
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Large scale clustering of protein sequences with FORCE -A layout
based heuristic for weighted cluster editing
Tobias Wittkop1,2,3, Jan Baumbach*1,2,4, Francisco P Lobo1,5 and
Sven Rahmann6

Address: 1Computational Methods for Emerging Technologies, Bielefeld University, Bielefeld, Germany, 2Genome informatics, Bielefeld
University, Bielefeld, Germany, 3DFG Graduiertenkolleg Bioinformatik, Bielefeld University, Bielefeld, Germany, 4International Graduate School
in Bioinformatics and Genome Research, Center for Biotechnology, Bielefeld, Germany, 5Laboratorio de Genetica Bioquimica, Universidade
Federal de Minas Gerais, Belo Horizonte, Brazil and 6Bioinformatics for High-Throughput Technologies, Technical University of Dortmund,
Germany

Email: Tobias Wittkop - tobias.wittkop@cebitec.uni-bielefeld.de; Jan Baumbach* - jan.baumbach@cebitec.uni-bielefeld.de;
Francisco P Lobo - francisco.pereira.logo@genetik.uni-bielefeld.de; Sven Rahmann - Sven.Rahmann@Uni-Dortmund.de

* Corresponding author

Abstract
Background: Detecting groups of functionally related proteins from their amino acid sequence
alone has been a long-standing challenge in computational genome research. Several clustering
approaches, following different strategies, have been published to attack this problem. Today, new
sequencing technologies provide huge amounts of sequence data that has to be efficiently clustered
with constant or increased accuracy, at increased speed.

Results: We advocate that the model of weighted cluster editing, also known as transitive graph
projection is well-suited to protein clustering. We present the FORCE heuristic that is based on
transitive graph projection and clusters arbitrary sets of objects, given pairwise similarity measures.
In particular, we apply FORCE to the problem of protein clustering and show that it outperforms
the most popular existing clustering tools (Spectral clustering, TribeMCL, GeneRAGE, Hierarchical
clustering, and Affinity Propagation). Furthermore, we show that FORCE is able to handle huge
datasets by calculating clusters for all 192 187 prokaryotic protein sequences (66 organisms)
obtained from the COG database. Finally, FORCE is integrated into the corynebacterial reference
database CoryneRegNet.

Conclusion: FORCE is an applicable alternative to existing clustering algorithms. Its theoretical
foundation, weighted cluster editing, can outperform other clustering paradigms on protein
homology clustering. FORCE is open source and implemented in Java. The software, including the
source code, the clustering results for COG and CoryneRegNet, and all evaluation datasets are
available at http://gi.cebitec.uni-bielefeld.de/comet/force/.

Background
The problem
High-throughput genome sequencing projects have gen-

erated massive amounts of DNA and protein sequence
data, and will do so more rapidly in the near future. One
major challenge continues to be determining protein

Published: 17 October 2007

BMC Bioinformatics 2007, 8:396 doi:10.1186/1471-2105-8-396

Received: 1 August 2007
Accepted: 17 October 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/396

© 2007 Wittkop et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/396
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17941985
http://gi.cebitec.uni-bielefeld.de/comet/force/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
functions based solely on amino acid sequences. Large-
scale pairwise sequence comparison directly results in
pairwise similarity measures between protein sequences
and is an efficient method to transfer biological knowl-
edge from known proteins to newly sequenced ones. The
most widely used method to search for sequence similari-
ties is BLAST [1]. Three challenges arise:

1. Deriving a quantitative similarity measure from the
sequence comparison that models homology as well as
possible; frequently this is based on the negative loga-
rithm of the BLAST E-value.

2. Inventing a clustering strategy that is sufficiently error-
tolerant, since experience shows that sequence similarity
alone does not lead to perfect clusterings. A common
approach is to use a graph-based model, where proteins
are represented as nodes and the similarities as weighted
edges.

3. Implementing the chosen clustering strategy efficiently.

We note that many approaches do treat the three chal-
lenges separately. In this publication,

1. we use a family of different similarity functions, based
on negative logarithms of BLAST E-values and sequence
coverage.

2. we show that weighted graph cluster editing is an ade-
quate model to identify protein clusters. Weighted graph
cluster editing has been recently studied in [2] and is
known to be NP-hard.

3. we present a heuristic called FORCE to solve the prob-
lem. We show that it provides excellent quality results in
practice when compared with an exponential-time exact
algorithm, but has a running time that makes it applicable
to massive datasets. An extended abstract about the
FORCE heuristic, including a comparison to other heuris-
tics, was presented at CSB 2007 [2].

