
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Fast computation of distance estimators
Isaac Elias* and Jens Lagergren

Address: Dept. of Numerical Analysis and Computer Science, Royal Institute of Technology, Stockholm, SE-106 91, Sweden

Email: Isaac Elias* - isaac@csc.kth.se; Jens Lagergren - jensl@csc.kth.se

* Corresponding author

Abstract
Background: Some distance methods are among the most commonly used methods for
reconstructing phylogenetic trees from sequence data. The input to a distance method is a distance
matrix, containing estimated pairwise distances between all pairs of taxa. Distance methods
themselves are often fast, e.g., the famous and popular Neighbor Joining (NJ) algorithm
reconstructs a phylogeny of n taxa in time O(n3). Unfortunately, the fastest practical algorithms
known for Computing the distance matrix, from n sequences of length l, takes time proportional
to l·n2. Since the sequence length typically is much larger than the number of taxa, the distance
estimation is the bottleneck in phylogeny reconstruction. This bottleneck is especially apparent in
reconstruction of large phylogenies or in applications where many trees have to be reconstructed,
e.g., bootstrapping and genome wide applications.

Results: We give an advanced algorithm for Computing the number of mutational events between
DNA sequences which is significantly faster than both Phylip and Paup. Moreover, we give a new
method for estimating pairwise distances between sequences which contain ambiguity Symbols.
This new method is shown to be more accurate as well as faster than earlier methods.

Conclusion: Our novel algorithm for Computing distance estimators provides a valuable tool in
phylogeny reconstruction. Since the running time of our distance estimation algorithm is
comparable to that of most distance methods, the previous bottleneck is removed. All distance
methods, such as NJ, require a distance matrix as input and, hence, our novel algorithm significantly
improves the overall running time of all distance methods. In particular, we show for real world
biological applications how the running time of phylogeny reconstruction using NJ is improved from
a matter of hours to a matter of seconds.

Background
Today's, and tomorrow's even greater, availability of
sequence data provides unprecedented opportunities to
understand evolutionary relations; however, the increas-
ing wealth of data also poses challenges to computational
methods for data analysis and, thereby also, to algorithm
design. The number of sequences involved in an analysis
may be very large, since a large number of species or a

large gene family may be considered – some species har-
bor hundreds of members of some gene families. The ulti-
mate goal in species tree construction is to obtain the tree
of life, to the extent it exists. As the size of the phylogenies
being reconstructed grows, the demand for long
sequences increases, which often is satisfied by concatena-
tion of genes. In other applications many trees have to be
reconstructed. For instance, comparative genomics studies

Published: 13 March 2007

BMC Bioinformatics 2007, 8:89 doi:10.1186/1471-2105-8-89

Received: 17 August 2006
Accepted: 13 March 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/89

© 2007 Elias and Lagergren; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/89
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17355623
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
often involves constructing gene trees for all gene families
in a number of genomes, i.e., often thousands of families.
Also bootstrapping, which commonly is used to obtain
significance values for a single family, requires many
reconstructions.

There are two major approaches to phylogenetic tree
reconstruction; distance methods and character based
methods (such as likelihood and parsimony). Although
this paper is concerned with tree reconstruction through
distance methods, character based methods are many
times the preferred approach. However, since most dis-
tance methods are several orders of magnitude faster than
character based methods, distance methods are preferred
when it comes to extensive evolutionary analysis.

In general, distance methods first estimate pairwise evolu-
tionary distances of the species, represent them using a
distance matrix, and, then, compute the tree, or attempt to
compute the tree, that realizes the given distance matrix as
well as possible. The Neighbor Joining algorithm (NJ) [1]
is a distance method, running in time Θ(n3), where n is
the number of sequences, which due to its accuracy and
speed has been embraced by the phylogenetic Commu-
nity. However, prior to running the distance method the
distance matrix has to be computed from the sequences.
Although the distance matrix in theory can be computed
in time O(l·n1.376), where l is the sequence length, see [2],
the only practical algorithms require time Ω(l·n2). There-
fore, the overall running time of tree reconstruction with
NJ is Ω(l·n2 + n3). Since the sequence length often is larger
than the number of taxa, Computing the distance matrix
is the bottleneck. In this paper, we remove this bottleneck
by presenting an algorithm which in practice has running
time comparable to N.J.

There are various Markov models of sequence evolution
describing how sites evolve, typically, independently and
identically from the root down toward the leaves. For
example, Kimura's two-parameter model (K2P) [3] distin-
guishes between two types of events: transitions which are
changes within the purine (A and G) and pyrimidine (C
and T) groups and transversions which are changes
between the groups. The aim in distance estimation is to
find the most likely (ML) estimate of the actual number of
mutational events given the number of observed events.
For the Kimura two-parameter model, this is done by
counting the number of transitions and transversions
between each pair of sequences and thereafter optimizing
the likelihood function, using a closed formula, to attain
the corrected distances. The straightforward way of count-
ing the number of observed events between two
sequences of length l takes Ω(l) time. Therefore, the
straightforward algorithm of Computing all pairwise dis-
tances between n sequences has running time Θ(l·n2).

