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Abstract

Time course gene expression experiments are a popular means to infer co-expression. Many
methods have been proposed to cluster genes or to build networks based on similarity measures
of their expression dynamics. In this paper we apply a correlation based approach to network
reconstruction to three datasets of time series gene expression following system perturbation: I)
Conditional, Tamoxifen dependent, activation of the cMyc proto-oncogene in rat fibroblast; 2)
Genomic response to nutrition changes in D. melanogaster; 3) Patterns of gene activity as a
consequence of ageing occurring over a life-span time series (25y—90y) sampled from T-cells of
human donors.

We show that the three datasets undergo similar transitions from an "uncorrelated”" regime to a

g g
positively or negatively correlated one that is symptomatic of a shift from a "ground" or "basal"
state to a "polarized” state.

In addition, we show that a similar transition is conserved at the pathway level, and that this
information can be used for the construction of "meta-networks" where it is possible to assess new
relations among functionally distant sets of molecular functions.

Background expressed genes. By following the changes in expression at
Time series of gene expression data from high throughput  the genomic level, it is possible to identify groups of genes
experiments have been used to infer networks of co-  with a similar expression pattern. Most of the techniques
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currently used in functional genomics have been adapted
from machine learning and statistical inference. Some of
them generate networks of genes; others simply generate
clusters of genes. Examples of the latter are algorithms
based on Self-Organizing Maps (SOM) [1-4], Phylogenic-
Type Trees [5-10], agglomerative clustering and parti-
tional clustering. For network determination, techniques
have been developed based on differential equations [11],
Bayesian networks [12], hybrid petri networks [13],
Boolean regulatory networks [14,15].

Relevance networks [16,17] are a popular method for the
analysis of time series of expression levels. The basic idea
is to construct a network of similarity of the genes' expres-
sion patterns. Several similarity measures have been uti-
lized, such as correlation and mutual information. This
technique can then represent multiple connections
between genes, and capture negative as well as positive
correlations. Once the matrix containing the similarity
measure for all pairs of genes has been computed, a
threshold is used to define the links in the network. Net-
work validation can be obtained by permutation testing,
i.e. by randomly shuffling the time points independently
for each gene.

A similar approach has been applied to metabolic net-
works [18,19]. The authors computed metabolite correla-
tions to infer changes in regulation using samples from
different physiological states. On the other hand, we
focused on the analysis of time series of expression levels
for genes that were selected for differential expression
between treatment and control.

An alternative approach is offered by Graphical Gaussian
Models (GGM) that use partial correlation as a measure of
independence between two genes. Partial correlations are
related to the inverse of the correlation matrix, and in
GGMs missing edges indicate conditional independence.
One of the biggest problems with GGMs is that the
number of genes is usually much larger than the number
of samples (e.g. time points), such that the correlation
matrix is usually singular and cannot be inverted. Differ-
ent approaches have been proposed to circumvent this
problem: restrict the number of genes analyzed to less
than the number of samples [20-22]; use partial correla-
tion coefficients of limited order [23-25]; approach the
matrix inversion as an ill-posed inverse problem through
regularization methods (usually via empirical Bayes, such
as variance reduction) [26,27].

Although co-expression is not a direct indication of co-
regulation, it is a very useful tool that can be used to inter-
pret the effect of a perturbation in eliciting different phe-
notypes when combined with an ontology analysis. Here,
we use a correlation based method to generate co-expres-
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sion networks on three different datasets and we charac-
terize the change in its structural properties induced by the
system's perturbation. We then use a correlation-based
analysis to infer how the perturbation affects the system at
the level of metabolic and signalling pathways.

Results

We considered three datasets of time course gene expres-
sion arrays: 1) Conditional, Tamoxifen dependent, activa-
tion of the cMyc proto-oncogene in rat fibroblast; 2)
Genomic response to nutrition changes in D. mela-
nogaster; 3) Patterns of gene activity as a consequence of
ageing occurring over a life-span time series (25y-90y)
sampled from T-cells of human donors.

Gene selection
Due to the heterogeneous nature and properties of the
datasets, we selected the significant genes according to dif-
ferent criteria.