To specify the clustering model, we need the following
definition: An undirected simple graph G = (V, E) is called
transitive if

for all triples uvw ∈ , uv ∈ E and vw ∈ E implies uw

∈ E.

A transitive graph is a union of disjoint cliques, i.e., of
complete subgraphs. Each clique represents, in our case, a
protein cluster. Since the initial graph, derived from pro-
tein similarity values and a similarity threshold, may not

be transitive, we need to modify it. This leads to the fol-
lowing computational problems.

Graph cluster editing problem (GCEP)
Given an undirected graph G = (V, E), find a transitive
graph G* = (V, E*), with minimal edge modification dis-
tance to G, i.e., where |E \ E*| + |E* \ E| is minimal.

Weighted graph cluster editing problem (WGCEP)

To respect the similarity between two proteins, we modify
the penalty for deleting and adding edges. First we con-
struct a similarity graph G = (V, E) consisting of a set of

objects V and a set of edges E : = {uv ∈ : s(uv) > t}.

Here s: → � denotes a similarity function and t a

user-defined threshold. The resulting cost to add or delete
an edge uv is set to cost(uv) : = |s(uv) - t|. The cost to trans-
form a graph G = (V, E) into a graph G' = (V, E') is conse-

quently defined as cost(G → G') : = cost(E \ E') + cost(E' \
E). As in the GCEP, the goal is to find a transitive graph G*

= (V, E*), with cost(G → G*) = min {cost(G → G') : G' =
(V, E') transitive}.

It can be easily seen that the WGCEP is NP-hard, since it
is a straightforward generalization of the GCEP, where s:

 → {-1, 1} and t = 0. The GCEP has been proved to

be NP hard several times, e.g., in [3,4].

Previous work and novel contributions
There are several approaches to cluster protein families.
One of the earliest approaches that took the transitivity
concept formally into account was ProClust [5]; however,
the concept of editing the graph was not present in this
work. The SYSTERS database [6], now at release 4, is based
on a set-theoretic SYSTEmatic ReSearching approach and
has existed for some time, but seems to have received little
updates since early 2005. One of its main features is that
it uses family-specific similarity thresholds to define clus-
ters. It does not, however, employ a transitivity concept.
In 2006, Paccanaro et al. [7] presented a comparison of
the most popular cluster detection methods, like MCL [8],
hierarchical clustering [9], GeneRAGE [10], and their own
spectral clustering approach, which performs best when
evaluated on a subset of the SCOP database. To evaluate
our clustering model, we use the same datasets and per-
formance figure. We furthermore include the recently
published Affinity Propagation method in our compari-
son [11]. Additionally, we evaluate our approach against
the COG database [12].

V

3

V

2

V

2

V

2

Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
The weighted graph cluster editing problem was first con-
sidered for protein clustering in our extended abstract [2],
where we also introduced the basic idea of the FORCE
heuristic.

Here we present a detailed description of the method and
an extended parameter estimation procedure using evolu-
tionary training. Our main point in the paper is that the
weighted cluster editing problem adequately models the
biological homology detection problem if we use appro-
priate similarity functions and thresholds. The choice of
the threshold and similarity function is, of course, critical,
and we report the performance for a wide variety of them
in the additional files accompanying this paper.

Methods
Clustering via graph layouting
We present an algorithm called FORCE that heuristically
solves the WGCEP for a connected component and thus
for a whole graph. FORCE is motivated by a physically
inspired force-based graph layout algorithm developed by
Fruchterman and Reingold [13]. The main idea of this
approach is to find an arrangement of the vertices in a
two-dimensional plane that reflects the edge density dis-
tribution of the graph, i.e., vertices from subgraphs with
high intra-connecting edge weights should be arranged
close to each other and far away from other nodes. This
layout is then used to define the clusters by Euclidean sin-
gle-linkage clustering of the vertices' positions in the
plane. To improve the solution, we implemented an addi-
tional postprocessing phase. All in all the algorithm pro-
ceeds in three main steps: (1) layouting the graph, (2)
partitioning, and (3) postprocessing.

Layout phase
The goal in this phase is to arrange the vertices in a two-
dimensional plane, such that the similarity values are
respected. Subsets of nodes with high edge-density should
be arranged next to each other, and far away from other
nodes. To find a layout that satisfies this criterion, we use
a model inspired by physical forces, i.e., nodes can attract
and repulse each other. Starting with an initial layout (a
circular layout with user defined radius ρ and random
order), the nodes affect each other depending on their
similarity and current position, which leads to a displace-
ment vector for each node and a new arrangement.