In this paper, a novel divide and conquer algorithm for
Computing the number of observed events is presented.
The algorithm computes the same function and has the
same asymptotic running time as the straightforward
algorithm. In practice, however, it is significantly faster
than Phylip [4] and Paup [5]. We show on both simulated
and real biological data how our algorithm speeds up the
reconstruction using NJ from a matter of many minutes
and even hours to a matter of seconds. It is important to
note that, since the computation of the distance matrix is
a prerequisite for all distance methods, our algorithm pro-
vides an increase in speed for all distance methods, i.e.,
not only NJ.

In addition, we present two new methods for handling, so
called, ambiguity Symbols, i.e., bases of uncertain iden-
tity. Such symbols occur naturally in the form of single
nucleotide polymorphisms (SNPs) and also as a result of
failure to resolve bases during sequencing. Ambiguity
symbols complicates matters in distance estimation and it
is not obvious how to include them in the likelihood
computations. We show on simulated data that our new
methods for ambiguity symbols are significantly more
accurate than earlier methods. This is, to the best of our
knowledge, the first work which evaluates the accuracy of
different ambiguity approaches.

Results and discussion
A novel algorithm for computing the number of mutational
events
In distance estimation, a specific model of sequence evo-
lution is used to derive an estimate of the true mutational
distance between two sequences from the number of
observed mutational events. Once the observed muta-
tional events have been counted, the ML estimate of the
true mutational distance is computed in constant time,
either by using a closed correction formula or by using an
iterative method for optimizing the likelihood function.
Our novel algorithm takes two DNA sequences as input
and counts the number of purine-transitions, pyrimidine-
transitions, and transversions. These events are sufficient
for Computing the estimates with respect to the four most
common models of sequence evolution: the Jukes-Cantor
model [6], Kimura's two-parameter model [3], the Felsenstein-
84 model [7], and the Tamura-Nei model [8].

Our algorithm is based on an elaborate divide and con-
quer and bit-fiddling strategy, i.e., the problem is divided
into subproblems which are solved and the Solutions are
combined using the bitwise representation and low-level
tricks. It is important to note that our algorithm computes
the number of observed events exactly. In other words, it
solves the same computational problem, i.e., it computes
exactly the same value as previous algorithms for Com-
puting the distance estimators; however, it does so signif-
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
icantly faster. In the remainder of this section, we show
using both simulated and real biological data, that the
speed of our algorithm, fastdist, outshines that of the dis-
tance estimation implemented in both Phylip [4]and
Paup [5]. Although this implies that fastdist is a useful
tool it does not exclude the possibility that other imple-
mentations of the naive approach can be faster. We there-
fore implemented our own optimized version of the naive
approach and compared also its running time with fast-
dist.

Running time on simulated data – the hidden factor
The computational complexity of our distance estimation
algorithm is O(n2·l), where n is the number of species and
l the sequence length. This is the same complexity as that
of the algorithm in the Phylip package and that of our
implementation of the naive approach. However, the dif-
ferences between the hidden constant in the big-O expres-
sions of the methods are very significant. To estimate the
ratio between the hidden constants, we ran the programs
(The programs were run on a PowerMac dual Dual-core
Xeon (Woodcrest), 2.66 GHz, 4 Mb cache per chip, 2 Gb
dual channel RAM, 1066 MHz front side bus.) on datasets
of 100 taxa and varied the sequences length. The test
results, which are displayed in Table 1, show that fastdist
is a factor 8.5–11.5 times faster than our implementation
of the naive approach and a factor 180–300 times faster
than Phylip, depending on whether reading the sequences
is included in the comparison. With respect to Paup our
algorithm is about 90 times faster on sequences of length
10,000, about 900 times faster on sequences of length

100,000, and more than 8000 times faster on sequences
of length l million. It turns out that Paup adopts a pre-
processing that has runtime complexity O(n2·l2) (David
Swofford intends to make this preprocessing more effi-
cient). Also notice that our own implementation of the
naive algorithm is significantly faster than both Phylip
and Paup.

Running Neighbor Joining on a distance matrix of 100
taxa takes no more than 0.01 seconds. Therefore, even
when a fairly moderate sequence length of 10,000 nucle-
otides is considered, overall, it takes 0.04 seconds to
reconstruct the tree using fastdist+NJ, 5.48 seconds using
Phylip+NJ, and 2.70 seconds with Paup+NJ.

Running time on real biological data
Above we reported experiments on large simulated data-
sets. At present there are, however, no real biological data-
sets available of such sizes. We have selected two large
datasets from the literature; one containing 29 RNA
sequences of length 9168 from the Hepatitis C Virus [9]
and one containing 146 copies of a nuclear gene in birds
with a sequence length of 2974 [10]. We decided to per-
form 1000 bootstrap evaluations for both datasets. As can
be seen in Table 2, our new algorithm is significantly
faster than Phylip on both datasets. The reader should
notice that fastdist+NJ performs the task in a matter of sec-
onds while Phylip+NJ takes many minutes or even hours.
Also notice that although our own implementation of the
naive algorithm is slower than fastdist it is still much
faster than Phylip.

