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Abstract

Background: Identification of protein interacting sites is an important task in computational molecular biology. As more
and more protein sequences are deposited without available structural information, it is strongly desirable to predict
protein binding regions by their sequences alone. This paper presents a pattern mining approach to tackle this problem.
It is observed that a functional region of protein structures usually consists of several peptide segments linked with large
wildcard regions. Thus, the proposed mining technology considers large irregular gaps when growing patterns, in order
to find the residues that are simultaneously conserved but largely separated on the sequences. A derived pattern is called
a cluster-like pattern since the discovered conserved residues are always grouped into several blocks, which each
corresponds to a local conserved region on the protein sequence.

Results: The experiments conducted in this work demonstrate that the derived long patterns automatically discover
the important residues that form one or several hot regions of protein-protein interactions. The methodology is
evaluated by conducting experiments on the web server MAGIIC-PRO based on a well known benchmark containing 220
protein chains from 72 distinct complexes. Among the tested 218 proteins, there are 900 sequential blocks discovered,
4.25 blocks per protein chain on average. About 92% of the derived blocks are observed to be clustered in space with
at least one of the other blocks, and about 66% of the blocks are found to be near the interface of protein-protein
interactions. It is summarized that for about 83% of the tested proteins, at least two interacting blocks can be discovered
by this approach.

Conclusion: This work aims to demonstrate that the important residues associated with the interface of protein-
protein interactions may be automatically discovered by sequential pattern mining. The detected regions possess high
conservation and thus are considered as the computational hot regions. This information would be useful to
characterizing protein sequences, predicting protein function, finding potential partners, and facilitating protein docking
for drug discovery.
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Background

Identification of functionally important regions directly
from a protein sequence is a challenging problem in
molecular biology [1-7]. Investigation of possible protein-
protein interactions and prediction of the associated phys-
ical binding areas facilitate the study of all aspects of cel-
lular function [8,9]. The principles that govern the
interaction of two proteins and the general properties of
their interacting interfaces remain uncovered [10-12],
resulting in the difficulties of predicting interface regions
directly from protein sequences. Even when the structure
of a protein is available, it is still not a trivial task to local-
ize the functional interfaces and to clarify the contribution
of each involved residue [7,13,14].

Previous studies observed that not all the interface resi-
dues contribute the same level of free energy in a complex
[15-17]. Using the alanine scanning mutagenesis [18],
which estimates the energetic contribution of individual
side-chains, it suggests that a small set of interface residues
can contribute the most to the binding free energy
[15,16,19]. These critical residues are called hot spots; they
give rise to a significant increase in the absolute binding
energy when mutated to alanine [15,16,20]. It is interest-
ingly observed that hot spots are not uniformly spread
along the interfaces. Instead, they are clustered as densely
packed regions and are surrounded by energetically less
important residues which might serve to occlude bulk sol-
vent from the hot spots [15]. The assemblies of the hot
spots and its neighboring moderately conserved residues
are called hot regions [17]. A single or a few hot regions can
be found in the interacting interface of two proteins
[17,21]. Within the dense clusters, the hot spots and some
moderately conserved residues both contribute to the sta-
bility of the complex [17].

Several approaches have attempted to predict interacting
sites based on structure information [22-31]. Some of the
approaches identify potential surface patches based on
the shape of structures and then use features such as sol-
vation potential, hydrophobicity, planarity, or accessible
surface area to differentiate interacting sites from the other
surface patches. Evolutionary information has also been
demonstrated as a useful feature to this problem and
widely employed when structures are available [32-36].
While little correlation between interface and conserva-
tion is observed at the level of amino acid side-chains
[15,32,37-40], the conservation degrees of hot spots are
more significant [15,17]. Several studies have shown that
hot spots are usually more conserved than other surface
residues and clustered in space [17,21,38]. It has been also
shown that structurally conserved residues at protein-pro-
tein interfaces correlate with the experimental alanine-
scanning hot spots [17]. In other words, the residues that
affect the binding free energy dramatically tend to be
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strictly conserved during evolution. In this regard, Lich-
targe et al. proposed an evolutionary trace method to facil-
itate the study of protein interfaces [13], followed by the
development of an easy-to-use facility named ConSurf by
Armon et al. in 2001 [7]. The procedure is based on extrac-
tion of functionally important residues from homologous
proteins, and after that the conserved residues are mapped
onto the protein surface to identify the functional inter-
faces [7,13].