For the cMyc dataset we applied a two way ANOVA (time
and treatment as variability factors) to identify genes
whose expression pattern was significantly affected by
cMyc activation. With this method we identified a set of
1,191 significant genes out of a total of 8,799 [28].

The D. melanogaster diet arrays provide a higher resolution
dataset and genes were selected via GeneTrace, which
looks for change points in the time series of the expression
ratios between the two cohorts. GeneTrace identified
3,519 genes with significant change point. These results
showed that physiological response to nutrient uptake
involves a rapid change in transcriptional profile at a glo-
bal scale, and that most of the changes are small (81% of
the 3,519 ratios smaller than 1.5 fold).

For the human aging dataset we applied one way ANOVA
(with donors' age as variability factor) with a P value <
0.01 that resulted in a set of 768 probesets selected out of
a total of 14,688 probesets.

Correlation network analysis

When cMyc is activated by Tamoxifen, the activity profile
of the probesets clearly changes into a strongly correlated
regime. These findings are reflected in the histograms of
the correlation coefficients for the N-control and T-treat-
ment data sets (Figure 1) and in the main parameters of
the connectivity distributions obtained from the corre-
sponding adjacency matrices (Table 1). The adjacency
matrix characterizing the network was obtained by con-
sidering only the correlation coefficients whose absolute
value exceeded a threshold fixed between 0.95 and 0.99
(we remark that the lower threshold value was higher than
the value requested for a P < 0.05 statistical significance of
the correlation coefficients). The results shown in this
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paper were obtained for a threshold equal to 0.98, but k(1) = Zal For the T-treatment dataset the number of
similar results held for the [0.95-0.99] interval. These oy !

coefficients were set equal to 1, producing a symmetric . . .. .
d P g2 sy coefficients close to +1 or -1 increases significantly. This

adjacency matrix g,,. For each gene connectivity degree k L.
was defined as the total number of genes it was connected ﬁndlng. indicates that many of the 1,191 genes, wh.ose
expression levels over time were affected by tamoxifen

to, i.e.
stimulation, became either strongly correlated or anti-cor-
related.
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Figure |

Histogram of correlation coefficients of the gene expression time series between genes for the cMyc dataset.
The red line refers to the perturbed case, whereas the blue to the unperturbed one. (A) The perturbation induces a bimodal
distribution: genes tend to be either strongly correlated or anti-correlated, differing significantly from unperturbed case. (B)
Correlation coefficient histograms obtained after time reshuffling of the same genes do not show any significant difference.
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Table I: Network parameters. Comparison of principal network parameters for the N and T datasets

Network Parameters N T
kmin 0 0
Kmax 17 99
Mean, k 4.53 23.44
Standard deviation, o(k) 2.6l 23.97
Skewness k) 0.89 1.16
Clustering coefficient c(k) 0.43 0.45

In Figure 2 we show the histogram of the correlation coef-
ficients between all the genes selected with the change
point analysis in the D. melanogaster dataset. In the NY-

NY

0

—_—

NY - randomized

controls (top left) the histogram resembles a Gaussian
distribution slightly skewed towards positive correlation
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Figure 2

Histogram of the correlation coefficients of the gene expression time series between all the genes selected
with the change point analysis in the D. melanogaster dataset. In the NY-controls (top left) the histogram resembles a
Gaussian distribution slightly skewed towards positive correlation values. When considering the expression ratio Y-treatment
over NY-control (top right) the distribution becomes bimodal and genes tend to be either strongly correlated or anti-corre-
lated. These results have been validated by reshuffling the time points independently for each gene. In both cohorts this leads
to a Gaussian distribution (bottom row).
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Histogram of correlation coefficients of the gene expression time series between genes for the aging dataset.
The picture on the left (A) shows the histogram of the correlation coefficients for the set of 768 probesets selected with one-
way ANOVA, P value < 0.01. The picture on the right (B) is the histogram of the correlation coefficients for a set of 768
probesets randomly sampled from the whole dataset of 14688 probesets. A single-gene time reshuffling applied onto each data-

set produces a Gaussian distribution (data not shown).

over NY-control (top right) the distribution becomes
bimodal and genes tend to be either strongly correlated or
anti-correlated.