Table 1: Runtime comparison on simulated data.

Seq. Length Phylip Paup Naive Fastdist

10,000 5.47 s 2.69 s 0.24 s 0.03 s
100,000 60.2 s 4 m25 s 2.32 s 0.27 s
1,000,000 - 371 m50 s 23.2 s 2.71 s

Comparing the running time o Phylip s dnadist, Paup, our optimized Implementation of the naive approach, and the new algorithm fastdist. The
test's are run on simulated data with 100 species. It should be noted that Phylip could not be run on sequences of length 1,000,000. Except for Paup
which uses the analytic formula, the programs computed the K2P distance with a globally fixed transition transversion ratio of 2. Reconstructing a
tree of 100 taxa using NJ takes no more than 0.01 seconds. Moreover, simply reading a file containing 100 sequences of length one million with the
wc unix utility takes 0.75 seconds.

Table 2: Runtime comparison on biological data.

Dataset Phylip Naive Fastdist NJ

Birds [10] 119 m40 s 257.4 s 35.12 s 20.4 s
Hepatitis C [9] 23 m 25.9 s 6.37 s 0.35 s

Comparing the running time of Phylip's dnadist, our optimized implementation of the naive approach, and the new algorithm fastdist (without the
resolution technique) on real world biological datasets when 1000 bootstrap evaluations were performed. The NJ column describes the time it
takes to reconstruct the 1000 trees using the implementation of [2]. The dataset Birds [10] contains 146 copies of a nuclear gene in birds with a
sequence length of 2974. The dataset Hepatitis C [9] contains 29 RNA sequences of length 9168 from the Hepatitis C Virus. Using the wc unix
utility for reading the file containing 1000 bootstrapped datasets of [10] takes 4.35 seconds and reading the datasets of [9] takes 2.66 seconds.
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
Unfortunately, it is not possible to run Paup on a file con-
taining multiple datasets. However, it seems reasonable to
assume, considering its performance on simulated data-
sets, that Paup should have approximately half the run-
ning time of Phylip.

A novel method of handling ambiguity Symbols
Ambiguity Symbols, i.e., bases of uncertain identity, compli-
cates matters in sequence comparison. Such Symbols
occur naturally in the form of single nucleotide polymor-
phisms (SNPs) and also as a result of failure to resolve
bases during sequencing. Even though ambiguity Sym-
bols are rare they are usually not omitted from the analy-
sis but instead treated in one of two ways, either as
Swofford [5] or as Felsenstein [11]. We suggest two novel
methods for handling ambiguity Symbols: one general
method for estimating pairwise distances and one method
for adjusting the probability distribution of the resolu-
tions in each ambiguity. The default in our program fast-
dist is to combine these two methods.

We evaluated the accuracy of the four methods: Swofford
[5], Felsenstein [11], our general method, and the default
in fastdist. As detailed in the Methods section, we first gen-
erated sequence data without ambiguities and thereafter
we inserted ambiguity Symbols at random. The accuracy
was then measured by Computing matrix norms (L1, L2,
and L∞) between the ML estimate of the data without
ambiguities and the matrices computed by the four differ-
ent methods on the data with ambiguities.

As can be seen in Figure 1, the fastdist default, denoted
fastdist in the figure, is significantly more accurate than
the other three methods. Our general method, denoted
noresolve, and Swofford's method have almost identical
accuracy. Felsenstein's method, denoted Phylip, is slightly
less accurate than Swofford's and our general method.
Although Swofford's approach and our general method
have similar accuracy our method requires less informa-
tion and time to be computed. In particular, our method
for handling ambiguities can be used together with our
divide and conquer algorithm for fast computation of
observed mutational events.

Conclusion
Reconstruction of phylogenies with distance methods,
such as NJ, is done by first Computing a distance matrix
and thereafter applying the distance method. While NJ
and other distance methods are fast, the computation of
the distance matrix is slow. In this paper, we provide a
very fast algorithm for Computing the distance matrix.
This algorithm provides a valuable tool in tree reconstruc-
tion by improving the overall running time of distance
methods by a huge factor; compared to both Phylip and
Paup. We also present two novel methods for handling

ambiguity symbols which, when combined together, pro-
vide significantly more accurate estimation than earlier
methods.

The improvement our new algorithm gives is especially
apparent in genome wide applications or when perform-
ing significance testing through bootstrapping. Using our
algorithm it is possible to perform extensive bootstrap-
ping in a matter of seconds, even for very large datasets.
This facilitates extensive bootstrapping in other applica-
tions, e.g., for Computing initial guesses for other types of
reconstruction algorithms, such as likelihood heuristics.