Since this model is only inspired by physical forces with-
out friction, it does not include acceleration. For a user-
defined number of iterations R, the interaction between
every pair of nodes and thus the displacement for every
node is calculated; then all nodes are simultaneously
moved to their new position. We compute the displace-
ments as follows: As described in Algorithm 1 (Appen-
dix), the strength fu ← v of the effect of one node v to

another node u (i.e., the magnitude of the displacement of
u caused by v) depends on the Euclidean distance d(u, v),
on the cost to add or delete the edge and a user defined
attraction or repulsion factor fatt, frep. More formally,

Two nodes attract each other if s(uv) > t and repulse each
other otherwise. One can see that with increasing dis-
tance, attraction strength increases while repulsion
strength decreases.

To improve convergence to a stable position with mini-
mal interactions, we added a cooling parameter, also
inspired by the algorithm of Fruchterman and Reingold.
In our implementation, this means that if the displace-
ment distance exceeds a maximal magnitude Mi in itera-
tion i, which starts at an initial value M0 and decreases
with every iteration i, the movement is limited to it.

The output of this phase is a two-dimensional array pos
containing the x-y-position of each node. Additional Files
1 and 2 illustrate the layout process and its convergence
for two components with 41 and 10 nodes, respectively.

Partitioning phase

Using the positions of the vertices from the layout phase,
we define clusters by geometric single-linkage clustering,

parameterized by a maximal node distance δ: As described
in Algorithm 2 (Appendix), we start with an arbitrary

node v1 ∈ V and define a new cluster . A node i belongs

to if there exist nodes v1 = i0, ..., iN = i ∈ V with d(ij, ij +

1) ≤ δ for all j = 0, ..., N - 1. Nodes are assigned to until

no further nodes satisfy the distance cutoff. Then the next,

not yet assigned, node v2 ∈ V is chosen to start a new clus-

ter until every node is assigned to some cluster. We denote

with the resulting graph obtained by add-

ing all edges between two nodes of the same cluster and
deleting all edges between two nodes of different clusters.

To find a good clustering we calculate cost(G → Gδ) for dif-

ferent δ. Starting with δ ← δinit : = 0 we increase δ by a step

size σ up to a limit δmax : = 300.

Experimentation shows that it is beneficial to also
increase the step size, i.e. to start with σ ← σinit : = 0.01 and
increase it by multiplying with a user-defined factor fσ : =

f

t uv f d u v

V

t uv fu v← =

⋅ ⋅ +

⋅

cos

cos

() log((,))
,

()

att for attraction
1

rrep
for repulsion

V d u v⋅ +

 log((,))

.
1

cv1

cv1

cv1

G cvj
m

jδ := =1∪
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
1.1. The solution with lowest cost is returned as the result-
ing clustering. Algorithm 2 returns the clustering in terms
of an n × n adjacency matrix E* ∈ {0,1}n × n, and the trans-
formation cost c*.

Postprocessing phase
Although the best clustering is not guaranteed to be the
optimal one, we often obtain a close to optimal solution
in practice. To further improve the results we use a two-
step postprocessing heuristic. We denote with cost(C) the
cost to obtain the clustering C.

1. To reduce the number of clusters and especially the
number of singletons, the first step is to join two clusters
if this reduces the overall cost:

Let C : = (c1, ..., cn) be the clustering obtained from the par-

titioning phase, ordered by size. For all cluster pairs 1 ≤ i

<j ≤ n we calculate cost(c1, ..., ci ∪ cj, ..., cn) until we find a

clustering C' : = (c1, ..., ci' ∪ cj', ..., cn) with cost(C') <cost(C).

Let be the sorted vector C' . Repeat to attempt

joining more clusters until no more join is beneficial.

2. Similar to the Restricted Neighborhood Search Cluster-
ing (RNSC [14]), we move a vertex from one cluster to
another if this move reduces the overall cost:

As above, let C : = (c1, ..., cn) be the clustering obtained
from step 1, ordered by size. For i, j ∈ {1, ..., n}, i ≠ j, and
every k ∈ ci, we tentatively move k from ci to cj and calcu-
late cost (c1, ..., ci \{k}, ..., cj ∪ {k}, ..., cn), until we find the
first such modified clustering with lower cost than cost(C).
We sort the resulting clusters again by size and use them
as a new start configuration for the next iteration until no
more re-assignments are beneficial.

Analysis
The worst-case running time of FORCE is given by the
addition of those of the three main phases. Layouting runs
in Θ (R·n2), where R denotes the number of iterations
and n is the number of nodes in the graph. Since R is
determined by evolutionary training (see below), it might
grow with n, but we set an upper bound for R to Rmax = 500
that in practice suffices even for very large datasets.