We used time reshuffling to test the time sequence
dependence of the results. By randomly shuffling the time
series for each gene separately, time relationships between
expression levels are broken, but the mean and standard
deviation for each gene are unaltered. Properties of the
gene network that truly depend on the expression level
dynamics should be significantly affected by a random
shuffling in time. The bottom row of Figure 2 shows the
result for the D. melanogaster data. In both cohorts this
leads to a Gaussian distribution for the values of the cor-
relation coefficients (Fig. 2 bottom row). Analogous
results have been obtained for the other two datasets (Fig.
1 and Fig. 3).

The role of noise was taken in to account by analyzing the
correlation coefficient distribution obtained from a data-
set of randomly generated vectors of the same size than
the experimental datasets (e.g. for the c-Myc dataset: a 5 x
1191 array of values sampled from the Standardized
Gaussian Distribution [29]). The resulting distribution
strictly resambles that obtained with the no Tamoxifen
dataset.

It is possible to identify a subnetwork of strongly corre-
lated/anticorrelated genes by selecting the probesets
based on the the treatment factor's strength in the ANOVA
analysis. This selection process can be characterized as a
transition from a unimodal (most genes are uncorrelated)
to a bi-modal behavior (genes are either correlated or anti-
correlated). Figure 4 shows how this process occurs by
decreasing the cutoff P value (P,,) used to select signifi-
cant genes in the cMyc dataset. The different panels show
the histogram of the correlation coefficients between the
expression values over time from the probesets in the
dataset N (left column) and T (right column) for decreas-
ing P,,.. The top row includes all the probesets used in the
analysis (P, > 1); the central row corresponds to an inter-
mediate threshold (P, = 0.2); the bottom row corre-
sponds to the lowest threshold (P, = 0.05). Notice that
the transition from unimodal to bimodal is only present
in the T dataset, while the N dataset in not affected even
when the cutoff P value is very small. Analogous results
have been obtained for the other two datasets.

Pathway analysis

We identified the pathways whose genes' expression was
significantly affected by the system perturbation. We per-
formed this analysis on the D. melanogaster diet dataset
and on the cMyc dataset which share the common feature
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Transition from unimodal to bimodal behavior for the cMyc data. The different panels show the histogram of the cor-
relation coefficients between the expression values over time from the probesets in the dataset N (left column) and T (right
column) for decreasing cutoff P values (P,,). The top row includes all the probesets used in the analysis (P, > |); the central
row corresponds to an intermediate threshold (P,, = 0.2); the bottom row corresponds to the lowest threshold (P,,. = 0.05).

of being generated through a direct perturbation of the
system. The problem in this analysis is that different path-
ways in the KEGG [30] database contain different num-
bers of genes, and that not all of them had been measured
due to limitations in the microarrays utilized. For this rea-
son we computed the 95% confidence limits for the pop-
ulation proportions (p) of affected genes in each pathway
(see Methods). We found that 45 pathways out of 110
included at least 20% of genes whose expression pattern
changed significantly upon re-feeding (see Table 2). For
the cMyc dataset, a smaller proportion of genes had been
measured in each pathway. Hence, we used a lower
threshold and found that 51 pathways out of 135 had
more than 5% of the measured genes with significant
changes (Table 3).

When we analyzed these pathways with the correlation
method described earlier, we found that the difference in
the correlation distributions between treated and
untreated cases is qualitatively the same as the one
observed in the entire pool of genes selected with the
change point analysis. Figure 5 shows this effect, as well as
the time course of the expression ratios for the Purine
metabolism pathway and the Target of Rapamycin (TOR)
pathway (notice that TOR does not compare in the Table
2, since it is not part of the KEGG database and was
instead manually annotated from the literature). The
same effect was observed in the cMyc dataset, as exempli-
fied in Figure 6 for five representative pathways: (A)
MAPK signaling, (B) calcium signaling, (C) focal adhe-
sion, (D) gap junction, (E) insulin/IGF signaling.
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Table 2: List of pathways for D. melanogaster dataset. List of pathways (from the KEGG database) that include at least 20% of genes
whose expression pattern has changed significantly upon re-feeding in the D. melanogaster dataset

