayesian structure learning we evaluate the
posterior probability of model topology G given data D:

The denominator p(D) is an average of data likelihoods
over all possible models. This normalizing constant is the
same for all models, and thus we do not need compute it
to decide between competing models. The two main
terms to consider in the Bayesian score are the prior over
model structures, p(G), and the marginal likelihood
p(D|G).

Marginal likelihood of network structure
The marginal likelihood p(D|G) is the key component of
Bayesian scoring metrics. It equals the full model likeli-
hood averaged over parameters of local probability distri-
butions, that is,

Marginalization is the reason why the LPD parameters θ
do not enter the definition of the posterior above. They
are treated as nuisance parameters and have been integrated
out. It is important to note that the LPD parameters were
not maximized as it would be done in a maximum likeli-
hood estimate or in a BIC score. Averaging instead of max-
imizing prevents the Bayesian score from overfitting.

Computation of marginal likelihood depends on the
choice of local probability distributions and local priors
in the Bayesian network model. To compute the marginal
likelihood analytically, the prior p(θ|G) must fit to the
likelihood p(D|G, θ). Statistically, this fit is called "conju-
gacy". A prior distribution is called conjugate to a likeli-
hood, if the posterior is of the same distributional form as
the prior [63]. If no conjugate prior is available, the mar-
ginal likelihood has to be approximated.

The marginal likelihood for discrete Bayesian networks
was first computed by Cooper and Herskovits [64] and is
further discussed by Heckerman et al. [65]. The conjugate
prior for the multinomial distribution is the Dirichlet
prior [63]. Assuming independence of the prior for each
node and each parent configuration, the score decom-

scoreML G p G( ) max ( | , ).=
θ

θD

scoreBIC G p G
d

N( ) max ( | , ) log ,= −
θ

θD
2

scoreBayes p G
p G p G

p
= = ⋅
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poses into independent contributions for each family of
nodes. Corresponding results exist for Gaussion networks
using a Normal-Wishart prior [66]. The marginal likeli-
hood again decomposes into node-wise contributions.
Conditional Gaussian networks are a mix of discrete and
Gaussian nodes [67]. The marginal likelihood decom-
poses into a Gaussian part and a discrete part.

For tree LPDs, the marginal likelihood at each node of the
DAG further splits into independent components for each
leaf of the local regression tree. Conjugate analysis and
analytic results are possible using normal-gamma priors
for each leaf node [40,41].

For non-parametrix LPDs, Boolean logic LPDs, and
kinetic modelling LPDs, conjugate analysis and analytic
computation of the marginal likelihood are not possible.
Imoto et al. [42] use a Laplace approximation to approach
the true marginal likelihood. Bulashevska and Eils [46]
use Gibbs sampling to estimate the model posterior
p(G|D) and the parameter posterior p(θ|D). Nachman et
al. [47] use the BIC score for model selection.

Structure prior

Structure priors p(G) help to focus inference on reasona-
ble models by including biological prior knowledge or
integrating different data sources. Very often the biologi-
cal prior knowledge can be encoded in a prior network,
which is then to be refined by statistical structure learning.
The first idea is to restrict the search space to a – conven-
iently defined – vicinity  ( ) of the prior network .

All the DAGs in the restricted search space are considered
equally likely. This can be interpreted as a rigid structure
prior of the form

A smoother way to guarantee that DAGs similar to the
prior network  get higher prior probability is the fol-
lowing. We measure the confidence of edge (v, w) by a

value 0 <κvw ≤ 1. A structure prior can then be defined pro-

portional to a product of weights κvw over all edges (v, w):

The normalization constant, which would be necessary to
make the right-hand side a density, is the same for all
models and can be ignored when computing relative pos-

terior probabilities. What are smart choices of κvw? There

are several approaches suggested in the literature. Hecker-

man et al. [65] assume constant penalty κvw ≡ κ for all

edges in which G and  differ. Thus, p(D) ∝ κε where ε is
the number of edges in which G differs from the prior
DAG . Another approach by Imoto et al. [43] and Tam-
ada et. al. [45] uses a network prior in an iterative scheme.
They construct a Bayesian network from microarray data,
propose putative transcription factors from the network
structure, and search for common motifs in the DNA
sequences of children and grand-children of transcription
factors. They then re-learn the network by penalizing
edges without motif evidence harder than edges with
motif evidence. Bernard et al. [55] define weights from p-
values of binding location data. They assume that p-values
follow an exponential distribution if the edge is present
and a uniform distribution if it is not. By Bayes' rule they
derive probabilities for an edge to be present given the p-
values from the location data. The free parameter of the
exponential distribution is then integrated out and the
final probabilities vw are used as weights in a structure

prior. Fig. 5 shows a comparison of these three prior defi-

nitions. They can be organized by the weights κvw they give

for the presence or absence of an edge given prior infor-
mation.