The task becomes much more challenging when only
sequence information is available. In such situation, the
information about residue composition remains. Besides,
evolutionary information is also available if there are suf-
ficient homologues. In this regard, a classification scheme
based on neural networks or support vector machines
(SVM) with the features extracted from a sliding window
on amino acid composition and evolutionary informa-
tion is usually adopted [41-43]. Constructing a classifier
requires a set of training data for which the protein struc-
tures are available. After that, the interacting residues of a
query sequence can be predicted without structure infor-
mation. Even though the information about which con-
served residues form clusters in space is absent and cannot
be exploited here, another observation from [42,44],
interface residues tend to form clusters in sequence, has
been aggressively employed in recent studies to refine the
predicting results [41,42]. There also exist approaches that
attempt to tackle this problem without learning from
existing structures. Gallet et al. showed in their work that
the interacting residues can be identified by hydrophobic
moments [45].

As evolutionary information is demonstrated to be useful
in finding interacting sites, we present here an alternative
approach to discover conserved residues, sequential pat-
tern mining [1,46,47]. Different from the evolutionary
information derived by multiple sequence alignment of
homologous sequences, the pattern mining approach
focuses on the concurrence of several conserved blocks
present in a subset of protein homologues [47]. Sequen-
tial pattern mining discovers a particular subsequence that
frequently occurs among a set of sequences [46]. This
technique has been widely used to identify protein motifs
in many previous studies [48-50], where the term motif
refers to such a subsequence that captures the characteris-
tic regarding a specific biochemical function [51]. Finding
functional motifs directly from protein sequences is chal-
lenging, because many sequence motifs are discontinuous
and the spacing between motif elements is usually large
and irregular [51]. By considering large flexible gaps in
sequential pattern mining, the developed method can
deliver long patterns spanning large wildcard regions effi-
ciently [1,47]. Though the conserved blocks in our pat-
terns are largely separated in sequences, they are often
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close to each other in 3D structures and play critical roles
to protein functions [1]. The proposed methodology per-
forms well even when the similarity identities between
input sequences are low or the functional sites are only
conserved in a few members of the input sequences
[47,1]. This feature is important since it has been observed
that residues that are conserved only in a specific sub-
family may play more family-specific functional roles and
are usually found at functional patches [5,6,14,52]. We
expect that a highly supported pattern may highlight the
residues that were conserved together during evolution for
a particular purpose, for example, interacting with other
proteins. The experimental results conducted in this work
reveal that the conservation information provided by
sequential pattern mining is helpful to this problem
before any existing structures are included to facilitate the
learning task.

This paper investigates the effectiveness of the approach
by answering the following two questions: (1) are the
locations of the sequential blocks near the interfaces of
protein-protein interactions? and (2) do the derived
sequential blocks tend to cluster together in space? Of
course the first question is more related to the objective of
this study. But by answering the second question, we
expect to make it clearer why the proposed methodology
works. We do not address the recall issue in this paper
because we are aware of that it might not be possible to
identify the complete set of interacting residues by a single
pattern or in a single run of mining process. In fact, iden-
tifying important residues associated with hot regions is
not identical to the problem of predicting interacting res-
idues. As mentioned in the previous paragraphs, not all
the interface residues are hot spots and expected to be
conserved. On the other hand, some interior residues
might also contribute to the stability of the complexes and
are thus conserved. This work aims to show that the infor-
mation provided by sequential pattern mining is useful to
discovering hot regions of protein-protein interactions.
This information can be refined and incorporated in other
approaches to enhance the predicting power of the state of
the art predictors.

Results

In this section, we first describe the datasets used in this
work and how the patterns are selected for different exper-
iments. Using the five proteins in the first dataset, we
investigate the potential of sequential pattern mining in
identifying hot regions of protein-protein interactions by
examining carefully the discovered patterns. To illustrate
the advantages of our method, we compare our results
with ConSurf's results. Next, we use the 220 protein
chains of the second dataset to evaluate the general per-
formance of the proposed method. The details of the data-
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sets and the experimental procedures are described in the
following subsections.

Datasets

Table 1 lists the five proteins used in the first experiment.
These proteins are selected randomly from available com-
plexes in Protein Data Bank (PDB) [53]. For the second
experiment, we collected 220 protein chains from the 72
protein complexes in the protein-protein docking bench-
mark 2.0 established by the ZDOCK team [54]. This
benchmark contains protein complexes from several cate-
gories, including enzyme-inhibitor, antigen-bound antibody,
antibody-antigen, and others, as summarized in Table 2. We
further removed some similar protein chains from the sec-
ond dataset by executing CD-HIT program [55] with 70%
cut-off, resulting in a non-redundant dataset of the second
dataset.

