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Abstract
Background: Microarrays have been widely used for the analysis of gene expression and several commercial platforms are
available. The combined use of multiple platforms can overcome the inherent biases of each approach, and may represent an
alternative that is complementary to RT-PCR for identification of the more robust changes in gene expression profiles.

In this paper, we combined statistical and functional analysis for the cross platform validation of two oligonucleotide-based
technologies, Affymetrix (AFFX) and Applied Biosystems (ABI), and for the identification of differentially expressed genes.

Results: In this study, we analysed differentially expressed genes after treatment of an ovarian carcinoma cell line with a cell
cycle inhibitor. Treated versus control RNA was analysed for expression of 16425 genes represented on both platforms.

We assessed reproducibility between replicates for each platform using CAT plots, and we found it high for both, with better
scores for AFFX. We then applied integrative correlation analysis to assess reproducibility of gene expression patterns across
studies, bypassing the need for normalizing expression measurements across platforms. We identified 930 genes as differentially
expressed on AFFX and 908 on ABI, with ~80% common to both platforms. Despite the different absolute values, the range of
intensities of the differentially expressed genes detected by each platform was similar. ABI showed a slightly higher dynamic
range in FC values, which might be associated with its detection system. 62/66 genes identified as differentially expressed by
Microarray were confirmed by RT-PCR.

Conclusion: In this study we present a cross-platform validation of two oligonucleotide-based technologies, AFFX and ABI.
We found good reproducibility between replicates, and showed that both platforms can be used to select differentially
expressed genes with substantial agreement. Pathway analysis of the affected functions identified themes well in agreement with
those expected for a cell cycle inhibitor, suggesting that this procedure is appropriate to facilitate the identification of biologically
relevant signatures associated with compound treatment. The high rate of confirmation found for both common and platform-
specific genes suggests that the combination of platforms may overcome biases related to probe design and technical features,
thereby accelerating the identification of trustworthy differentially expressed genes.
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Background
Potential applications of genomics in Oncology cover the
whole spectrum of pathology, diagnosis and treatment.
Microarrays, usually in combination with Quantitative
Real Time PCR (RT-PCR), are emerging as the method of
choice for genome-scale gene expression analysis and sev-
eral commercial platforms are currently available.

In the past few years a tremendous effort has been made,
in the academic, pharmaceutical and clinical community,
to better understand oncogenic processes, to develop
innovative drugs targeted to the molecular lesions under-
lying specific cancer subtypes, and to identify the patient
population that can best benefit from the new therapies
[1-4]. This effort requires the integrated use of data across
multiple laboratories, to link cancer biology to the mech-
anism of action of the new drugs, and finally to translate
the preclinical findings into the proof of concept of target
modulation in patients.

During the preclinical phase of drug development, lead
profiling with microarrays can help to identify the intrac-
ellular pathways that are perturbed by each chemical com-
pound, contributing to a better understanding of its
mechanism of action and possible side effects, and poten-
tially leading to the identification of a gene signature cor-
related with efficacy or safety [5-8]. For this purpose, the
lead compounds are typically analyzed in dose response
and time course experiments for their ability to modulate
gene expression in tumor cell lines tested in vitro and in
vivo. The comparison of these data with results on gene
expression profiling of different tumors can also contrib-
ute to the identification of the tumor types that can
respond better to the drug.

Despite the rapid progress in the field, many important
aspects, including the reproducibility, reliability and
standardization of microarray analysis and results will
have to be addressed before the routine application of
microarray data in the clinic.

While the multiplicity of microarray platforms offers an
opportunity to expand the use of the methodology and
make it more easily available to different laboratories, the
comparison and integration of data sets obtained with dif-
ferent microarray platforms is still challenging [9-21].
Sources of diversity arise from the technology features
intrinsic to chip manufacturing, from the protocols used
for sample processing and hybridization, from detection
systems, as well as from approaches applied to data anal-
ysis. On one hand, the combined use of multiple plat-
forms can overcome the inherent biases of each approach,
and may represent an alternative that is complementary to
RT-PCR for identification of the more robust changes in
the gene expression profiles. On the other hand, the com-

parison of data generated using different platforms may
represent a significant challenge, particularly when con-
sidering very different systems (one vs. two channel
approach, cDNA vs. oligo-based chip).