Partitioning runs in O(D·n2), where D is the number of
different δ-values used. This is seen as follows: Each d-
value requires the construction of an auxiliary graph in
O(n2) time, the discovery of its connected components in
O(|V| + |Eδ|) = O(n2) time, setting E' to the transitive clo-
sure of Eδ and computing its cost, which is also possible in
O(n2) after detecting connected components.

During postprocessing, each iteration takes O(n2) time,
since the number of clusters is bonded by n. The total time
is thus O(P·n2), where P is the number of postprocessing
iterations. While theoretically P can grow with n, in prac-
tice we observe only a small number of iterations until no
more improvement occurs.

Thus for all practical purposes, the overall runtime of
FORCE is quadratic in the number of nodes.

Evolutionary parameter training
There are several user-defined parameters to assign, such
as the number of iterations R, the attraction and repulsion
scaling factors fatt, frep, the magnitude M0, and the initial
circular layout radius ρ. A practical method to find good
values is evolutionary training. FORCE implements such
a strategy in two different ways.

First, a good parameter combination is determined that
can be applied to most of the graphs. This is done during
a pre-computation on a training data set. Since, however,
the optimal parametser constellation depends on the spe-
cific graph, we additionally apply such a training algo-
rithm to each graph. FORCE allows to specify the number
of generations to train, and thus to adjust runtime and the
quality of the result.

Training works as follows: First we start with a set of 25
randomly generated parameter sets and the initial param-
eters mentioned above. The parameter sets are sorted by
the cost to solve the WGCEP on the given graph. For each
generation, we use the best 10 parameter constellations as
parents, to generate 15 new combinations. In order to
obtain fast convergence to a good constellation, as well as
a wide spectrum of different solutions without running
into local minima, FORCE splits these 15 new combina-
tions into 3 groups, with 5 members each. The first group
consists of parameters obtained only by random combi-
nations of the 10 best already known parameter constella-
tions. The next group is generated with random
parameters, while the third group is obtained by a combi-
nation of the previous methods. To reduce the runtime for
small or very easy to compute solutions, we added a sec-
ond terminating condition: If at most two different cost
appear while calculating the 25 start parameters, the best
one is chosen. No more generations are computed.

Datasets, similarity functions, and parameters
Here we describe the datasets used for the subsequent
evaluation. First the ASTRAL dataset from SCOP, as used
in [7], is introduced. We also describe a considerably
larger dataset obtained from the COG database. BLAST is
used for all-against-all similarity searches in all datasets.
The similarity measure is a function of the BLAST E-values;
we describe three reasonable functions to convert E-values

′ ′()−c cn1 1,...,
Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
into similarities. The results are used as input for FORCE.
All datasets can be downloaded from the FORCE website.

SCOP and Astral95
SCOP is an expert, manually curated database that groups
proteins based on their 3D structures. It has a hierarchical
structure with four main levels (class, fold, superfamily,
family). Proteins in the same class have the same type(s)
of secondary structures. Proteins share a common fold if
they have the same secondary structures in the same
arrangement. Proteins in the same superfamily are
believed to be evolutionarily related, whereas proteins in
the same family exhibit a clear evolutionary relationship
[15]. We take the SCOP superfamily classification as
ground truth against which we evaluate the quality of a
clustering generated by a given algorithm, using reasona-
ble quality measures, such as the F-measure (see below).
Since the complete SCOP dataset contains many redun-
dant domains that share a very high degree of similarity,
most researchers choose to work with the ASTRAL com-
pendium for sequence and structure analysis in order to
generate non-redundant data [16]. ASTRAL allows to
select SCOP entries that share no more sequence similar-
ity than a given cutoff, removing redundant sequences.

We extracted two subsets of the ASTRAL dataset of SCOP
v1.61 with a cutoff of 95 percent, which means that no
two protein sequences share more than 95% of sequence
identity. We consider ASTRAL95 as the best possible avail-
able reference for remote homology detection on a struc-
tural basis.

The two subsets are exactly those used in Paccanaro et al.'s
work [7]. The first comprises 507 proteins from 6 different
SCOP superfamilies, namely Globin-like, EF-hand, Cupre-
doxins, (Trans)glycosidases, Thioredoxin-like, and Membrane
all-alpha. We refer to this dataset as ASTRAL95_1_161.