Pattern selection

For the first dataset, the top ten large-size patterns are
examined for the mining results of each query protein.
The size of a pattern is defined as the number of conserved
residues it contains. In the first experiment, it is observed
in every case that the hot regions can be revealed directly
by the maximum-size pattern. Thus in the second experi-
ment, we investigate how the maximume-size pattern of
each query protein performs in identifying protein inter-
acting regions automatically.

Results on the first dataset

The performance of the proposed methodology is evalu-
ated from two aspects. First, the effectiveness of identify-
ing hot regions is evaluated. Second, the efficiency of the
pattern mining algorithm is compared with ConSurf,
where multiple sequence alignment is employed in iden-
tifying conserved residues. In addition, the conservation
plots generated by ConSurf are included for comparison.

The mining results for the five proteins in the first dataset
are shown in Figure 1, 2, 3, 4, 5, in that the patterns are
plotted on the complexes for easy visualization. In these
figures, the discovered conserved blocks are shown in
sticks representation. In most cases, all the sequential
blocks of the pattern cluster in one region of the protein
and form the substructure associated with the interface of
the complex. Differently, for the protein GrpE in Figure 1,
the conserved blocks form two hot regions that together
constitute the interacting interface. The conservation plots
generated by MAGIIC-PRO are compared with that pro-
duced by ConSurf, as shown in Figure 6. The conservation
information suggested by ConSurf might be too noisy to
predict hot regions directly from the sequences. It would
be helpful if the structures of complexes are available as
suggested by Armon et al. and Lichtarge et al. in their
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Table I: Summary of the first dataset
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Query protein (Swiss-Prot AC number) Protein name

PDB complex (PDB entry : chain)

P09372 Protein grpE 1dkg:A
P48052 Carboxypeptidase A2 precursor 1dtd:A
P20936 Ras GTPase-activating protein | 1wql:G
P10824 Guanine nucleotide-binding protein G(i) lagr:A
P15153 Ras-related C3 botulinum toxin substrate 2 1dsé:A

papers [7,13]. Finally, Table 3 shows the executing time
for MAGIIC-PRO and ConSurf respectively.

Results on the second dataset

The summary of the experimental results on the second
dataset is provided in Table 4, while the details can be
found in the online supplement of this paper [56].
Among the 220 protein chains in the second dataset, two
protein chains are excluded from the test set because the
protein sequence of the protein chain [PDB:1ml0, chain
B] is not available in the PDB file and the protein chain
[PDB:1m10, chain A] does not have enough homologues
for pattern mining (< 5 homologues). As listed in Table 4,
MAGIIC-PRO successfully generated patterns for 212 pro-
tein chains. For each chain, we selected the pattern with
the most components (called the maximum-size pattern)
as the prediction of hot regions. Since only patterns with
at least two blocks are reported, a maximume-size pattern
always has two or more blocks to examine.

Here we define two indices to evaluate the quality of a pat-
tern:

1. Clustering propensity: the percentage of sequential blocks
in a pattern P that interacts with at least one of the other
blocks in P. The interaction between a pair of blocks is
defined by the following criterion: there exists an atom
from one block that is within 5 A to an atom of the other
block.

2. Interface propensity: the percentage of sequential blocks
in a pattern P that contacts another protein chain in the
complex. The definition of contact is that any of the atoms
from the block is within 7 A to any atom of another pro-
tein chain in the complex.

The clustering propensity of a pattern reflects its reliabil-
ity. We consider that a higher value of this index indicates
that the pattern is more biologically meaningful, either
from function or structure point of view. For each query
protein, the clustering and interface propensities are cal-
culated for its maximum-size pattern. The average values
for different categories of protein complexes are provided
in Table 5. The group of enzyme-inhibitor complexes
slightly outperforms the other categories. It can be seen in
Table 5 that the results on the non-redundant set are sim-
ilar. When creating the non-redundant set, the program
CD-HIT was applied directly to the 212 protein chains to
avoid selecting the protein chains that failed to deliver
patterns as the representatives.