In this paper, we combined statistical and functional data
analysis for the cross platform validation of two oligonu-
cleotide-based technologies, Affymetrix GeneChip®

(AFFX) [22] and Applied Biosystems Human Genome
Survey Microarrays® v. 1.0 (ABI) [23], and validated the
results with RT-PCR.

AFFX is a well known technology characterized by in situ
synthesized 25 mer oligonucleotides, that uses fluores-
ence as the detection system. ABI is a recently introduced
technology based on nylon-spotted 60 mer oligonucle-
otides, that uses one oligo to detect each gene for most
genes, chemiluminescence to measure gene expression
levels and fluorescence to grid, normalize and identify
microarray features. The ABI gene list combines informa-
tion from public and Celera databases.

The choice for these two platforms was based on the idea
of comparing a widespread microarray technology with a
more recent long oligonucleotide-based platform that
also uses a single colour channel, but with a different
detection system.

In order to test the platform performance under condi-
tions close to our most common experimental settings, we
analyzed the effects of drug treatment with a cell cycle
inhibitor compound that had been previously character-
ized for mechanism of action and activity in tumor cells.
While both microarray platforms performed well individ-
ually, we developed a robust cross-platform analysis pipe-
line and showed that it can be applied to accelerate the
identification of trustworthy differentially expressed
genes.

Results
In this study, we analysed differentially expressed genes
after a 6 hour treatment of the ovarian cancer cell line
A2780 with a cell cycle inhibitor. The activity of the com-
pound was confirmed by FACS analysis where an accumu-
lation of cells in G1 phase of cell cycle was observed,
associated with a reduction in DNA duplication as meas-
ured by a decrease in BrdU incorporation (Figure 1). Total
RNA from treated and control samples was processed
according to the manufacturers' recommended protocols,
divided in three technical replicates for each platform and
hybridised to AFFX HGU133plus2 or ABI Human
Genome Survey Microarray v.1.0.
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All data from this study were uploaded to National Center
for Biotechnology Information, Gene Expression Omni-
bus [24] with the GSE ID GSE6140

Intraplatform reproducibility
We used the new descriptive CAT (Correspondence At the
Top) plots originally proposed by Irizzarry [9] to evaluate
the array-to-array precision within each microarray plat-
form for the three replicates. This method addresses the
issue of array-to-array comparison within the same plat-
form under "normal" conditions, in which we expect only
a small subset of genes to be differentially expressed. As
described by Irizzarry, genes characterized by log2(Fold
Change) close to zero are probably not differentially
expressed and they may not show a good correlation
between platforms or experimental replicates. Therefore it
is more important to assess agreement for genes that show
significant log2(Fold Change) between treatments in
order to evaluate the agreement between experimental
replicates.

To focus the comparison on the genes that appeared to be
more differentially expressed across technical replicates,
we compared two technical replicates at a time, and gen-
erated lists of genes of increasing size, up to 700, ordered
from high to lower log2(Fold Change). We then generated
a CAT plot to analyze the consistency of the lists (Figure
2).

In the AFFX platform all controls as well as the treated rep-
licates are very homogeneous as shown by the strong over-

lap between sample specific curves (Figure 2A.1 and
2B.1). Comparable results were obtained for ABI data on
treated samples (Figure 2A.2), while the quality of "corre-
spondence at the top" is less consistent for the control
samples (Figure 2B.2), which might reflect a higher degree
of baseline data variability. It should be noted that the ABI
Human Genome Survey Microarray v. 1.0 used in this
experiment are not the most updated version available.
For completion, we also evaluated R squared values
between the various replicates, which were >0.99 for
AFFX, and >0.94 for ABI, both in control and treated sam-
ples. The difference we noticed with CAT plots on ABI
controls is less evident by R-square calculation, reflecting
the higher sensitivity of CAT plots. These results suggest
that both platforms have overall good reproducibility
across technical replicates.

Interplatform reproducibility
In order to assess differences/similarities between the two
platforms, only genes common to both platforms were
used in the comparison. Transcripts represented on both
platforms were identified using Resourcer [25], and Ent-
rez Gene ID was used as common identifier.