Due to the fact that SCOP is continuously updated, we
decided to evaluate both the original data from [7] (SCOP
v1.61) and more recent data from the current SCOP ver-
sion (SCOP v1.71). The novel version is slightly different.
For example, the superfamily Membrane all-alpha has been
removed in the meantime, and most of its proteins are
assigned to different superfamilies. Also, several other
proteins have been reassigned to one of the five other
superfamilies. This provides another dataset of 589
sequences from the remaining 5 superfamilies, which we
refer to as ASTRAL95_1_171.

The second subset consists of 511 sequences from 7 super-
families, namely Globin-like, Cupredoxins, Viral coat and
capsid proteins, Trypsin-like serine proteases, FAD/NAD(P)-
binding domain, MHC antigen-recognition domain, and Scor-
pion toxin-like. We refer to this as ASTRAL95_2_161 and

ASTRAL95_2_171 respectively. SCOP can be found at
[17], while the protein sequences are available at [18].

Protein sequences from the COG database
The Cluster of Orthologous Groups (COG) of proteins
database is a repository whose main goal is a phylogenetic
classification of proteins encoded by complete genomes.
It currently consists of 192,187 prokaryotic protein
sequences from 66 complete genomes distributed across
the three domains of life [12]. COG contains clusters in
which at least three individual proteins (or groups of par-
alogs), originating from three different species, are each
other's best BLAST hit in both directions. This strategy is
believed to generate clusters of groups of orthologous
genes.

We consider COG as the best possible representation of
orthology detection, based on sequence data alone. We
refer to this dataset as the COG dataset. COG can be found
[19], while the protein sequences are available at [20].

Similarity functions and thresholds
Any attempt to (optimally) solve the WGCEP would be in
vain if the target function did not model our goal appro-
priately. As mentioned earlier, the main challenge is to
identify appropriate similarity functions and thresholds.
We have used a variety of similarity functions that we
describe below.

Assume we are given a set of proteins V and a BLAST out-
put file containing multiple high-scoring pairs (HSPs) in
both directions. For two proteins u and v we denote with
(u ← v)i and (u → v)j, where i = 1, ..., k and j = 1, ..., l, the
corresponding k HSPs in one and l HSPs in the other
direction, respectively.

We consider the following three similarity functions.

Best hit (BeH)

This widely used method concentrates on the E-value of a
single HSP: For both directions, one looks for the best hit,
i.e., the HSP with lowest E-value. To obtain a symmetric

similarity function s: → �, the negative logarithm of

the worst (largest) of the two E-values is taken as similarity
measure between u and v. The resulting symmetric simi-
larity function is then defined as

Sum of hits (SoH)
This approach is similar to BeH, but additionally includes
every HSP with an E-value smaller than a threshold m =

V

2

s uv u v
i k i j l

() : log max min , min
,..., ,...,

= − ←()()
= =

10
1 1

E-value E-vvalue u v j→()()

.
Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
10-2. We use this threshold as penalty for every additional
HSP. This leads to the similarity function

Coverage (Cov)
The third approach integrates the lengths of a HSP into
the similarity function. To determine the coverage, we
need the following indicator function:

The coverage can now be defined as

In order to obtain a good similarity function, we control
the influence of the coverage on the overall similarity
function by a user-defined factor f, and set

s(uv) : = s'(uv) + f ·coverage(uv).

Here s' : → � denotes one of the previously pre-

sented similarity functions, BeH or SoH.

Parameter choices
The initial parameters obtained from the pre-processing
training are R = 186, fatt = 1.245, frep = 1.687, M0 = 633, and
ρ = 200 for the protein clustering problem. Furthermore,
we apply evolutionary training to each problem instance,
as described in the Algorithms section.

Results
This section contains three different types of results. First
we discuss the appropriateness of the WGCEP model for
the detection of clusters of homologous proteins using the
ASTRAL dataset described earlier. Next we show that the
FORCE heuristic is fast in practice, and compares favora-
bly against an exact (exponential-time) fixed-parameter
algorithm in terms of solution quality. We show that
FORCE is able to handle very large datasets efficiently, in
particular the COG dataset described previously. Finally,
we have integrated the clustering results of FORCE into
the corynebacterial reference database CoryneRegNet
[21,22].

Evaluation of the WGCEP model
To show that the WGCEP model is adequate for protein
homology clustering, we evaluate our algorithm in the
same way as Paccanaro et al. did in their article [7], using

the so-called F-measure to quantify the agreement of
FORCE's result with the reference clustering provided by
the ASTRAL dataset.