Similar conclusion can be made from Table 4. As summa-
rized in Table 4, there are about 66% of the derived blocks
close to the contacting areas of protein-protein interac-
tions. Furthermore, there are about 92% of the blocks
clustering with at least one of the other blocks to form
protein substructures in space. It is observed in some cases
that some clustered but non-interacting blocks are actu-
ally the binding sites of other molecules (ligands).

In Table 6, we show the statistics about the number of
blocks of the maximume-size patterns for the 218 protein
chains. The number of blocks that contribute to interface
is further collected in Table 7. In Table 7, it is of interest to
check the number of proteins whose maximum-size pat-
tern discovers at least two or three interacting blocks. The
percentages are 83% and 54% respectively. We conclude
that most of the tested proteins can be benefited by this
approach, and similar records (80% and 51%) are
observed on the non-redundant set in Table 8.

Table 2: Summary of the second dataset, the protein-protein docking benchmark 2.0

Complex category

Number of complexes

Number of chains

Enzyme-Inhibitor/Substrate
Antigen-bound Antibody
Antibody-Antigen

Others

Total in the dataset

23
12
10
39
72

51
35
30
104
220

Page 4 of 15

(page number not for citation purposes)


http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P09372
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1dkg
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P48052
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1dtd
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P20936
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1wql
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P10824
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1agr
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P15153
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ds6
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ml0
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1m10

BMC Bioinformatics 2007, 8(Suppl 5):S8 http://www.biomedcentral.com/1471-2105/8/S5/S8

Table 3: Comparing the efficiency of MAGIIC-PRO and ConSurf

Query protein (PDB Code:Chain ID) MAGIIC-PRO (seconds) ConSurf (seconds)
P09372 (1dkg:A) 10 590
P48052 (1dtd:A) 15 191
P20936 (1wgl:G) 69 122
P10824 (lagr:A) 16 472
P15153 (1ds6:A) 7 303
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Amino Acid Sequence
L-R-x(2)-A-x(3)-N-x(3)-R-x(20)-L-x(3)-D-x(3)-R-A-x(41,50)- -X(18,19)-Q-x-G-Y-x(4)-R-x(2)-R-x(2)-M-V-x-V
Figure |

Representation of the GrpE-DnaKATPase complex [PDB:1dkg] with the pattern found by MAGIIC-PRO for GrpE protein. The
pattern is plotted as sticks, GrpE as strands, and DnaKATPase as backbone display.
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Amino Acid Sequence
H-x-R-E-W-x(35,38)-N-x-D-G-x(8)- -X(31,33)-C-x(3)-Y-x-G-x(4)-S-E-x-E-x(20,21)-
H-x-Y-x-Q-x(47,48)-Y-x(3)-G-x(3)-D-W-x(12,13)-E-L-R-x(5,7)-G-F-x-L-P-x(3)-I-x(2)-T-x(2)-E
Figure 2

The pattern discovered for the PDB chain [PDB:1dtd, chain A], where the pattern blocks are shown in sticks with different
blocks plotted in distinct colors, protein LCl in backbone, and zinc ions in crimson spheres. This maximum-size pattern hits the
contact regions when interacting with the protein LCI, where the ligand GLU is plotted in ball-and-stick representation and

colored in CPK mode.

Conclusion

Conservation information is important in predicting hot
regions involved in protein-protein binding. However,
the conservation information at residue level is not suffi-
cient in predicting hot regions because not all the reported
residues are conserved for the same purpose (the one
studied in this paper is to preserve the environment of
interacting with another protein). The conservation infor-
mation derived by the pattern mining approach is more
precise than that generated by multiple sequence align-
ment followed by constructing the evolutionary tree. That

is, the concurrence of conserved blocks among a subset of
protein homologues is focused. The experiments con-
ducted in this paper reveal that the derived conserved
blocks tend to cluster together in space and most of the
aggregated blocks are related with interacting interfaces.
The detected regions possess high conservation and thus
are considered as the computational hot regions. By using
sequential pattern mining, it may be possible to predict
hot spots of an interface without exhaustive mutagenesis
and thermodynamic analysis and thus the link between
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Amino Acid Sequence

F-R-X(3)-L-X(34)-C-E-x(2)-P-x-K-x(59,62)- -X(4)-A-1-X(2)-P-x(2)-F-x(12)-R-x-L-x-L-x(2)-K-x(2)-Q