AFFX and ABI data were processed independently but the
same procedure was applied (Figure 3). Differential
expression ratios log2(Fold Change) were compared
between platforms to define cross platform correlation.
When log2(Fold Change) relative to all 16425 genes were
compared between platforms, the correlation was weak (r

FACS analysisFigure 1
FACS analysis. A2780 cells were left untreated (NT) or treated for 6 hours with a cell cycle inhibitor (TRT). BrdU was 
added 30 min before harvesting and samples were processed for cell cycle analysis and BrdU incorporation analysis.
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= 0.53, where "r" represents the Pearson correlation coef-
ficient).

However, when we applied a filtering step [26] in order to
remove genes showing little variation across samples (IQR
< 0.4), the correlation between microarray platforms
improved (r = 0.68), in agreement with results reported in
other cross-platform comparison studies that show the

importance of filtering data prior to further analysis
[12,17].

For the subset of 2408 genes common to both platforms
after the filtering procedure, we calculated the Integrative
Correlation (IC) coefficient according to Parmigiani [27].
Since AFFX and ABI use different technologies to measure
transcript expression, the absolute signal values for each

Intraplatform reproducibilityFigure 2
Intraplatform reproducibility. The descriptive CAT (Correspondence At the Top) plots [9] were used to evaluate the 
array-to-array precision within each microarray platform for the three replicates. CAT Plots describe the proportion of genes 
in common between replicates as function of list size. To generate CAT Plots on treated samples we used the lists of genes 
ranked by |log2(fold change)| created by each of the treated samples (TRT) versus a reference, which is one of the control sam-
ples (CTRL), both for AFFX (A.1) and ABI (A.2). Similarly we calculated CAT Plots for CTRL samples using one of the TRTs as 
reference for AFFX (B.1) and ABI (B.2).
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platform tends to be somewhat arbitrary and not suitable
for correlation analysis across platforms. Integrative corre-
lation is a systematic statistical approach based on linear
correlations that allows assessment of the reproducibility
of gene expression patterns across studies, bypassing the
need for normalizing expression measurements across
platforms. Consistency of gene coexpression patterns
would reflect the overall consistency of the data sets. To

perform this analysis, each of the possible gene-to-gene
correlations was calculated within each platform, and
these correlations were then compared across the two
platforms.

To identify statistically significant differentially expressed
genes we used only 1852 genes characterized by an IC >

Microarray analysis PipelineFigure 3
Microarray analysis Pipeline. Microarray analysis pipeline applied to AFFX and ABI data to identify lists of differentially 
expressed genes.
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0.5 across the two platforms. Limiting the comparison to
these subgroups, the correlation improves further to 0.80.

We then used CAT plots [9] to show that the quality of dif-
ferential expression similarity between the two platforms
increases when only the 1852 genes with IC > 0.5 are
used, compared to the 2408 subset (Figure 4). If the list of
2408 genes is used the agreement ranges between 35% to
40% for lists greater than 400 genes. The use of the subset
of 1852 genes derived by the IC filtering improves the
agreement to over 60%. Statistical validation performed
using "Significant analysis of microarrays" (SAM) [28],
allowed the identification of 930 differentially ex
pressed genes for AFFX and 908 for ABI. Interestingly, 726
genes (~80% in both cases) were identified as differen-
tially expressed in both platforms, with 204 unique to
AFFX and 182 unique to ABI (Figure 3).

We then analyzed in parallel the spread of log2(Fold
Change) and log2(Average Intensity) values for AFFX and
ABI for the common genes, as well as for the unique sub-
sets (Figure 5). Despite the different absolute values, the
range of intensities of the differentially expressed genes
detected by each platform was similar. ABI showed a
slightly higher dynamic range in the FC values, which
might be associated with its original detection system.

Similar results were also obtained for genes detected only
by each single platform.

Validation of measurements for shared and unique 
expression profiles
RT-PCR is often referred to as the "gold standard" for gene
expression measurements [11,19,29], due to its advan-
tages in detection sensitivity, sequence specificity, large
dynamic range, as well as its high precision and reproduc-
ible quantitation compared to other techniques [30-32].
For these reasons, we used RT-PCR for independent vali-
dation of microarray results.

RT-PCR was performed on 66 genes, including a subset of
26 genes out of the 726 common to both platforms, 19
genes detected only by AFFX and 21 genes detected only
by ABI. Importantly, genes for validation were randomly
chosen to represent the whole range of intensity signals
and FC differences. It's worth mentioning that primers
were selected without referring to the position of AFFX or
ABI probes. Indeed this design allowed us to validate the
actual expression of each gene and not simply the signal
detected by microarray that usually has probes designed
in the 3' UTR region.