Discretization
In most applications the Bayesian score for discrete data is
used. When learning gene regulatory networks from
microarray data, it is necessary to preprocess the continu-  
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ous gene expression values and discretize them. In gen-
eral, discretization may be carried out for computational
efficiency, or because background knowledge suggests
that the underlying variables are indeed discrete. Discre-
tizing continuous variables results in a loss of informa-
tion, although it can also reduce noise, since discretized
data can be more stable with respect to random variations
of the mRNA measurements. Several methods to discre-
tize microarray data have been proposed in the literature:
Friedman et al. [50] discretize expression values into three
categories, depending on whether the expression rate is
significantly lower than, similar to, or greater than con-
trol, respectively. Pe'er et al. [68] introduce an adaptive
discretization procedure. They model the expression level
of a gene in different experiments as samples from a mix-
ture of normal distributions, where each normal compo-
nent corresponds to a specific state. They then use
standard k-means clustering for inference. Hartemink et
al. [69] use a discretization coalescence method, which
incrementally reduces the number of discretization levels
for each gene while preserving as much total mutual infor-
mation between genes as possible. In the previous three
approaches, expression levels were discretized before and
independently of structure learning. Suboptimal discreti-
zation algorithms can lead to degraded network structure.
To avoid this, Steck and Jaakkola [70] derive a scoring
function to efficiently jointly optimize the discretization
policy and the structure of the graphical model.

Regularization
Regularization is a technique used in machine learning to
ensure uniqueness of solution and to fight overfitting by
constraining admissible models [14,71]. Regularization is
always needed in p Ŭ N-situations. We already saw exam-
ples of regularization when Gaussian graphical models
were adapted to the p Ŭ N-situation. Different methods
were proposed for Bayesian networks. Steck and Jaakkola
[72] show that scaling down the parameters of the Dirich-
let prior used for the computation of the marginal likeli-
hood leads to a strong regularization of the model
structure and a sparse graph. Another way to regularize
Bayesian networks is to constrain the local probability dis-
tributions. Bulashevska and Eils [46] suggest learning
noisy logic gates instead of unconstrained multinomial
LPDs. The drawback is that Bayesian conjugate analysis,
which leads to the analytic solution of the marginal likeli-
hood, is no longer possible and Gibbs sampling has to be
applied. Module networks [38,39] constrain the number
of parameters in the model by assuming that groups of
genes (so called modules) share the same dependence on
regulators. Learning module networks involves an itera-
tion of assigning genes to modules and searching for
dependencies between modules.

Model selection and assessment
To search for the DAG with highest score is mathemati-
cally trivial: compute the score for every possible DAG and
choose the one that achieves the highest value. What
makes exhaustive search computationally infeasible in
almost all applications is the huge number of DAGs. The
number of DAGs on n edges is

with a0 = 1 [73]. The number of DAGs increases explo-
sively, as the first few steps in the recursion show: 1, 1, 3,
25, 543, 29 281, 3 781 503, 1 138 779 265. That means,
we must use heuristic strategies to find high-scoring Baye-
sian networks without enumerating all possible DAGs.

Defining search space
First we need to decide how to describe models of interest.
This defines the model space, in which we search for mod-
els describing the data well. To apply search heuristics we
have to equip the search space with a neighborhood rela-
tion, that is, operators to move from one point of the
search space to the next one. The most simple search space
results from defining a neighborhood relation on DAGs.
Two DAGs are neighbors if they differ by one edge, which
is either missing in one of them or directed the other way
round. Madigan et al. [74] and Chickering [75] restrict the
search space to Markov equivalence classes of DAGs
which uniquely describe a joint distribution. Thus, no
time is lost in evaluating DAG models which are equiva-
lent anyway. Friedman and Koller [76] search over orders
of nodes rather than over network structures. They argue
that the space of orders is smaller and more regular than
the space of structures and has a much smoother posterior
landscape.