Conservation Score

Figure 3

The pattern discovered for PDB chain [PDB:1wgl, chain G]. The pattern blocks are shown in sticks with different blocks plot-
ted in distinct colors and HARVEY-RAS protein in backbone. The maximume-size pattern hits several contact regions of
GAPETTE when interacting with the protein HARVEY-RAS.

protein functions and their primary sequences can be con- ~ The residues associated with an interface are not necessar-
structed much more rapidly. ily found in one region of the sequence. Instead, it is usu-
ally observed that several remote segments of a protein

Methods sequence constitute a binding site [57-59]. Since it is time
In this section, we provide the details about the proce-  consuming to find long patterns with large irregular gaps,
dures of discovering and selecting patterns for predicting  we recently presented a novel algorithm named MAGIIC
hot regions. to tackle this problem by using a combination of intra-
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Amino Acid Sequence
K-X-L-L-L-G-X(4)-G-K-S-T-x(122,128)-D-x-L-x(2)-R-x(21)-D-V-G-x(0,1)-
G-Q-R-S-x-R-x-K-W-x(3)-F-x(2)-V-x(11)-Y-x(3)-L-x-E-x(29,30)-L-F-x-N-K-x-D
Figure 4

The pattern discovered for PDB chain [PDB:lagr, chain A], where the pattern blocks are shown in sticks with different blocks
plotted in distinct colors and the regulator of G-protein signaling 4 is plotted in blue backbone. This maximum-size pattern hits
the contact regions of GI-ALPHA-1 when interacting with the regulator of G-protein signaling 4.

and inter-block gap constraints [47]. In MAGIIC, the flex-
ibility of intra-block gaps is limited, but the flexibility of
inter-block gaps is largely relaxed. Using two types of gap
constraints for different purposes improves the efficiency
of mining process while keeping high accuracy of mining
results.

The constraint model of MAGIIC has been refined in our
recent work WildSpan [60] to enhance the capability of
the mining algorithm in discovering functional motifs for
a specific query protein. WildSpan restricts the length of
intra-block gaps to be fixed, because it has been observed
in previous studies that insertions and deletions are sel-

dom present within highly conserved regions [17,59].
WildSpan further merges the upper and lower bounds of
an inter-block gap into a single gap constraint called max-
imum relative flexibility. This constraint subsequently sets
the upper and lower bounds of an inter-block gap with
respect to the length of the gap observed on the query pro-
tein. The refinement of the constraint model reduces the
complexity of the mining program and largely improves
the accuracy of the derived patterns when functional
motifs are desired. The idea of WildSpan was previously
realized on the web server MAGIIC-PRO [1] to facilitate
the whole process of discovering functional signatures
from protein sequences. MAGIIC-PRO provides an easy-
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Amino Acid Sequence
K-x-V-x(2)-G-D-G-x(2)-G-K-x(11)-F-x(3)-Y-x-P-x(2)-F-x(19,21)-D-T-A-G-Q-x(5)-L-R-x(3)-Y

Figure 5

The pattern discovered for PDB chain [PDB:1ds6, chain A], where the pattern blocks are shown in sticks with different blocks
plotted in distinct colors and the RHO-GDI Beta protein is plotted in blue backbone. This maximum-size pattern hits the con-
tact regions of P21-RAC2 when interacting with the protein RHO-GDI Beta.

to-use environment in that the users can collect training
data for a query protein by invoking PSI-BLAST [61] or
Swiss-Prot [62] annotations. In addition, after the mining
process completes, the derived patterns can be examined
through several well-developed facilities [1].

A distinguishing characteristic of pattern mining from
multiple sequence alignment in providing conservation
information is that the residues in a pattern are simultane-
ously conserved among a certain amount of protein
sequences in the training data. This property is appreci-
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Figure 6

Conservation plots using the conservation scores calculated by ConSurf.

ated from two points of view. First, a pattern collects a set
of residues that are not necessarily the most highly con-
served residues but are for sure to have been conserved
simultaneously during evolution. Second, the pattern
mining algorithm automatically identifies a subset of
sequences from the training data that matches a particular
pattern. Usually the resultant support rates are quite low,
but it might still make sense since a sub-family could play
family-specific functional roles [5,6,14,52]. We will
explain more about why the concurrence of conserved res-

idues in a set of protein sequences is important after intro-
ducing the concept of cluster-like patterns and the
detailed mining procedures.