All genes detected as differentially expressed by both
microarray platforms were also found to be differentially
expressed by RT-PCR (pValue < 0.5), although differences
in the magnitudes of individual expression ratios were
observed (Additional File 1). Interestingly, all genes
detected by one platform but not the other were also con-
firmed to be differentially expressed, the only exceptions
being 4 cases in which the RT-PCR results were not tech-
nically acceptable (36/40), suggesting that the combined
usage of two platforms might allow the detection of a sub-
set of truly differentially expressed genes that would have
been lost if only one platform was used. The overall con-
firmation rate (62/66) is particularly interesting since the
genes were chosen to span the whole range of intensity
and fold change values of microarray data.

To explain the subsets of specific genes detected by the
two platforms, we evaluated: i) GC content of AFFX and
ABI probes, ii) gene location of the probes and iii) pres-
ence of highly stable secondary structure in the mRNA
region involved in the hybridization. However, these
characteristics were comparable across the common and
unique datasets, suggesting that other parameters such as
hybridization kinetics, steric hindrance of probe hybridi-
zation, method of detection and others, might be
involved [15].

It was recently suggested that the reorganization of AFFX
probes into gene specific probe sets may help to generate
more accurate information, resulting ultimately in a better

Interplatform agreementFigure 4
Interplatform agreement. The descriptive CAT (Corre-
spondence At the Top) plots [9] were used to evaluate inter-
platform agreement. The Correspondence at the top was 
evaluated for AFFX and ABI using the full set of genes after 
the IQR filtering step (black line) or after the IC filtering step 
(red line). For each of the two platforms average |log2 (Fold 
Change)|, calculated between treatment vs. control group, 
was used to generate CAT Plots.
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interpretation of the data [33]. Dai et al. applied a series of
probe selection and grouping criteria to generate new
GeneChip library files (hereafter called custom CDF)
according to different target definitions, such as UniGene,
Refseq, ENSEMBL Entrez Gene, etc. In order to verify if the
use of Entez Genes (GeneID) custom CDFs could improve
the concordance between the two platforms, we extracted
the corresponding set of AFFX probes, validated with RT-
PCR, from these custom CDF.

Only 18 out of 62 validated genes were mapped with this
gene-oriented approach on custom CDF (data not
shown), suggesting that Entrez Gene based CDFs,
although designed to be more target specific, result in loss
of significant differential expression. However, more tran-
script-oriented custom CDFs, i.e. RefSeq, might overcome
this problem.

Theme enrichment
There is increasing evidence that even if the exact list of
differentially expressed genes that are identified using dif-
ferent platforms overlap only partially, the biological
themes represented by these genes are the same [34].
Based on this we investigated the level of concordance of
biological themes represented in the data across the two
platforms using Ingenuity Pathways Analysis (IPA) 3.1
software (Ingenuity® Systems) [35], a commercial data-
base containing manually annotated data for human pro-
tein-protein and functional interactions derived from the
literature. The set of genes in common between AFFX and
ABI recapitulates the themes related to cell cycle control,
cell proliferation and differentiation and DNA replication

(Additional File 2). These themes fit the expected func-
tional effect linked to a cell cycle inhibitor. The same
themes were also found for the platform specific genes. In
addition, a few functions not represented in the common
subset were also identified (Additional File 2), supporting
the concept that the integrated use of more than one plat-
form can amplify the ability to detect biologically relevant
genes that are affected by treatment.

Discussion
A series of studies have been reported on evaluating per-
formance across various commercial and homemade
microarray platforms, with contradictory results. A
number of groups have reported limited concordance of
results across expression analysis platforms [13,17,21,36-
39]. However, recent publications have reached more pos-
itive conclusions about the possibility of comparing data,
reinforcing the emerging concept that data treatment and
choice of comparison metric plays a fundamental role in
this approach [9,10,15,40].

In the past few years, AFFX has been analysed in parallel
with many other platforms, as a widespread technology
that can be used as a reference standard.