Search heuristics
Most of the following search algorithms can be applied to
all search spaces, even though they are usually applied to
DAGs. They return a single best network. A simple and fast
but still powerful method is hill-climbing by greedy search.
First, choose a point in search space to start from, e.g. a
random graph or the empty graph. Compute the posterior
probability for all graphs in the neighborhood of the cur-
rent graph and select the graph with highest score. Iterate
until no graph in the neighborhood has a larger score than
the current graph. This procedure finds local maxima of
the Bayesian scoring metric. The K2-algorithm [64] is a
variant of greedy search, which assumes that the order of
nodes is known. Several approaches have been suggested
to speed up model search. The sparse candidate algorithm
[77] restricts the number of possible parents for each node
by searching for pairs of nodes which are highly depend-
ent. The ideal parent algorithm [47,78] constructs a parent
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profile perfectly explaining the child behaviour and uses it
to guide parent selection and to restrict the search space.
Peña et al. [79] grow Bayesian networks starting from a
target gene of interest. They iteratively add to the Bayesian
network parents and children of all the genes already
included in it. The algorithm stops after a predefined
number of steps and thus, intuitively, highlights the sur-
rounding area of the seed gene without having to compute
the complete Bayesian network over all genes. Friedman
[80,81] introduces the structural EM algorithm to learn
Bayesian networks in the presence of missing values or
hidden variables. It is an extension of the Expectation-
Maximization (EM) algorithm that performs structure
search inside the EM procedure and shows improvements
in terms of speed and accuracy.

Assessing uncertainty
The problem with optimal models is, as Edwards [16]
puts it: "Any method (or statistician) that takes a complex
multivariate dataset and, from it, claims to identify one
true model, is both naive and misleading". The emphasis
is on "one true model". A better strategy than choosing a
single best model is exploring the whole posterior distri-
bution. Unfortunately, direct sampling from the posterior
is intractable. The most we know about the data distribu-
tion is the empirical distribution of observations in the
dataset. A classical approach to assess variability in the
data is bootstrapping [82]. The strategy is to sample with
replacement from the observations in the data set to get a
number of bootstrap datasets, and then learn a network
on every bootstrap dataset. The relative frequency of net-
work features in the resulting network structures can be
used as a measure of reliability [50,68]. Bootstrap samples
can contain multiple copies of identical data points. This
implies strong statistical dependencies between variables
when given a small dataset. As a consequence, the result-
ing network structure can be considerably biased towards
denser graphs. Steck and Jaakkola [83] propose a correc-

tion for this bias. As another simple way to avoid the
bootstrap-bias Steck and Jaakkola [70] use the leave-k-out
method. Instead of resampling with replacement, k cases
are left out of the dataset when estimating a model.
Repeating this many times also gives an estimate of model
variability.

Markov Chain Monte Carlo (MCMC) is a simulation tech-
nique which can be also used to sample from the posterior
p(G|D). Given a network structure, a new neighboring
structure is proposed. This new structure is accepted with
the Metropolis Hastings acceptance criterion [84]. The
iteration of this procedure produces a Markov chain that
under fairly general conditions converges in distribution
to the true posterior. MCMC is used by Husmeier [85] to
learn dynamic Bayesian networks. Madigan et al. [74] use
MCMC over Markov equivalence classes and Friedman
and Koller [76] over orders of nodes.

Benchmarking
Graphical models visualize a multivariate dependency
structure. They can only answer biological questions if
they succeed in reliably and accurately reconstructing bio-
logically relevant features of cellular networks. Unfortu-
nately, rigorous assessment and benchmarking of
methods are still rare. One of the first evaluation studies is
by Smith et al. [86]. They sample data from a songbird's
brain model and report excellent recovery success when
learning a Bayesian network from it. Zak et al. [87]
develop a realistic 10 gene network, where the biological
processes at the different levels of transcription, transla-
tion and post-translational modifications were modeled
with systems of differential equations. They show that lin-
ear and log-linear methods fail to recover the network
structure. Husmeier [85] uses the same simulation net-
work [87] to specify sensitivity and specificity of dynamic
Bayesian networks. He demonstrates how the network
inference performance varies with the training set size, the

An overview of structure priorsFigure 5
An overview of structure priors. Comparison of edge weights suggested by Heckerman et al. [65], Imoto et al. [43] and 
Bernard et al. [55]. Rows correspond to prior information. In the left two examples the prior can be described as binary, while 
on the right it is expressed as a p-value derived from a second data set. The entries in the table are the weights κvw for each 

edge depending on whether G agrees with  or not. The middle table holds ξ1 <ξ2, i.e. edges with motif evidence contribute 
more than edges without. The structure prior is then a product over the weights for all edges.