We first explain the F-measure, which equally combines
precision and recall. Let K = (K1, ..., Km) be the clustering

obtained from the algorithm and C = (C1, ..., Cl) the refer-

ence clustering. Furthermore, we denote with n the total
number of proteins and with ni, nj the number of proteins

in the cluster Ki and Cj, respectively. Following this, is

the number of proteins in the intersection Ki ∩ Cj. The F-

measure is defined as

As mentioned earlier, Paccanaro et al. previously com-
pared the most popular protein clustering tools against
their own spectral clustering: GeneRAGE, TribeMCL, and
Hierarchical clustering. Since there is no need to replicate
existing results, we use the same data (ASTRAL95_1_161
and ASTRAL95_2_161). Table 1 summarizes the results:
Using FORCE, we obtain slightly better agreements than
with spectral clustering. The best similarity function
parameters and score threshold for the ASTRAL95_1_161
dataset were Cov-scoring using f = 20 and BeH as a sec-
ondary scoring function, and t = -2.2. For the

s uv m u v mk
i

l

j

() : log max ,() ()= − ⋅ ←()() ⋅− − − −

=
10

1 1

1

E-value E-value
ll

j
i

k
u v∏∏ →()()

=1

.

Iuv i
u i u v

() :
(

=
←1 if in the position is covered by any HSP)) () ,

.
,..., ,...,n k m lu v= =→

1 1

0

 or

otherwise

coverage() : min (), () .uv
u

i
v

iuv
i

u

vu
i

v

=

= =

∑ ∑1 1

1 1

I I

V

2

ni
j

F K C
n

n
n

n n
j

j

l

i m

i
j

i
j

(,) : max .= ⋅
+

= ≤ ≤

∑1 2

1 1

Table 1: Evaluation of protein clustering tools. The F-measure
(between 0 and 1) measures the agreement between a clustering
resulting from a given algorithm and a reference clustering
provided with the dataset. An F-measure of 1 indicates perfect
agreement. ASTRAL95_1_161 and ASTRAL95_2_161 refer to
the two datasets of SCOP v1.61 used by Paccanaro et al. for
spectral clustering [7]. All reported values, except for our
algorithm FORCE and for Affinity Propagation, are from the
same reference.

Dataset Method F-measure

ASTRAL95_1_161 FORCE 0.85
ASTRAL95_1_161 Spectral clustering 0.81
ASTRAL95_1_161 Affinity Propagation 0.65
ASTRAL95_1_161 GeneRAGE 0.47
ASTRAL95_1_161 TribeMCL 0.32
ASTRAL95_1_161 Hierarchical clustering 0.26

ASTRAL95_2_161 FORCE 0.89
ASTRAL95_2_161 Spectral clustering 0.82
ASTRAL95_2_161 Affinity Propagation 0.69
ASTRAL95_2_161 GeneRAGE 0.54
ASTRAL95_2_161 TribeMCL 0.52
ASTRAL95_2_161 Hierarchical clustering 0.42
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
ASTRAL95_2_161 dataset, this was Cov-scoring with f =
19 and SoH as secondary scoring function with t = -1.6.

Note that in the present context, we do not consider it as
cheating to optimize the similarity function and thresh-
old: We want to check how far the WGCEP model can
retrieve the biologically correct clustering under ideal con-
ditions. The same kind of optimization was applied by
Paccanaro et al. in [7]. Table 1 also shows the F-measures
for the Affinity Propagation (AP) approach, which was
recently published in [11]. We used the same data and
also varied necessary input parameters to evaluate against
the best possible performance of AP. For
ASTRAL95_1_161, this was Cov-scoring with f = 20 and
SoH as secondary scoring function with fixed preference
pre = 600, and damping factor df = 0.8. For
ASTRAL95_2_161, this was Cov-scoring with f = 14 and
SoH as secondary scoring function with pre = 600, and df
= 0.75. For both datasets, AP performs worse than Spectral
clustering.

Figure 1 exemplarily illustrates the obtained clustering
results for two similarity functions, and dataset
ASTRAL95_1_161. One can see that the classification is
very good for the superfamilies Globin-like, EF-hand,
Cupredoxins, (Trans)glycosidases. Thioredoxin-like and Mem-
brane all-alpha are split into several clusters. Note, that for
Globin-like (left column) using similarity function SoH
(B), the superfamily is split into two clusters, where the
second (the lower one) represents a family.

We generated images in the same style for all datasets,
zipped them, and provide them as Additional File 3. We
additionally evaluate FORCE with the newest ASTRAL95
datasets (ASTRAL95_1_171 and ASTRAL95_2_171).
Table 2 shows the resulting F-measures for a variety of
similarity functions and parameter choices. All of these
achieve higher F-measures than Spectral clustering, or AP.