Methods
Supported models of sequence evolution
Our novel divide and conquer algorithm for distance esti-
mation takes two DNA sequences as input and counts the
number of purine-transitions, pyrimidine-transitions,
and transversions. The number of such events are suffi-
cient for estimating distances with respect to the four most
common models of sequence evolution: the Jukes-Cantor
model [6], Kimura's two-parameter model [3], the Felsenstein-
84 model [7], and the Tamura-Nei model [8]. In this paper,
the algorithms are presented with respect to Kimura's two-
parameter model. However, all methods are generalizable
also to the Tamura-Nei model, which is the most general
model supported by the divide and conquer algorithm.
We briefly introduce Kimura's two-parameter model and
refer the reader to Felsenstein's phylogeny book [11] for
an excellent exposition on distance estimators, as well as
phylogeny in general.

Kimura's two-parameter model [3], Figure 2, is a general-
ization of the Jukes-Cantor model. This model distin-
guishes between two types of state transitions; transitions
which are changes within the purine (A and T) and pyri-
midine (C and G) groups and transversions which are
changes between the groups. The following is a closed for-
mula for the ML estimate of the evolutionary distance
between two sequences s1 and s2 with respect to the
Kimura two-parameter model

where P and Q are the observed rates of transitions and
transversions, respectively, between the two sequences.
One common technique in phylogenetic analysis is to fix
the transition/transversion ratio. This is often a good idea,
since all sequences have evolved under the same model
and, therefore, a greater overall consistency can be
achieved between different pairwise comparisons. Unfor-
tunately, there are no known closed formulas for estimat-
ing the distance when the ratio is fixed. Instead, the ML
distance is computed using iterative methods. We investi-

K P s s
P Q Q

2
1
2

1
1 2

1
4

1
1 21 2(,) ln ln ,= ⋅

− −
⎛

⎝
⎜

⎞

⎠
⎟ + ⋅

−
⎛

⎝
⎜

⎞

⎠
⎟

Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
gated three such methods; binary search, secant-method,
and Newton-Raphson, and have found that the secant-
method is the more efficient.

New methods for handling ambiguity Symbols
Earlier methods for handling ambiguity Symbols
To the best of our knowledge, there are two methods for
handling ambiguity Symbols; that of Swofford [5] and
that of Felsenstein [11]. The former can be explained by
the following example. Suppose that a site has an A in one

sequence and an R, representing a purine, in the other
sequence. Suppose, further, that there are 90 sites in
which an A is aligned with an A and that there are 10 sites
in which an A is aligned with a G. Swofford's method is to
have the ambiguous site contribute with 10/100 = 0.1 to
the number of observed purine-transitions, i.e. A ↔ G
Thereafter, the estimated distance is given by optimizing
the likelihood function. Felsenstein's method deals with
the ambiguities directly by incorporating them in the like-
lihood function. The likelihood in a site is given by the

Accuracy of ambiguity approachesFigure 1
Accuracy of ambiguity approaches. Comparison of four different methods for handling ambiguity Symbols on sequences
of length 1000 with 2% ambiguities inserted uniformly at random. Each method was used to compute a distance matrix for the
data containing ambiguities. Thereafter, three different matrix norms were computed from the distance matrices computed by
the methods to the correct distance matrix, i.e., the matrix computed from the data before ambiguities were inserted. The
fourth graph shows the Robinson-Foulds distance between the model tree and the Neighbor Joining trees computed from the
different distance matrices. To get statistically sound results the average was taken over 20 runs. fastdist is the combined
method described in Figure 3. noresolve is the general technique without nearest neighbor resolution. Swofford is the method
suggested by Swofford. Phylip is the Output from the Phylip package which uses Felsenstein's approach. original represents the
accuracy of NJ on the data before the ambiguities were inserted (notice how NJ for some cases is more accurate on data with
ambiguities).
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
joint probability of all possible resolutions of an ambigu-
ity. The ML distance is then given in the regular way by
optimizing the likelihood function.

A new general method for handling ambiguity Symbols
Our novel general method for handling ambiguity Sym-
bols proceeds in two steps. The first step is to compute the
ML estimate of the model parameters based on the unam-
biguous sites only. In Kimura's two-parameter model
there are two parameters to compute; the probability of
transition, tα, and the probability of transversion, tβ,
where α and β are from Figure 2 and t is the time. To do
this, we first count the number of occurring transition and
transversions. The model parameters can thereafter be
estimated by optimizing the likelihood function. Once
the ML-estimates of tα and tβ have been computed it is
possible to compute the probability of observing the two
types of mutational events: the probability of observing a
transversion,

and the probability of observing a transition,

It follows that the probability of not observing a change is

poid = 1 - potv - pots.

In the second step, we compute the number of observed
transitions and transversions by taking also the ambigu-
ous sites into account. Each ambiguity symbol is repre-
sented by a prior distribution of four probabilities, one for
each nucleotide. In Kimura's two-parameter model, where
all nucleotides are equally likely, it is natural to use a prior
which is uniform on the possible resolutions of the ambi-
guity symbol (Notice how this representation allows for
non-uniform distributions of the probabilities such as in
the Tamura-Nei model. This is also utilized by our resolu-
tion technique below.). For example, the ambiguity sym-
bol R is represented by the prior distribution {pA = 0.5, pC
= 0, pG = 0.5, pT = 0}.