G
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degree of inadequacy of prior assumptions, and the exper-
imental sampling strategy. By analyzing ROC curves Hus-
meier can show fair performance of DBNs. Wimberly et al.
[88] test 10 algorithms, including Boolean and Bayesian
networks, on a simulation [89] of the genetic network of
the sea urchin embryo [90]. They report that reconstruc-
tion is unreliable with all methods and that the perform-
ance of the better algorithms quickly degrades as
simulations become more realistic. Basso et al. [34] show
that their own method, ARACNe, compares favorably
against static Bayesian networks on a simulated network
with 19 nodes [54] – but only if the dataset includes sev-
eral hundreds of observations. On the other hand, Har-
temink [91] finds dynamic Bayesian networks to be even
more accurate than ARACNe on datasets of the same size.
In a recent comparative evaluation, Werhli et al. [92] find
no significant differences between coexpression networks,
Gaussian graphical models and Bayesian networks, if they
are used on nonlinear simulated data and real data. They
conclude that the higher computational cost of inferring
Bayesian networks over GGMs and coexpression networks
is often not justified.

All in all the results show severe limitations of graphical
models for microarray data: They need a large sample size
and capture only parts of biologically relevant networks.
One reason for this shortcoming is that the models we dis-
cussed so far all use purely observational data, where the
cellular network was not perturbed experimentally. In
simulations [92-94] and on real data [3,92] it was shown
that data from perturbation experiments greatly improve
performance in network reconstruction. In Bayesian net-
works this improvement is especially pronounced [92].
Accordingly, the following section introduces methodol-
ogy for learning from effects of interventions in a proba-
bilistic framework.

Learning from experimental interventions
Physicist Richard Feynman once said: "What I cannot cre-
ate, I do not understand". This quote stresses the impor-
tance of action for understanding. A complex system is
not understood solely by passive contemplation, it needs
active manipulation by the researcher. In biology this fact
is long known. Functional genomics has a long tradition
of inferring the inner working of a cell by breaking it.
"What I cannot break, I do not understand" is the credo of
functional genomics research.

Linking causes with effects
Rung et al. [95] build a directed disruption graph by draw-
ing an edge (i,j) if perturbing gene i results in a significant
expression change at gene j. The authors focus on features
of the disruption network that are robust over a range of
significance cutoffs. Disruption networks do not distin-
guish between direct and indirect effects (and are in this

sence similar to co-expression networks). Fig. 6 shows the
difference between a causal network and a disruption net-
work.

Distinguishing direct from indirect effects
Disruption networks can be used as a starting point for
further analysis. Wagner [96-98] uses graph-theoretic
methods of transitive reduction [99,100] to find parsimoni-
ous subgraphs explaining all the effects in the disruption
network. These methods are deterministic and do not take
measurement noise into account. Wang and Cooper [101]
describe a Bayesian generalization of the Wagner algo-
rithm [98] yielding a distribution over possible causal
relationships between genes.

Boolean networks
A simple deterministic model of regulatory networks are
Boolean networks: they are defined by a directed (and
possibly cyclic) graph. For each node exists a boolean
function relating parent states to the child state. Perturba-
tions allow us to infer the structure and the logic of
Boolean networks [102-104].

Unfortunately, deterministic models can not compensate
for the noise inherent in biological systems. This is the
reason why also for perturbation data probabilistic mod-
els are preferred.

Correlation
Rice et al. [105] build correlation graphs using knockout
data. They assume that the data contain measurements of
the unperturbed cell and several replicates of measure-
ments for every gene knockout. For each gene i, they con-
catenate the wild-type data with the intervention data of
this gene and compute on the joint data the correlation of
gene i to all other genes. In the final graph, there is an
arrow (i, j) if gene j was highly correlated to gene i. Since
the correlation was computed on knockout data, the
graph encodes causation and not only correlation. The big
disadvantage of this method is the need for many (> 10)
replicates of knockout experiments for every gene in the
model, which is unrealistic for most real-world applica-
tions. Several regression methods make more efficient use
of data.