In Additional File 4, we provide F-measures of FORCE for
a wide range of thresholds and coverage factors, for all
used datasets and similarity functions. Good clustering
quality is also reached by using other thresholds and sim-
ilarity measures for all test datasets. In Additional File 5,
we give F-measures for a range of thresholds, but with
fixed coverage factor f = 20, for dataset ASTRAL95_1_161,
and similarity function BeH. In Additional File 6, we pro-
vide F-measures for Affinity Propagation for a wide range
of parameters and coverage factors, for all used datasets
and similarity functions.

Quality and running time of the heuristic
After evaluating the WGCEP as a reasonable clustering
paradigm, we address the performance of the FORCE heu-
ristic: We compare the running time and solution quality

against a slow exact algorithm on the large COG dataset.
A recently developed fixed-parameter (FP) algorithm for
the WGCEP [2] extends ideas of previously developed FP
algorithms for the (unweighted) GCEP by Gramm et al.
[23,24] and Dehne et al. [25], and has a running time of
O(3k + |V|3 log |V|), if there exists a transitive projection of
cost at most k. This allows us to find the optimal solution
for a WGCEP, given a graph G = (V, E) up to size |V| ≈ 50
in appropriate time. To our knowledge, the implementa-
tion of this algorithm is the fastest available exact WGCEP
solving program.

In order to compare the two approaches we use the COG
dataset, split into connected subgraphs using similarity
function SoH and a threshold of 10. We extracted 1244
connected components (with |V| ≤ 3 387). For the evalu-
ation, we restricted the maximal run time to 48 hours. The
FP algorithm thus could only be applied to 825 compo-
nents with |V| ≤ 56. For the remaining components, the
FP algorithm was terminated unsuccessfully after 48
hours. Due to the large number of graphs, we abstained
from applying FP to graphs with |V| ≥ 100, because it is
very likely that runtime would exceed 48 hours. Figure 2
illustrates a running time comparison of the FP (blue) and
the heuristic algorithm (red). FORCE has been configured
to use one generation of evolutionary parameter training
for each graph, as described in the Algorithms section. All
time measurements were taken on a SunFire 880 with 900
MHz UltraSPARC III+ processors and 32 GB of RAM.

One can see that for large graphs |V|·|E| ≥ 100 000),
FORCE is much faster than the exact FP algorithm. Note
that the axes are logarithmically scaled. We evaluate the
quality of the FORCE heuristic by comparing the relative
cost increase of the reported solution, with respect to the
provably optimal solution. For 814 out of the 825 compa-
rable components, the heuristic determines the optimal
solution. The optimal cost over all 825 components is 171
986.8, while FORCE finds a solution with a total cost of
172 244.6, which is a difference of 0.15%. Figure 3 illus-
trates these numbers. Note that most of the data points lie
on the x-axis and hence indicate that the optimal solution
was found.

In addition to the direct running time and quality com-
parison, we make all connected components and cluster-
ing results of the COG dataset available on the FORCE
website, using the following similarity functions and
thresholds: BeH/10, BeH/20, SoH/10, SoH/20. These
choices do not reproduce the original COG clustering; we
obtain the following F-measures: 0.64 (BeH/10), 0.56
(BeH/20), 0.61 (SoH/10), and 0.53 (SoH/20). It should
be noted that a) the COG clustering problem has very dif-
ferent properties than the SCOP clustering problem, and
Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396

Page 8 of 12
(page number not for citation purposes)

Graphical summary of the obtained clustering results of FORCE for the two similarity functions (A) BeH and (B) SoH, and dataset ASTRAL95_1_161Figure 1
Graphical summary of the obtained clustering results of FORCE for the two similarity functions (A) BeH and (B) SoH, and
dataset ASTRAL95_1_161. We used MATLAB scripts provided by Paccanaro to create images similar to those of Figure 3 in
[7]. Each row corresponds to a cluster. Green bars represent a protein assignment to a cluster; each protein is present in only
one of the clusters. Boundaries between superfamilies are shown by vertical red lines, and boundaries between families within
each superfamily are shown by dotted blue lines.

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
b) here we have not optimized in any way the scoring
function and threshold. We discuss this further below.