Now assume that we would like to compute the contribu-
tion of one ambiguous site to the observed number of

events. We denote by and the prior distributions of

the two ambiguity symbols in the ambiguous site, i.e.,

represents the probability of observing an A in the ambig-
uous site of first sequence. The posterior probability of
each mutational event can then be computed as follows;

The contribution to the number of observed transitions is

now given by and the contribution to the

number of observed transversions by That is, the

contribution is given by normalized posterior probabili-
ties. The ML estimate of the distance can now be com-
puted by maximizing the likelihood function using the
new observed number of mutational events.

Example of calculations Assume that there are two
sequences of length 101. One of the sequences has an R in
one of the sites and the other sequence has an A in the
same site. In the other 100 positions there are 4 transver-
sions and 10 transitions. For simplicity we compute the
model parameters without using a fixed transition/trans-
version ratio, i.e. potv = 0.04, pots = 0.1, and poid = 0.86. Con-
tinuing we get that q = pots·0.25, r = potv·0, and i =
poid·0.25. Thus the total number of observed transitions
becomes 10.106.

p eotv
t= − −1

2
1 4(),β

p e eots
t t= − +− + −1

4
1 2 2 4().()α β β

dx
1 dx

2

dA
1

q p d d d d d d d d

r p d d d d d

ots
A G G A C T T C

otv
A C C A

= ⋅ + + +()
= ⋅ + +

1 2 1 2 1 2 1 2

1 2 1 2 11 2 1 2 1 2 1 2 1 2 1 2

1 2

A T T A G C C G G T T G

oid
A A

d d d d d d d d d d d

i p d d d

+ + + + +()
= ⋅ + 11 2 1 2 1 2

C C G G T Td d d d d+ +()

q

i q r+ +

r

i q r+ +

Kimura's two-parameter modelFigure 2
Kimura's two-parameter model. Kimura's two-parame-
ter model, with α as the transition probability and β as the
transversion probability. In the Jukes-Cantor model α = β.

� �

� �α

α

ββ β β

��

��

�

�

�

�

�

�

�

	

Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
Resolving ambiguity Symbols by nearest neighbor
In the general method above the resolutions of ambigui-
ties were given a uniform prior. Now we will adjust the
distribution to reflect that ambiguous sites evolve accord-
ing to the same evolutionary process as the rest of the
sequence. In practice, we adjust the distribution such that
the probability of observing the mutational events
between the resolutions of the ambiguity and the nucle-
otide in the closest other sequence coincide with the over-
all probability of observing the same mutational events.
Therefore, we refer to the method as resolving by nearest
neighbor. We introduce the method by a simple example
under Kimura's two-parameter model.

Let s1 be a sequence with ambiguity Symbols that we
would like to resolve and let s2 be the closest other
sequence. We first compute the probabilities of observing
the different events using the unambiguous sites, i.e., potv,
pots, and poid. Thereafter, the distribution of each ambiguity
symbol in s1 is changed to reflect the probabilities of
mutating from the nucleotide in s2 to each of the resolu-
tions in s1. For simplicity we do this only if the nucleotide
in s2 is unambiguous and one of the possible resolutions
of the ambiguity in s1. For example, let the ambiguity sym-
bol in s1 be R, i.e. {pA = 0.5, pC = 0, pG = 0.5, pT = 0}, and

let the unambiguous symbol in s2 be A (which is one of
the resolutions of R). Then the distribution (For models
such as the Tamura-Nei model for which the basic distri-
bution is not uniform the original distribution of the
ambiguity should be included when Computing the new
distribution of the ambiguity symbol.) of the ambiguity
symbol is updated as

After having updated the distribution of all ambiguous
sites our general technique above can be applied to com-
pute the ML estimate of the distance. Thus, using the gen-
eral method and the nearest neighbor resolution
technique together, we end up with the method in Figure
3.

Generating the simulated data and evaluating the ambiguity
methods
To evaluate the ambiguity methods we generated data as
follows. Model trees were generated through a random
birth-death process using code from the software package
[12]. These trees where then made non-ultra metric, i.e.,
root to leaf paths where made to vary in length, by multi-

{ , , , }.p
p

p p
p p

p

p p
pA

oid

oid ots
C G

ots

oid ots
T=

+
= =

+
=0 0

Table 4: The bitwise xor of nucleotides.

⊕ A C G T

A 00 11 01 10
C 00 10 01
G 00 11
T 00

Estimation when ambiguities are presentFigure 3
Estimation when ambiguities are present. Overview of the combined method, the default in fastdist, for estimating pair-
wise distances when ambiguity symbols are present.