KEGG ID

Pathway Description

path:dme00010
path:dme00030
path:dme00051
path:dme00052
path:dme00053
path:dme00062
path:dme0007 |
path:dme00120
path:dme00190
path:dme00230
path:dme00240
path:dme00251
path:dme00252
path:dme00260
path:dme00280
path:dme00290
path:dme00310
path:dme00330
path:dme00340
path:dme00350
path:dme00361
path:dme00380
path:dme00410
path:dme00440
path:dme00500
path:dme00562
path:dme00564
path:dme00600
path:dme00620
path:dme00624
path:dme00625
path:dme00632
path:dme00640
path:dme00650
path:dme00670
path:dme00740
path:dme00790
path:dme00903
path:dme00920
path:dme00930
path:dme00970
path:dme03020
path:dme03050
path:dme03060
path:dme04070

Glycolysis/Gluconeogenesis

Pentose phosphate pathway

Fructose and mannose metabolism
Galactose metabolism

Ascorbate and aldarate metabolism
Fatty acid biosynthesis (path 2)

Fatty acid metabolism

Bile acid biosynthesis

Oxidative phosphorylation

Purine metabolism

Pyrimidine metabolism

Glutamate metabolism

Alanine and aspartate metabolism
Glycine, serine and threonine metabolism
Valine, leucine and isoleucine degradation
Valine, leucine and isoleucine biosynthesis
Lysine degradation

Arginine and proline metabolism
Histidine metabolism

Tyrosine metabolism
Gamma-Hexachlorocyclohexane degradation
Tryptophan metabolism

Beta-Alanine metabolism
Aminophosphonate metabolism

Starch and sucrose metabolism

Inositol phosphate metabolism
Glycerophospholipid metabolism
Glycosphingolipid metabolism

Pyruvate metabolism

I- and 2- Methylnaphthalene degradation
Tetrachloroethene degradation
Benzoate degradation via CoA ligation
Propanoate metabolism

Butanoate metabolism

One carbon pool by folate

Riboflavin metabolism

Folate biosynthesis

Limonene and pinene degradation

Sulfur metabolism

Caprolactam degradation

Aminoacyl- tRNA biosynthesis

RNA polymerase

Proteasome

Protein export

Phosphatidylinositol signaling system

Discussion

In all three data sets different and specific genes are
affected by the perturbations but give rise to a common
correlation profile (Figures 1, 2, 3). This suggests that,
despite their specificity, the global changes in gene expres-
sion follow a pattern that is largely independent from the
data sets. This results could be explained by assuming that
temporal changes in gene expression in biological com-
plex systems is scale-independent and characterized by
changes in an initial triggering core of genes (specific to

the perturbation and the cell type) followed by a propaga-
tion to other genes.

In particular, in the cMyc dataset we found that the corre-
lation method identifies a list of genes containing many of
the genes found by O'Connell et al. [31], as well as many
genes that, to our knowledge, have not been identified
before. This indicates the possibility that the cMyc regula-
tory network may be much larger than currently
described. To rule out the presence of undetectable corre-
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Histogram of the correlation coefficients between all the genes selected within the purine synthesis pathway
(top row) and Tor pathway (bottom row). The expression ratios for the single genes are shown in the rightmost panels.
The difference in the correlation distributions between Y-treatment and NY-control is qualitatively the same as the one
observed in the entire pool of genes selected with the change point analysis (Figure 2).

lations between genes in the unperturbed state (i.e. when
cMyc is not active), we performed a one-way analysis of
variance on the unperturbed dataset to detect genes whose
expression level changes significantly over time. Less than
3% of the genes was selected for differential expression
over time, compared to more than 10% for the perturbed
dataset (P < 0.05).

For the D. melanogaster dataset our analysis showed that
refeeding induces a change in the expression patterns of
thousands of genes. Since this analysis was performed at
saturation, we estimate there are few false positives and
few undetected changes. The analysis of the correlation
between expression patterns reveals that many genes
respond to re-feeding in a coordinated manner. In fact,
upon re-feeding, the activity profile of the genes clearly
changes to a stronglycorrelated/anticorrelated regime.