Regression
Rogers and Girolami [28] use sparse Bayesian regression
based on a Gaussian linear model to estimate a depend-
ency network from knock-out data. They regress each gene
onto all other genes by combining all the data corre-
sponding to knockouts of genes other than the particular
gene of interest. The measurements of the knockout gene
are ignored when predicting this gene's expression from
the other genes. We will see below that this strategy is the
same as Pearl's ideal interventions used in Bayesian net-
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works [36]. A prior on model parameters constrains most
regression coefficients to zero and enforces a sparse solu-
tion. Non-zero regression coefficients are indicated by
arrows in the regulation network. Other regression meth-
ods for network reconstruction are derived from a branch
of engineering called system identification [106]. Func-
tional relations between network components are inferred
from measurements of system dynamics. Several papers
[107-110] use multiple regression to model the response
of genes and proteins to external perturbations.

Ideal interventions
Pearl [36] proposes an idealized model of interventions in
Bayesian networks. He assumes that an external manipu-
lation completely controls the target node v. The influence
of parent nodes pa(v) is cut and the LPD of Xv degenerates
to a point mass at the target state x'v, that is,

Ideal interventions are easily introduced into the compu-
tation of marginal likelihood. The key observation is that
fixing a variable to a state tells us nothing about its "natu-
ral" behaviour. Cooper and Yoo [111] show that only
cases in which a node was not fixed by an external manip-
ulation enter into this node's contribution to the marginal
likelihood. Ideal interventions were applied in Bayesian
networks [3,68,94], factor graphs [51] and dependency
networks [28]. In simulations [92-94] and on real data
[3,92] it was found that interventions are critical for effec-
tive inference, particularly to establish directionality of
the connections.

Soft interventions
Pearl's model of ideal interventions contains a number of
idealizations. The most important of these are that manip-
ulations only affect single genes and that results can be
controlled deterministically. The first assumption may
not be true if there are compensatory effects involving
other genes. The second assumption is also very limiting
in realistic biological scenarios. Often the experimentalist
lacks knowledge about the exact size of perturbation
effects. To cope with this uncertainty, Markowetz et al.
[112] introduced soft interventions as a generalization of
ideal interventions. Variables are "pushed" in the direc-
tion of target states without fixing them. This idea is for-
malized in a Bayesian framework based on Conditional
Gaussian networks.

Physical network models
Yeang et al. [113] find the most likely annotated molecu-
lar interaction graph given a variety of data sources includ-
ing gene-knockouts. Knock-out data is functional in nature
and provides only indirect evidence about network struc-
ture. Yeang et al. associate each observed knock-out effect
in the deletion mutant data with molecular cascades that
could in principle explain the effect.

Genetic interactions
Genetic interactions are defined by comparing the pheno-
types of two single gene perturbations with the phenotype
of the double gene perturbation. One example for a
genetic interaction is epistasis [114]; it is defined as one
gene masking the effect of another gene. Driessche et al.
[115] use expression profiles as phenotypes and partly
reconstruct a developmental pathway in D. discoideum.
Another example of a genetic interaction is synthetic
lethality, where two genes with a viable phenotype show
a lethal phenotype in a double perturbation [116]. Wong
et al. [117] propose a classification method to predict syn-
thetic lethal interactions. Epistasis and synthetic lethality
are just two examples of a broad range of possible genetic
interactions. Drees et al. [118] define nine modes of
genetic interactions for quantitative phenotypes that can
be described by inequality constraints between the pheno-
typic values. They show that all modes of genetic interac-
tions can be identified in agar-invasion phenotypes of
mutant yeast.

Nested effects models
A key obstacle to inferring genetic networks from pertur-
bation screens is that phenotypic profiles generally offer
only indirect information on how genes interact. Cell
morphology or sensitivity to stresses are global features of
the cell, which are hard to relate directly to the genes con-
tributing to them. Gene expression phenotypes also offer
only an indirect view of pathway structure due to the high
number of non-transcriptional regulatory events like pro-
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Causal and discruption network. From the causal net-
work (left) it is easy to deduce how effects spread through 
the pathway (right). The harder problem is to deduce the 
causal pathway from observing effects of interventions (going 
from right to left).
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tein modifications. For example, when silencing a kinase
we might not be able to observe changes in the activation
states of other proteins involved in the pathway; the only
information we may get is that genes downstream of the
pathway show expression changes. Thus, phenotypic pro-
files may provide only indirect information about infor-
mation flow and pathway structure.