Definition of cluster-like patterns and associated con-
straints

We call a pattern generated by WildSpan a cluster-like pat-
tern. The residues inside a pattern are always clustered
into several sequential blocks. The gaps in between two
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Table 4: Summary of the experimental results for the second dataset

Number of tested protein chains

Number of patterns examined

Number of discovered blocks

Average number of blocks per protein chain
Average time used for each protein chain
Number of blocks that is near interface
Number of blocks that form clusters

The maximum support of the patterns

The minimum support of the patterns
Average support of the patterns

blocks are usually large and irregular. Here comes an
example: "I-x-H-N-x(52,68)-E-x(2)-L-x-K-L". In this nota-
tion, a conserved residue is recorded by its amino acid
symbol, 'x' denotes an arbitrary amino acid, x(i) stands for
a gap of i arbitrary residues, and x(i, j), i <j, represents a
wildcard region of at least i and at most j arbitrary resi-
dues. The shown pattern contains two conserved blocks
"I-x-H-N" and "E-x(2)-L-x-K". The gaps within a block are
called intra-block gaps, and the gaps in between two
sequential blocks are called inter-block gaps. Concerning
the efficiency of mining process, WildSpan specifies sev-
eral constraints for these pattern components:

1. The maximum length of an intra-block gap: the length
of intra-gap is rigid and cannot exceed the specified value.

2. The minimum number of residues in a block: a sequen-
tial block must contain at least a certain number of resi-
dues to eliminate noises.

3. The flexibility of an inter-block gap: a sequence can
match a pattern as long as the inter-block gap does not
violate the flexibility with respect to the query protein.

4. The minimum number of blocks in a pattern: a binding
site is usually consisted of more than one protein seg-
ment. This constraint is set as 2 by default.

218

212

900

4.25

11.76 seconds
592 (~66%)
832 (~92%)
100%

13%

66%

5. The minimum support of a pattern: the minimum per-
centage of sequences in the training data that match the
derived pattern.

Setting minimum support is not an easy task. A loose
bound may lead to explosion of patterns and cost a huge
amount of computation, while a tight bound might result
in no patterns. In MAGIIC-PRO, this issue is handled
automatically by relaxing the minimum support con-
straint step by step until an expected number of desired
patterns are discovered. In this regard, the patterns match
the most input sequences will always be reported first.

Description of WildSpan algorithm

Constraint-based sequential pattern mining extracts fre-
quent patterns from unaligned sequences that satisfy the
user-specified constraints, where pattern components
maintain their order in the sequential data [63]. The algo-
rithm WildSpan aims at discovering cluster-like patterns
defined above by using a two-phase mining strategy. In
the first phase, WildSpan generates the complete set of
closed pattern blocks satisfying the block constraint and
the intra-block gap constraint. A pattern or block is closed
if none of its super-patterns getting exactly the same sup-
port (i.e. occurrence frequency). After that, in the second
phase, WildSpan discovers the complete set of closed long
patterns satisfying the inter-block gap constraint by con-
necting frequent blocks found in the first phase with large
irregular gaps. Both the first and second phases execute a
procedure call named bounded-prefix-growth, which was

Table 5: Clustering and interface propensities of the patterns derived for different categories of the proteins in the second dataset

Complex Category Average clustering propensity

Average interface propensity

Orriginal Non-redundant Original Non-redundant
Enzyme-Inhibitor/Substrate 90.24% 87.54 79.24% 74.46
Antigen-bound Antibody 96.11% 93.69 66.31% 64.05
Antibody-Antigen 95.56% 9222 57.72% 50.00
Others 92.05% 90.16 67.58% 65.53
Total average in the dataset 92.77% 89.98 68.63% 66.28
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Table 6: The statistics on the block numbers of the derived patterns for 218 protein chains of the second dataset.

Number of blocks: x None 2 3 4 5 6 7 9
Patterns with x blocks Number 6 18 32 74 71 10 3 4
Percentage % 3 8 15 34 32 5 | 2
Patterns with at least x blocks Number 218 212 194 162 88 17 7 4
Percentage % 100 97 89 74 40 8 3 2

developed based on the function prefix-growth of a well
known sequential pattern mining algorithm, PrefixSpan
[46]. The bounded-prefix-growth procedure takes our new
constraint framework into account, in order to match
both the effectiveness and efficiency considerations. It
uses a number of pruning strategies during the mining
process. First, it exploits some good properties of the con-
straints to filter out many unpromising patterns/candi-
dates in the early mining stage aggressively. Second, it
recursively projects a sequence database into a smaller
search space and grows patterns only in each projected
database. Both features contribute to favorable mining
efficiency. At the end of the second phase, WildSpan out-
puts the complete set of patterns that satisfy all the con-
straints specified by the users. The readers can refer to [60]
for the details of the algorithm and [1] for the web server
MAGIIC-PRO.