An extension of this method, based on the cross-correla-
tion between genes belonging to different pathways
allowed us to build a network of relationships between
pathways. In Figure 7 we show changes of a five-nodes
network of selected genes when cMyc is activated. The five
pathways, MAPK signaling, calcium signaling (CS), focal
adhesion (FA), gap junction (GJ), insulin/IGF signaling
(INS/IGF), were among those selected for the large pro-
portion of significant genes (Table 3). The unperturbed
state is characterized by a dominance of random correla-
tions between pathways whereas after the perturbation we
observed the emergence of positive and negative correla-
tion regimes (Figure 6).

The MAPK showed a marked increase in negative correla-
tion with CS and INS/IGF, a doubling in positive correla-
tion with FA and GJ. CS increased the number of

Page 8 of 14

(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 1):S16

http://www.biomedcentral.com/1471-2105/8/S1/S16

c-Myc OFF c-Myc ON Expression Ratio
0.1 0.1 5
5 5 o
“2 bl =l |||I ==
L L ~ >
Juinnn, - ikl ¢ <<=
- 0 1 -1 Q 1 0 10 20
0.1 0.1 4
5 S
(B) g 0.05 g 0.05
LC LT
0
-1 0 1 -1 0 1 20
01 0.1
S S o
(C)g 005 § 005 S 54/\‘
[T [T
0 0 0 =  —]
-1 0 1 -1 0 1 0 10 20
0.1 0.1 2
5 5 o
(D) g 0.05 S 0.05 B 1 p——t
=, 10 ol ook 10 = e 0 B
0 0 0
-1 0 1 -1 0 1 0 10 20
0.1 — 0.1 4
S S 2 ;
L L —_
o, = il |
-1 0 1 -1 0 1 0 10 20
Correlation Correlation Time (hours)

Figure 6

Histogram of the correlation coefficients between all the genes for selected pathways. (A) MAPK signaling, (B) cal-
cium signaling, (C) focal adhesion, (D) gap junction, (E) insulin/IGF signaling. The expression ratios for the single genes in each

pathway are shown in the rightmost panels. The difference in the correlation distributions between c-Myc-ON-treatment (cen-
tral panel) and c-Myc-OFF-control (left panel) is qualitatively the same as the one observed in the entire pool of genes selected

with the ANOVA analysis (Fig. 1).

negatively correlated genes with FA and doubled the
number of both positively and negatively correlated genes
with GJ. However there is a similar augment of positive
and negative correlation between CS and INS/IGF. FA
shows a very large increase in correlation with GJ and a
large increase in the anticorrelation with INS/IGF. On the
contrary, GJ shows a very large increase in the anticorrela-
tion with INS/IGF accompanied to a marked increase in
correlation. It appears that MAPK, FA and GJ become
more correlated between them and more anticorrelated
with CS and INS/IGF.

Overall, our analysis revealed the emergence of positive
links between MAPK, FA and GJ in following cMyc activa-
tion, an interesting insight given that the relation between
electrical cell properties and the signaling system is, with-

out a doubt, an important step for tumor establishment
and progression. The increase in the anticorrelation of
MAPK, FA and GJ with CS and INS/IGF may be interpreted
as a new kind of control by CS and INS/IGF of the other
three pathways.

Conclusion

Three different systems sharing the time series experimen-
tal design after a perturbation (cMyc conditional activa-
tion, refeeding after caloric restriction and effect of time in
young and old donors) have been examined.

At the genomic scale, we showed that in all three datasets
the correlation regime between genes selected by statisti-
cal significance analysis follow a similar behavior, which
is compatible with the emergence of coherence in the gene
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Figure 7

Network between the 5 selected pathways of Fig in the case of C-MYC off. All these pathways show weak co-
expression (dotted lines). (A) When cMyc- is on, pathways show positive and negative correlations (B). The red and blue

arrows denote positive and negative co-regulation, respectively. The thickness of the arrows is proportional to the magnitude,
or absolute value, of the co-expression.
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Table 3: List of pathways for cMyc dataset. List of pathways (from KEGG database) that include at least 5% of genes whose expression
pattern has changed significantly upon cMyc activation

KEGG ID

Pathway Description

KEGG ID

Pathway Description

path:rno00020
path:rno0005|
path:rno00052
path:rno00062
path:rno0007 |
path:rno00072
path:rno00230
path:rno00240
path:rno00280
path:rno00310
path:rno00340
path:rno00350
path:rno00380
path:rno00440
path:rno00480
path:rno00510
path:rno0056 |
path:rno00564
path:rno00590
path:rno00620
path:rno00624
path:rno00630
path:rno00650
path:rno00720
path:rno00790
path:rno00903