A recent approach [119] especially designed to learning
from indirect information and high-dimensional pheno-
types are Nested Effects Models that reconstruct features of
the internal organization of the cell from the nested struc-
ture of observed perturbation effects. Perturbing some
genes may have an influence on a global process, while
perturbing others affects sub-processes of it. Imagine, for
example, a signaling pathway activating several transcrip-
tion factors. Blocking the entire pathway will affect all tar-
gets of the transcription factors, while perturbing a single
downstream transcription factor will only affect its direct
targets, which are a subset of the phenotype obtained by
blocking the complete pathway. Figure 7 shows a sche-
matic plot of how the position of perturbed genes in a
pathway corresponds to a nested structure of observed
effects. Markowetz et al. [119] demonstrate the power of
Nested Effects Models in the controlled setting of simula-
tion studies and explain its practical use in the context of
an RNAi data set investigating the response to microbial
challenge in Drosophila melanogaster.

Experimental design
Statistical analysis of high-throughput data sets aims at
generating hypotheses about the functions and regulatory
roles of genes and proteins. Small-scale traditional exper-
imental techniques are needed to verify the statistical pre-
dictions and inferred pathways. Experimental design or
active learning deals with deciding which interventions to
perform to discriminate optimally between alternative
models. For reconstruction of regulatory networks, a
number of methods have been proposed in different
frameworks: for Bayesian networks [120,121], physical
network models [122], Boolean networks [102], and
dynamical modeling [123].

Summary and Outlook
Fig. 8 organizes the network reconstruction methods we
discussed in this review with respect to a few basic ques-
tions: Does the data include gene knockout or knock-
down experiments? If not, we call it purely observational
data; if yes, we call it interventional data. Is the model prob-
abilistic or deterministic? Does the model allow for
changes over time? If yes, we call it dynamic, otherwise
static. Does the model describe transcriptional regulatory
networks? And if so, are additional non-transcriptional
effects taken into account? In the leaf nodes of the deci-
sion tree modeling techniques fall together that are meth-
odologically similar. Fig. 8 shows representative
examples. Some branches in the tree are missing, where
we found no research on a given approach.

The need for a holistic view
The internal organization of the cell comprises many lay-
ers. The genome refers to the collection of information
stored in the DNA, while the transcriptome includes all
gene transcripts. On the next level the proteome covers the
set of all proteins. The metabolome contains small mole-
cules – sugars, salts, amino acids, and nucleotides – that
participate in metabolic reactions required for the mainte-
nance and normal function of a cell. Results of internal
reactions are features of the cell like growth or viability,
which can be taken as phenotypes to study gene function.
To understand the complexity of living cells future
research will need to build models including all these lay-
ers. Statistical inference on parts of the system will not
provide the mechanistic insights functional genomics is
seeking for. Recent research concentrates on combining
information from genome, transcriptome and proteome,
e.g. for reconstructing signaling pathways [113,124] and
networks of functionally related proteins [8,9,125]. This is
a necessary step in the right direction. However, these
models will still be fragmentary if they do not include and
predict phenotypical changes of interventions perturbing
the normal course of action in the cell. We will only
understand what we can break.

Nested effects modelsFigure 7
Nested effects models. Markowetz et al. [119] introduce a 
probabilistic model to infer a pathway structure (left) from 
the observed downstream effects of interventions (right). 
The model predicts that genes high up in the pathway (like A) 
will have a broader set of effects than genes more down-
stream (like B to E). The branching in the pathway below B 
corresponds to (partly) disjoint effect subsets for C and D. 
The intersection of effect sets for C and D can be attributed 
to E and is explained by the collider at E in the pathway.
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Further reading
There are a number of other reviews and method compar-
isons available: some focus on applications and biological
interpretations [126-128], and some concentrate on
methodology [129-137]. Even more sources can be found
in a regularly updated bibliography [138].
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A guide to the literature on network reconstructionFigure 8
A guide to the literature on network reconstruction. Methodological similar approaches are clustered together by a 
decision tree built on five basic questions: Do the data contain knock-out or knock-down samples? Is the model deterministic 
or probabilistic? Does the model account for changes over time or is it static? Does the model focus on transcriptional gene 
regulation networks? And if so, does the model take additional non-transcriptional effects into account? In the leaf nodes of the 
tree, a few representative references are shown.
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