Barnes et al. [15] published a comparison of AFFX with
the Illumina, a recently introduced long-oligonucleotide
bead-based array, where, despite the fundamental techni-
cal differences of the two approaches, they reported a very
high agreement of results, particularly once the factors of
gene expression level and probe placement on the gene
are considered. In particular, they found that expression

Genes found differentially expressed using AFFX and ABIFigure 5
Genes found differentially expressed using AFFX and ABI. A) Set of 726 genes passing SAM statistical validation both 
in AFFX and ABI, B) Set of 182 genes passing SAM statistical validation only in ABI, C) Set of 204 genes passing SAM statistical 
validation only in AFFX. AFFX data are reported in red, ABI in black. The lack of statistical significance in one of the platforms 
(B, C) is also associated with a limited log2(Fold Change) variation. On the other hand, log2(Fold Change) variation for genes 
passing the statistical validation in both platforms (A) is quite similar, although ABI seems to have wider log2(Fold Change) 
dynamic range.
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level plays a major role in determining reproducibility
across platforms, and that the precise location of the
probe on the genome affects the measurement to a sub-
stantial degree. Irizzarry et al. [9] also reported a relatively
good agreement between AFFX and two-color systems,
and raised the important points that absolute measure-
ments of gene expression cannot be used to assess data
across platforms (both studies using absolute measure-
ments had found disagreement [13,36]) and that data pre-
processing has significant effects on final results.

In this study, we have analysed the performance of the
AFFX and ABI platforms in parallel on the same sample.
To put ourselves in conditions close to a "real world"
experiment, we analysed technical replicates of a control
vs. treated sample, in which we used a cell cycle inhibitor
that we had previously characterized in biochemical and
cell-based assays. While many comparisons between oli-
gonucleotide arrays have been carried out in the past, as
already discussed [12,13,21,41], to our knowledge this
study is the first to examine the comparison between AFFX
and ABI. Recently, a large-scale real-time validation exper-
iment was published, where results from ABI and Agilent
Whole Human Genome Oligo Microarrays® were con-
firmed in parallel by RT-PCR [19] showing a reasonable
coherence between the two types of data for both plat-
forms, with good sensitivity, while the specificity of
microarray data tended to be relatively low, in particular
for Agilent.

While many authors underline the importance of verify-
ing microarray results using RT-PCR as a reliable inde-
pendent technology for gene expression measurement,
this approach is not always straightforward, since it is
expensive and time consuming, usually only allowing the
reconfirmation of a very small fraction of the results.

Barnes et al. [15], in their comparison of AFFX and Illu-
mina platform already noticed how, in contrast to studies
where few results are checked by RT-PCR, the use of two
combined platforms can be considered as a built-in cross
validation of a huge fraction of the results of the experi-
ment. Our results strongly suggest that the use of an
approach based on two single channel microarray plat-
forms combined with an analytical pipeline as applied
here, can achieve this objective. Indeed the confirmation
rate we obtained of 62/66 genes is particularly good, tak-
ing into account that these genes were selected from the
list of differentially expressed with the aim of covering the
whole range of log2(Fold Change) and Average Intensity
values observed in each platform. This approach seems
more effective for the identification of truly differentially
expressed genes than theoretical approaches, such as the
use of a more robust annotation, like custom CDF [33],

that in our hands resulted in loss of 44 out of 62 experi-
mentally validated genes.

We have found that the critical point for a trustworthy
identification of differentially expressed genes is the avail-
ability of methods that measure the correlation/similarity
between transcription profiles generated with different
platforms. Meta-analysis tools and strategies for combin-
ing data from microarray experiments have been pro-
posed [27,42]. Among these, integrative correlation is a
tool that, assessing overall reproducibility of gene co-
expression patterns across studies, can possibly be used to
identify genes with relatively consistent co-regulation pat-
terns. The strength of our pipeline is the use of the integra-
tive correlation coefficient, since this is the filter that
removes uncorrelated profiles between the two platforms.
This may also explain the high degree of RT-PCR confir-
mation that we also observed for the unique subset of
genes that were identified as differentially expressed by
only one of the two platforms.

A complementary way to assess the soundness of our
approach is the compatibility of the results with the
expected data, based on the previous knowledge of the
mechanism of action of the compound. The set of genes
in common between AFFX and ABI were analyzed with
Ingenuity® Systems [35] to detect theme enrichment and
were shown to recapitulate themes that fit well with the
expected functional effect linked to a cell cycle inhibitor
(including cell cycle, cell death, cell signaling, cellular
growth and proliferation and DNA replication). Further-
more, the coherence of biological themes identified even
within the platform specific gene list suggests that this
cross platform analysis could enhance the biological
information that can be gained from microarray data.