Mining procedures
The complete procedures for identifying interacting inter-
faces for a query protein are as follows:

1. Obtaining homologues of a query protein (150 at
most): This is achieved by running PSI-BLAST [61] against
Swiss-Prot database [62] posted on Aug 4, 2005 with
BLOSUMG62 [64] substitution matrix and an E-value cut-
off of 0.01. If the homologues of query protein are not suf-
ficient in Swiss-Prot database (< 5 homologues), the
searching is executed one more time against the non-
redundant (NR) database [65] posted on Aug 4, 2005. The
sequences nearly identical to the query protein (sequence
identity from BLAST > 90%) or with a low identity
(sequence identity from BLAST < 30%) against the query
protein are further excluded from the training data.

2. Executing pattern mining: The minimum support is ini-
tially set as 100% and decreased repeatedly until at least

one pattern with five blocks is discovered. A sequential
block must contain as least three conserved residues, and
the maximum length of an intra-block gap is 3. The min-
ing process is terminated once the mining period exceeds
four minutes in a single run, which often happens when
the setting of minimum support constraint is too low such
that the number of patterns explodes. If no patterns with
five blocks can be reported with the previous settings,
MAGIIC-PRO is invoked iteratively with the constraint on
minimum number of blocks relaxed by one at a time.

3. Emerging information from all the patterns with two or
more blocks into one conservation plot: The derived pat-
terns are collected together to create a conservation plot.
The conservation plot provides a whole picture about the
conserved residues of a query protein. In this plot, the con-
servation scores are represented in different colors. The
color level of a residue x is defined as: L(x) = ceil(9 x R(x)),
where the conservation score R(x) is calculated by the fol-
lowing equation:

conservation level of x
R(x) = (1)

maximum conservation level among all the residues

Here, the conservation level of each residue is determined
by the percentage of total number of supporting proteins
merged from different patterns.

The conservation plot is reported with the derived pat-
terns to provide more detailed information when a pat-
tern is examined.

Here we use an example to illustrate the value of a long
pattern when compared to traditional conservation
scores. Figure 7 shows the complex of blood coagulation
factor VIla and a mutant of bovine pancreatic trypsin
inhibitor 5L15 (chains H and I of PDB structure 1fak)
with the residues in our pattern blocks highlighted by

Table 7: The statistics on the number of interacting blocks of the derived patterns for 218 protein chains of the second dataset.

Number of blocks: x None | 2 3 4 5 6
Patterns with x interface blocks Number 13 25 63 59 30 24 4
Percentage % 6 Il 29 27 14 Il 2
Patterns with at least x interface blocks Number 218 205 180 117 58 28 4
Percentage % 100 94 83 54 27 13 2
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Table 8: The statistics on the number of interacting blocks of the derived patterns for 138 non-redundant protein chains of the second
dataset

Number of blocks: x None | 2 3 4 5 6
Patterns with x interface blocks Number 12 22 40 35 18 15 2
Percentage % 9 16 29 25 13 11 |
Patterns with at least x interface blocks Number 138 132 110 70 35 17 2
Percentage % 100 96 80 51 25 12 |
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Figure 7

Example used to illustrate how the patterns generated by MAGIIC-PRO facilitate the study of identifying hot regions. The pro-
truding residue Argl5 of 5L15 (chain I) falls in the first block of the derived pattern and the structurally conserved residues in
the complemented pocket of Vlla (chain H) can be found in the three blocks of the derived pattern. The patterns are plotted as
sticks representation on the structure and colored in the same way as in their regular expression form.
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sticks representation. The conservation plots are generated
based on the conservation scores calculated by the Con-
Surf server [66]. In this example, our patterns successfully
detected the protruding residue Argl5 of 5L15 and most
of the residues in the complemented pocket of Vlla
addressed in [20]. It can be seen that many other residues
are estimated to have similar conservation scores by Con-
Surf but are not present in the hot regions of this interac-
tion. In other words, the conservation information of each
residue alone is not sufficient for predicting hot regions. It
is the concurrent conservation among a subset of respec-
tive homologues that suggests these residues might be
conserved together for a specific purpose.
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