�� ������	 �
	 �� 	
�����	 ��� 	��
 ������
	 ��
����	 ���
��� �
���

�
	 ��������

��	
�

�� ������	 �
	 ����������� ��
��������� �� �
	 ��������

��	
 �
���

�	��	
� �	��
��� �	
��������

�� �����	 �
	 ��
	��	� ����	� �� ���������� 	�	��
 �� ��������� �
	

��������

��	
�

�� ������	 �
	 �� 	
�����	 ��� 	��
 ������
	 ��
����	 �
��� �
	 ���

���	� ����	� �� 	�	��
�

Table 3: Binary representation of nucleotides.

Nucl. Coding

A 00
C 11
G 01
T 10
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
plying the edge lengths with a random number in the
interval [1/16,1]. Subsequently, sequence data was gener-
ated according to Kimura's two-parameter model using
the Seq-Gen program [13]. Altogether we generated test
data with all combinations of trees of sizes 10, 20, 30, 40,
50, 60, 70, 80, 90, 100 and sequences of lengths 500,
1000, 2000, 4000. To get statistically sound results, we
generated 20 data sets for each such test size. Finally, for
each data set, we changed nucleotides into ambiguity
Symbols, uniformly at random but so that the resolutions
of the ambiguity symbol contained the original nucle-
otide and only one more resolution, e.g., an A was
allowed to change into an R. We performed tests with 1%,
2%, and 5% ambiguities inserted at random.

Four different measures were used to compare the accu-
racy of the methods. The first three, Euclidean distance,
the max norm, and the absolute sum of all differences,
measured matrix norms between the data with the ambi-
guities and the data without the ambiguities. For the
fourth measure, we computed a tree using Neighbor Join-
ing and compared the normalized Robinson-Foulds (RF)
distance between the model tree and the tree given by N.J.
This fourth measure is however not a good test, since it is
based on the accuracy of the NJ algorithm which is a heu-
ristic; for some cases, NJ did even better on data with
ambiguities than on the original data.

The average over all 20 datasets was computed across each
combination of measure and test size. In Figure 1, the test
size with sequence length 1000 and 2% ambiguities is
shown. All additional tests can be viewed in the supple-
mentary material. However, the methods relative behav-
ior is the same for all test Parameters. It can be seen that
accuracy of our combined approach is superior to that of
the three other methods.

A novel algorithm for Computing the number of
mutational events
Our novel algorithm takes two DNA sequences as input
and counts the number of transitions and transversions (it
can be extended to count the number of purine-transi-
tions and pyrimidine-transitions). It is based on an elabo-
rate divide and conquer and bit-fiddling strategy, i.e., the
problem is divided into subproblems which are solved
and Solutions are combined using the bitwise representa-
tion and low-level tricks. In the present case, a compact
binary coding is adopted which allows for 64 nucleotides
to be packed into 128 bits. Moreover, since most modern
day processors have 128 bit registers (The 128 bit registers
in Intel's processors are known as SSE2 and in Apple's
processors Altivec.) it is possible to operate on all 64
nucleotides in parallel. Exploiting the 128 bit registers and
elaborate bit-fiddling the algorithm computes the
number of mutational events of more than 64 nucleotides
at a time.

The algorithm is presented in three steps. First the binary
coding is described, then it is shown how to compute the
mutational events of 64 nucleotides at a time, using bit-
fiddling. Finally, the algorithm is extended to achieve an
even higher speed-up.

Binary coding
To fit 64 nucleotides into 128 bits each nucleotide is rep-
resented by two bits as described in Table 3. This coding
has been chosen to simplify the comparison of nucle-
otides. Consider two sequences u and v both with 64
nucleotides and let r = u ⊕ v be their bitwise xor. We notice
that for each site in which u and v differ the associated
block of two bits in r can be used to decide whether a tran-
sition or transversion has occurred, see Table 4 and Table
5. In particular, notice that the left bit in each block is 1
only if a transversion has occurred. Therefore, after evalu-
ating

Addition through divide and conquerFigure 4
Addition through divide and conquer. Computing the
sum of four 2-bit integers in parallel using bit-fiddling.

ts b4 b3 b2 b1

���� m2 �� �� �� ��

�� ts ← (ts & m2) +`
(ts >> 2) & m2

´ b4 + b3 b2 + b1

���� m4 ���� ����

�� ts ← (ts & m4) +`
(ts >> 4) & m4

´ b4 + b3 + b2 + b1

Table 5: The binary representation mutational events.

Change xor

equal 00
transition 01
transversion 10,11

Table 6: List of bitwise operations.

Symbol Meaning

x >> I Rihtshift x I bits.
x &y Bitwise and of x and y
x ⊕ y Bitwise xor of x and y
~ x Bitwise negation of x
m1 Mask where every other bit is 1.
mI Mask where every other block of I = 2i bits are ones.
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
tv is a string in which each block is 01 if a transversion has
occurred and 00 otherwise (the bitwise operations are
listed in Table 6). Similarly after evaluating

ts is a string in which each block is 01 if a transition has
occurred and 00 otherwise.