Since there is no fundamental difference in the common
vs. unique subset of genes as far as the range of their inten-
sity and log2(Fold Change) values is concerned, we
looked for an alternative explanation for the lack of recog-
nition by one of the two platforms. Although we have
investigated GC content, probe position and secondary
structure effects of the target, none of them was conclu-
sive. It has to be noted that although the genes in these
unique subsets did not pass the statistical analysis, in
many cases they were found to be differentially expressed
with borderline log2(Fold Change) values, reinforcing the
overall good comparability of data across the two plat-
forms.

Conclusion
In this study we present a cross-platform validation of two
oligonucleotide-based technologies, Affymetrix Gene-
Chip® and Applied Biosystems Human Genome Survey
Microarrays® v. 1.0. For both platforms, we found good
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reproducibility between technical replicates, and showed
that both platforms can be used to select differentially
expressed genes with substantial agreement. 62/66
selected genes were confirmed by RT-PCR as being differ-
entially expressed. Pathway analysis of the affected func-
tions identified themes well in agreement with those
expected for a cell cycle inhibitor, suggesting that this pro-
cedure is appropriate to facilitate the identification of bio-
logically relevant signatures associated with compound
treatment. The high rate of confirmation found for both
common and platform-specific genes suggests that the
combination of two platforms may overcome biases
related to probe design and technical features intrinsic to
individual systems, thereby expanding the ability to iden-
tify truly differentially expressed genes.

Methods
RNA preparation
Human Ovarian cell line A2780 [43,44] was obtained
from ECACC (Cat no.93112519) and cells were untreated
or exposed to 3 μM of a cell cycle inhibitor for 6 hrs. Three
biological replicates were performed for each treatment.
Only attached cells were harvested. RNA was purified
using a Qiagen RNA purification kit. RNA was quantitated
using a spectrophotometer and the quality of the RNA was
assessed using a Bioanalyser.

Biological replicates were pooled to obtain a unique sam-
ple for each treatment, which was then divided to generate
three aliquots for each condition (technical replicates) per
platform.

Affymetrix array experimental procedure
The experiment was performed at IFOM Affymetrix Facil-
ity (IFOM-IEO Campus, Milan, Italy).

5 μg of each RNA pool was used for the amplification/
labelling reaction. 1st and 2nd strand cDNA synthesis was
performed with the Invitrogen kit (11917-020) and the
IVT reaction was done with Megascript T7 from Ambion
(1334). All steps were done according to manufacturers
instructions [22] and cRNA was quantitated on a spectro-
photometer. 15 μg of cRNA was fragmented and checked
by denaturing gel electrophoresis. Bacterial transcripts at
the cRNA level were spiked into each sample prior to
hybridisation. 10 μg of fragmented cRNA was hybridised
to a Human Genome U133 Plus 2.0 Array (900466).

Three technical replicates of each sample were performed.
Hybridisations, washing and staining were performed
according to AFFX protocols. Hybridised arrays were
scanned with the Genechip Scanner 3000. Probe set inten-
sities were calculated using the RMA algorithm [45] and
normalized by the quantiles method [46,47].

Applied biosystem procedure
The experiment was performed at Genesys Applied Biosys-
tem Facility (Genesys, Munster, Germany).

2 μg of each RNA pool was labeled with Digoxigenin-UTP
using the ABI Chemiluminescent RT-IVT Labeling Kit v
1.0 accordingly to manufacturer's protocol [19]. 10 μg of
the labeled cRNA was hybridized to ABI Human Genome
Survey Microarray v 1.0. Following hybridization and
washing steps, chemiluminescent detection and image
acquisition was performed using Applied Biosystems
1700 Chemiluminescent Microarrays Analyzer, following
manufacturer's protocol. For inter-array normalization, a
global median normalization was applied across all
microarrays. Normalized expression levels were imported
as exprset in Bioconductor [48].

Cross-mapping between microarrays platforms
Transcripts present on both platforms were identified
using Resourcer [25], and Entrez Gene ID was used as a
common identifier.