Citrate cycle (TCA cycle)

Fructose and mannose metabolism
Galactose metabolism

Fatty acid biosynthesis (path 2)

Fatty acid metabolism

Synthesis and degradation of ketone bodies
Purine metabolism

Pyrimidine metabolism

Valine, leucine and isoleucine degradation
Lysine degradation

Histidine metabolism

Tyrosine metabolism

Tryptophan metabolism
Aminophosphonate metabolism
Glutathione metabolism

N-Glycan biosynthesis

Glycerolipid metabolism
Glycerophospholipid metabolism
Prostaglandin and leukotriene metabolism
Pyruvate metabolism

|- and 2-Methylnaphthalene degradation
Glyoxylate and dicarboxylate metabolism
Butanoate metabolism

Reductive carboxylate cycle (CO2 fixation)
Folate biosynthesis

Limonene and pinene degradation

path:rno00920
path:rno01510
path:rno03010
path:rno03020
path:rno03022
path:rno03030
path:rno04010
path:rno04020
path:rno04070
path:rno04110
path:rno04210
path:rno04310
path:rno04510
path:rno04520
path:rno04530
path:rno04540
path:rno04620
path:rno04630
path:rno04810
path:rno04910
path:rno05010
path:rno05020
path:rno05030
path:rno05040
path:rno05060

Sulfur metabolism
Neurodegenerative Disorders
Ribosome

RNA polymerase

Basal transcription factors

DNA polymerase

MAPK signaling pathway

Calcium signaling pathway
Phosphatidylinositol signaling system
Cell cycle

Apoptosis

Whnt signaling pathway

Focal adhesion

Adherens junction

Tight junction

Gap junction

Toll-like receptor signaling pathway
Jak-STAT signaling pathway
Regulation of actin cytoskeleton
Insulin signaling pathway
Alzheimer's disease

Parkinson's disease

Amyotrophic lateral sclerosis (ALS)
Huntington's disease

Prion disease

expression dynamics following cell perturbation. We also
showed that this behavior is conserved at the pathways
scale for pathways that have been significantly affected by
the perturbation.

In particular, our analysis revealed the emergence of links
between a core set of pathways in the cMyc dataset which
may play an important role for the comprehension of the
early phenotypical changes following cMyc activation.

This method was successful in identifying changes in gene
expression profiles related to the acute response to a per-
turbation both in model systems and in humans as well as
in revealing the centrality and importance of selected
pathways by its multiscale generalization.

Methods

Microarray datasets

I) cMyc dataset

Two gene expression data sets were extracted from the set
of microarray experiments based on genetically engi-
neered rat cell lines [31]. The first data set (N data set)
contains the gene expression data for the ¢ -myc/- MycER
cell line treated with vehicle (ethanol) only. The second
data set (T data set) contains the gene expression data col-

lected after the addition of tamoxifen. Binding of
tamoxifen to the estrogen receptor domain elicits a con-
formational change that allows the fusion protein to
migrate to the nucleus and act as a transcription factor.
Samples were harvested at five time points after the addi-
tion of tamoxifen to the culture medium: 1, 2, 4, 8, and 16
h. The entire experiment was repeated on three separate
occasions, providing three independent measurements
for each gene and each time point. Expression profiling
was done by using the Affymetrix platform and U34A
Gene Chips.

2) D. melanogaster diet dataset

Newly enclosed virgin females were maintained in yeast-
free media until 4 days old and then transferred either to
media with yeast (Y-treatment) or to control media with-
out yeast (NY-control). Samples were collected every hour
for the following 12 hours. Four additional samples were
collected prior to refeeding and arbitrarily designated -4, -
3, -2, and -1. Synchronization of the physiological state
was obtained by imposing diet restriction in third instars.
Affymetric gene chips were used to measure mRNA abun-
dance at each hour for both Y-treatment and NY-controls.
A time-ordered sequence of expression ratios was then
computed for each gene in the array [32].
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3) Human aging dataset

T-cells were extracted from peripheral blood of 20 healthy
male human donors. Donors were age-stratified into 4
groups of 5 subjects each: 25-35 years old, 40-50 years
old, 55-65 years old and 70-80 years old respectively.
Custom-made microarrays (Unilever Labs, Colworth UK)
with about 19000 human probes were performed in
duplicate (dye-swap) for each subject.