Counting the number of events in a 128-bit word
After having separated the transition and transversion
events as above, we are left with the task of Computing the
number of ones in ts and tv, respectively. At first appear-
ance this might seem like a simple task. Unfortunately
though, there is no immediate way of counting the
number of ones in a Computer word. Instead this is done
using simple operations such as addition and logical bit-
wise operations.

tv r m← >>() &1 1

0101rightshift one bit mask
�	�
� N

…

ts r m tv
tv

← (&)& (~)1

bitwise negation of
N

Counting the number of mutational eventsFigure 6
Counting the number of mutational events. Computing the number of events in 64 × 6144 positions. Each inner node
represents the addition of a number of 128 bit words divided into blocks, e.g., 7+ denotes that 7 additions are used to add 8
128-bit words. Along each edge a call to AddBlocks is performed to double the block size. Thus in the nodes with 2+ the
block size is 2, in the nodes with 1+ the block size is 4, in the nodes with 7+ the block size is 8, and in 127+ the block size is 16.
Finally, another three calls to AddBlocks have to be performed to get all events into one single block.

�

���
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
��������

�

�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�

���
����������

���������
���������

���������
����������

���������
����

1 2 3

� �

���������

�

���
���������

���������
��������

���������
���������

��������
���������

���������
��������

���������
���������

��������
���������

���������
��������

���������
���������

������

�

�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�

���
����������
���������
���������
���������
����������
���������
����

4 5 6

� �

���������

� �

���������

�

�����
����������

����������
����������

�����������
����������

����������
����������

�����������
���������

�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
�

�

�����������

����������

��������� ��������
�

���
���
���
�

��
��
��
��
��
�

� �

���������

��� �

�

�����������

����������

��������� �����
����

��
���
���
��

��
��
��
��
��
�

�

�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
�

���
���������

���������
��������
���������

���������
��������

���������
���������

��������
���������

���������
��������

���������
���������

��������
���������

���������
���������

��������
���������

���������
��������
���������

���������
��������
���������

���������
��������

���������
���������

��������
���������

���������
��������
���������

���������
��������

���������
���������

��������
���������

���������
���������

��������
���������

���������
��������

���������
���������

��������
���������

���������
��������

��������

�

�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�

���
����������
���������
���������
���������
����������
���������
����

6144

� �

���������

�

���
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
��������
���������
���������
������

�

�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
��
�
�
��
�
�

���
����������

���������
���������

���������
����������

���������
���� � �

���������

� �

���������

�

�����
����������
����������
����������
�����������
����������
����������
����������
�����������
���������

�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
�

�

�����������

����������

�����������������
�

���
���
���
�

��
��
��
��
��
�

� �

���������

Subroutine AddBlocksFigure 5
Subroutine AddBlocks. This subroutine takes a 128 bit word ts divided into blocks of size bsize as input and adds every
two blocks together into a new block of size 2·bsize.

AddBlocks(ts,bsize)
� ��� �����	 �
 	��
 ������

�����	 (ts & mbsize) +
`
(ts >> bsize) & mbsize

´

Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
Consider the 64 blocks of ts and think of them as a
sequence of integers such that each block is the binary rep-
resentation of the integer. For instance, suppose that the
blocks are (..., 01, 00, 01, 01) then the corresponding inte-
ger sequence is (..., 1, 0, 1, 1) and the number of transi-
tions is the sum of these integers. The regular way of
Computing this sum is to sequentially iterate over all inte-
gers and add them using 63 additions. However, with
divide and conquer and bit-fiddling the sum can be com-
puted using no more than 6 additions!

In Figure 4, the divide and conquer idea is demonstrated
on the first four blocks of ts, (..., b4, b3, b2, b1). Notice that
the sum is computed as (b4 + b3) + (b2 + b1), where the two
parentheses are computed in parallel. Moreover, after
evaluating the first line the block size has been increased
from two to four bits and in the second line to eight bits.
Hence, returning to the example, the sum is computed as

(1,0,1,1) → (1,2) → 3.

The divide and conquer algorithm then proceeds by add-
ing blocks of size 8, 16, 32, and finally 64. Thus the
number of transitions in 64 nucleotides is counted by call-
ing the subroutine AddBlocks, in Figure 5, six times.

Optimizing the counting for many words
Above we described how to process 64 nucleotides at a
time. Here the algorithm is extended to achieve even
higher speed-up for sequences longer than 64 nucleotides.
As above, we introduce the idea using a simple example.

Consider two sequences of length 192 and let tsi be the
transition sequences of the 64 positions (64 × (i - 1), 64 ×
i). For example, we may have ts1 = (..., 1, 0, 1, 1), ts2 = (...,
0, 0, 1, 0), and ts3 = (..., 1, 0, 1, 0). Adding these three
sequences as ts ← ts1 + ts2 + ts3 then we get ts = (..., 2, 0, 3,
1), i.e., each block in ts contains the number of differences
in three positions. Thereafter, the total number of differ-
ences can be computed by calling AddBlocks 6 times on
ts. Notice how this approach is a factor 3 faster then the
sequential approach which requires 18 calls to Add-
Blocks.