At the time of the analysis 54675 probe sets of AFFX
HGU133plus2.0 GeneChip where mapped to 18857
unique GeneID, while 33096 probes of ABI Human
Genome Survey Microarray v. 1.0 where linked to 17109
unique GeneID. The two platforms shared a total of
16425 GeneID.

AFFX has high redundancy in Probe sets, ABI also has
some redundancy but to a lesser extent. Therefore, when
more than one probe set/probe exists for the same Gene
ID, we selected as representative for that Gene ID the
probe set/probe with the lowest p-value in a t-test analy-
sis. If two or more probes have the same p-value, that with
the highest log2(Fold Change) was chosen. We applied
these criteria both to AFFX and ABI data.

Data analysis
Microarray data analysis was performed using Bioconduc-
tor libraries [48]. AFFX and ABI data sets were filtered to
select probe sets with an intra-experiment Inter Quantile
Range (IQR) less than 0.4. AFFX and ABI data were proc-
essed independently but using the same procedure (Figure
3). Selecting the 2408 common genes, we used integrative
correlation analysis (IC) [27] to assess overall reproduci-
bility of gene coexpression patterns across the two plat-
forms and to identify genes with relatively consistent
coregulation patterns. Within each study, and for each
pair of genes, we calculated the correlation coefficient of
expression values across subjects. By examining whether,
for a specific gene, these correlations agree across studies
we can quantify the reproducibility of results without rely-
ing on direct comparison of expression across platforms.
The IC provides a reproducibility score for each gene. This
Page 9 of 12
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analysis is unsupervised in that consistency is measured
without using information about sample phenotypes. To
identify statistically significant differentially expressed
genes we used only 1852 genes characterized by an IC >
0.5 across the two platforms.

Subsequently, SAM [28] implemented in Bioconductor
libraries was used to identify probe sets differentially
expressed between compound treatment and control. Dif-
ferentially expressed genes were identified with a two-
class unpaired method. A threshold value can be adjusted
to maximize the number of significant genes while mini-
mizing the predicted false discovery rate. We conducted a
blocked, two-class unpaired test using a threshold allow-
ing a false significant number of about 0.3. This analysis
produced 930 differentially expressed genes for AFFX and
908 for ABI. 726 genes (~80%) were identified as differen-
tially expressed in both platforms, with 204 unique to
AFFX and 182 unique to ABI (Figure 5).

Functional analysis
Themes enrichment and pathway analysis was performed
using Ingenuity Pathways Analysis (IPA) 3.1 software
(Ingenuity® Systems) [35], a commercial database con-
taining manually annotated data for human protein-pro-
tein and functional interactions derived from the
literature.

Real-time QPCR
Total RNA was reverse-transcribed using Applied Biosys-
tems Reverse Transcription kit following manufacturers
instructions in a 25 μl reaction volume; resulting cDNA
was diluted in TE buffer to a final concentration of 5 mg/
ml, prior to PCR amplification using Applied Biosystems
"real time" version of the assay on the ABI Prism 7900
thermal-cycler. RT- PCR was done using Applied Biosys-
tems Sybr green Master Mix 1x, primers 300 nM, 12.5 ng
of cDNA in 12.5 μl of reaction volume; the reaction began
with 10 minutes at 95°C, followed by 40 cycles of 15 sec-
onds at 95°C and 45 seconds at 60°C.

PCR oligonucleotide primers were selected to specifically
amplify fragments of selected human genes using the
freely available Primer3 [49], and were synthesized in the
in house facility; complete gene sequences were down-
loaded from GeneBank NCBI website and specificity of
primers, whose sequence was designed in correspondence
with the exon junctions conserved in all known alterna-
tive spliced forms, was checked using NCBI BLAST [50].

The analysis of RT-PCR output data followed the manu-
facturer-suggested ΔΔCt method, that provides the target
gene expression value as unitless fold changes in the
unknown sample compared to a calibrator sample; both
unknown and calibrator sample target gene expressions

are normalized by the relative expression of housekeeping
genes (18S RNA gene, beta-actin, cyclophilin A, beta-glu-
coronidase).

The calibrator sample was obtained by reverse-transcrip-
tion of a mix of the twelve human tissue RNA contained
in the Clontech RNA Panel I and IV.

Statistical evaluation of treatment comparison has been
performed by t-test analysis using Spotfire DecisionSite®

8.0 [51].
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Human Genome Survey Microarray v1.0 chips used in this study and per-
forming the experiment.
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