Probeset selection

I) cMyc dataset

A full factorial ANOVA was applied to each of the 8,799
probesets to identify those that significantly changed in
their expression level in time between the two conditions
(data set N versus data set T). Probesets with a P value cor-
responding to the change-in-treatment factor < 0.05 were
considered to be significantly affected by the treatment
(i-e., activation of Myc by tamoxifen). A total of 1,191
genes were selected using this criterion.

2) D. melanogaster diet dataset

When considering high resolution time series, change-
point analysis [33] is a powerful tool for detecting subtle
changes; it is robust to outliers and can control the overall
error rate. The Tatar group has extended this technique to
statistically detect changes for time-series microarray data
(GeneTrace [32]). For each gene's time-series, the algo-
rithm returns an estimated change-point (CUSUM esti-
mator) and the two-tailed probability of this statistic from
a sample of 10,000 random permutations across all of the
ordered expression ratios. GeneTrace identified 3,519
genes with significant change point (significance thresh-
old = 0.005, expected false positive inferences 70 out of
14,000).

3) Human aging dataset

One-way ANOVA was applied to each of the 14,688
probesets to identify those that significantly change their
expression level in time. With a P value of 0.01, 768 genes
were selected for further analysis.

Correlation analysis

The similarity measure for the expression dynamics of two
genes within the same data set is given by the correlation
between the two expression-level time series. For a given
data set, if x;; is the expression level of a gene with label |
at time j, then the similarity between two genes with labels
I 'and r, respectively, is given by:

25— ) (e — 1)

Cr = ’
00,

http://www.biomedcentral.com/1471-2105/8/S1/S16

where g and g, are the averages in time of the expression
levels for the two genes, and ojand o; are their standard
deviations.

Time reshuffling was used to test the time sequence
dependence of the results obtained by the two techniques.
By randomly shuffling the time series for each gene sepa-
rately, time relationships between expression levels are
broken, but the mean and standard deviation for each
gene are unaltered. Properties of the gene network that
truly depend on the expression level dynamics should be
significantly affected by a random shuffling in time.

Pathway analysis

We ranked pathways based on the percentage of genes
selected by the significance analysis in each one of them.
To account for the different number of measured genes in
different pathways, we computed the 95% confidence
limits for the population proportions (p) of significant
genes in each pathway. Using a relationship between the
F distribution and the binomial distribution [34], the
confidence interval can be computed for the binomial
parameter p [35-37]. The lower confidence limit L, and
the upper confidence limit L, become:

L= X » 1 =2n-X+1)v, =2X
X+ (Tl— X+ 1)F(X(2)rV1'V2
X+1)Ey )7 v
2 (X+DE)vi v V] =2AX+1)v) = 2n—X)

n—X+ (X + l)FOC(Z),V{ V5

where n is the total number of genes measured in a path-
way, and X is the number of significant genes in that path-
way.

We selected a 20% threshold for the Drosophila array and
5% threshold for the rat array. In fact, the Drosophila
array contained 14,688 probesets corresponding to more
than 90% of the fly's genome. Hence the analysis was
done at saturation. The rat array used in the cMyc experi-
ments contained 8,799 probesets corresponding to
roughly 1/3 of the rat's genome. Requiring a 20% change
in the cMyc experiment would result in a very small list of
pathways. However, it is well known that cMyc affects the
expression of a large pool of genes (directly or indirectly).
Our interpretation is that the same cMyc experiment done
at saturation would reflect this at the pathway level as
well, i.e. many pathways would more than 20% of the
genes with a significant change in expression profile over
time.

Links between selected pathways were generated by com-
puting the correlation of the gene expression time series
between genes in different pathways and generating a
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block-correlation matrix with entries Cl)’(-P that are
i

respectively the correlation of the gene expression time
series between the genes in pathways P;and P;.

X X X

rn Cre, 7 Cpp,
X X X

P2Pl CPZPZ CPZPm
X X X

Pmpl PmPZ Pum _‘
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