Above we utilized that the blocks of ts are of size two and
hold integers ≤ 3. But why stop here? After each call to
AddBlocks the block size is doubled and it is possible to
fit even bigger integers in each block. For example, after
calling ts ← AddBlocks(ts, 2) each block can hold integers
≤ 15. Therefore, when the DNA sequences contain 384
nucleotides, the following can be done

ts ← AddBlocks(ts1 + ts2 + ts3, 2) +

AddBlocks(ts4 + ts5 + ts6, 2),

i.e., each block of ts is of size 4 and contains the number
of transitions in 12 positions. In Figure 6, this idea has
been extended such that the number of ones in 64 × 6144
positions are computed using 6143 additions and 2048 =
128 × 8 × 2 calls to AddBlocks. Notice how each subtree
with six leaves describes the computation in which 6
sequences are added as above.

Availability and requirements
The algorithm is implemented in C++ and is available for
download without restrictions from
http:www.nada.kth.se/~isaac/publications/fastdist/fast
dist.html. The current implementation only works on
Intel processors with support for SSE2. Moreover, gcc 3.X
is required to compile the source code. All supplementary
material is available for download.

Authors' contributions
IE did all implementations. JL and IE wrote the paper.
Both authors have approved the final version of the man-
uscript.

Acknowledgements
Gunnar Andersson gave the initial idea for the bit-fiddling algorithm. Joe
Felsenstein immediate replies was vital to the understanding of the distance
estimators. We also like to thank Erik Lindahl who helped us sort out the
ins-outs of the 128-bit registers. Finally, we thank Bengt Sennblad for a
number of discussions and for helping us run Paup.

References
1. Saitou N, Nei M: The neighbor-joining method: a new method

for reconstructing phylogenetic trees. Mol Biol Evol 1987,
4:406-425.

2. Elias I, Lagergren J: Fast Neighbor Joining. Proc of the 32nd Interna-
tional C'olloquium on Automata, Languages and Programming (ICALP'05)
2005, 3580:1263-1274.

3. Kimura M: A simple model for estimating evolutionary rates
of base substitutions through comparative studies of nucle-
otide sequences. Journal of Molecular Evolution 1980, 16:111-120.

4. Felsenstein J: Phylip 3.65. 2005 [Http://evolution.genetics.washing
ton.edu/phylip.html].

5. Swofford D: Phylogenetic Analysis Using Parsimony (*and Other Methods).
Version 4 Sinauer Associates; 2002.

6. Jukes T, Cantor C: Evolution of protein molecules. Mammalian
Protein Metabolism 1969:21-132.

7. Kishino H, Hasegawa M: Evaluation of the maximum likelihood
estimate of the evolutionary tree topologies from DNA
sequence data, and the branching order in Hominoidea. Jour-
nal of Molecular Evolution 1989, 29:170-179.

8. Tamura K, Nei M: Estimation of the number of nucleotide sub-
stitutions in the control region of mitochondrial DNA in
humans and chimpanzees. Molecular Biology and Evolution 1993,
10:512-526.

9. Tuplin K, Wood J, Evans D, Patel A, Simmonds P: Thermodynamic
and phylogenetic prediction of RNA secondary structures in
the coding region of Hepatitis C virus. RNA 2002, 8:824-841.

10. Barker F, Cibois A, Schikler , Feinstein J, Cracraft J: Phylogeny and
diversification of the largest avian radiation. Proc Natl Acad Sci
2004, 101:11040-11045.

11. Felsenstein J: Inferring Phylogenies Sinauer Associates; 2001.
12. Arvestad L, Berglund A, Lagergren J, Sennblad B: Gene tree recon-

struction and orthology analysis based on an integrated
model for duplications and sequence evolution. RECOMB '04
2004:326-335.
Page 10 of 11
(page number not for citation purposes)

http://www.nada.kth.se/~isaac/publications/fastdist/fastdist.html
http://www.nada.kth.se/~isaac/publications/fastdist/fastdist.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7463489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7463489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7463489
Http://evolution.genetics.washington.edu/phylip.html
Http://evolution.genetics.washington.edu/phylip.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2509717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2509717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2509717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12088154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12088154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12088154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15263073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15263073

BMC Bioinformatics 2007, 8:89 http://www.biomedcentral.com/1471-2105/8/89
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

13. Rambaut A, Grassly N: Seq-gen: An application for the Monte
Carlo Simulation of DNA sequence evolution along phyloge-
netic trees. Comp Appl Biosci 1997, 13:235-238.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9183526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9183526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9183526
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	A novel algorithm for computing the number of mutational events
	Running time on simulated data - the hidden factor
	Running time on real biological data

	A novel method of handling ambiguity Symbols

	Conclusion
	Methods
	Supported models of sequence evolution
	New methods for handling ambiguity Symbols
	Earlier methods for handling ambiguity Symbols
	A new general method for handling ambiguity Symbols
	Resolving ambiguity Symbols by nearest neighbor
	Generating the simulated data and evaluating the ambiguity methods

	A novel algorithm for Computing the number of mutational events
	Binary coding
	Counting the number of events in a 128-bit word
	Optimizing the counting for many words

	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