CoryneRegNet
CoryneRegNet (online available at [26]) allows a perti-
nent data management of regulatory interactions along
with the genome-scale reconstruction of transcriptional
regulatory networks of corynebacteria relevant in human
medicine and biotechnology, together with Escherichia
coli. CoryneRegNet is based on a multi-layered, hierarchi-
cal and modular concept of transcriptional regulation and

was implemented with an ontology-based data structure.
It integrates the fast and statistically sound method PoS-
SuMsearch [27] to predict transcription factor binding
sites within and across species. Reconstructed regulatory
networks can be visualized on a web interface and as
graphs. Special graph layout algorithms have been devel-
oped to facilitate the comparison of gene regulatory net-
works across species and to assist biologists with the
evaluation of predicted and graphically visualized net-
works in the context of experimental results. To extend the
comparative features, we need adequate data on gene and
protein clusters. The integration of this information
would widen the scope of CoryneRegNet and assist the
user with the reconstruction of unknown regulatory inter-
actions [21,22].

Relative cost deviations (y-axis in %) of the FORCE solutions from the optimal solutions found by the exact fixed-parame-ter algorithm described in [2]Figure 3
Relative cost deviations (y-axis in %) of the FORCE solutions
from the optimal solutions found by the exact fixed-parame-
ter algorithm described in [2]. The x-axis is as in Figure 2
(logarithmically scaled).

Table 2: Evaluation of the WGCEP model. The best F-measures for each dataset and each similarity function. ASTRAL95_1_161 and
ASTRAL95_2_161 are as in Table 1. ASTRAL95_1_171 and ASTRAL95_2_171 refer to the updated ASTRAL95 data of SCOP v1.71.
BeH or SoH denote the similarity function, while the coverage factor f represents the influence of the coverage to the similarity.

Dataset Similarity Factor f Threshold F-measure

ASTRAL95_1_171 SoH 18 -3.0 0.91
ASTRAL95_1_171 BeH 15 -3.4 0.90
ASTRAL95_2_161 SoH 19 -1.6 0.89
ASTRAL95_2_171 SoH 15 -3.2 0.88
ASTRAL95_2_161 BeH 14 -2.4 0.87
ASTRAL95_2_171 BeH 13 -2.6 0.85
ASTRAL95_1_161 BeH 20 -2.2 0.85
ASTRAL95_1_161 SoH 20 -1.8 0.83

Comparison of the running times of FORCE against the exact fixed-parameter algorithm described in [2]Figure 2
Comparison of the running times of FORCE against the exact
fixed-parameter algorithm described in [2]. Plotted is the
running time (y-axis in seconds) for different graph sizes (x-
axis). Solely for visualization purposes, we describe the size
of a graph on the x-axis as |V|·|E|. All graphs have been con-
structed from prokaryotic COG protein sequence compari-
sons using BeH as scoring function. Note that both axes are
scaled logarithmically. The red points correspond to FORCE
running times, and the blue points to the FP algorithm,
respectively.
Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
Using FORCE, we calculated protein clusters for all organ-
isms integrated in CoryneRegNet: Corynebacterium diph-
theriae, Corynebacterium efficiens, Corynebacterium
glutamicum, Corynebacterium jeikeium, Escherichia coli,
Mycobacterium tuberculosis CDC1551 and Mycobacterium
tuberculosis H37Rv (altogether 22,797 proteins). Based on
cluster size distribution, we empirically determined a
comparatively high threshold of 30 (which can be
explained by the relatively close evolutionary relationship
of most organisms in CoryneRegNet) and similarity func-
tion SoH to create the FORCE input files based on the all-
vs-all BLAST results that are generated during CoryneReg-
Net's data warehousing process.

The results computed by FORCE are parsed into the object
oriented back-end and further on translated into the
ontology based data structure of CoryneRegNet. We
added a new concept class FORCECluster and a relation
type b_fc (belongs to FORCECluster), which links the pro-
teins to their clusters. Finally, we adapted the CoryneReg-
Net back-end to import the new data into the database
and the web-front-end to present the clusters.

Discussion and Conclusion
We have shown that the WGCEP is an adequate model for
remote protein homology clustering from sequence-based
similarity measures and can outperform existing cluster-
ing approaches. Part of this effect is certainly attributable
to the class of similarity functions that we consider. Nev-
ertheless, in this particular application, the WGCEP para-
digm (or rather, our implementation) even outperforms
the Affinity Propagation approach, for which we use the
same class of similarity functions and a similar parameter
optimization as for our approach.

We described FORCE, a heuristic algorithm for the NP-
hard weighted graph cluster editing problem. Compared
to the currently most efficient exact (exponential-time)
fixed-parameter algorithm for this problem, we have dem-
onstrated empirically that FORCE regularly provides solu-
tions that are optimal, although no guarantee is given by
the algorithm. In contrast to the exact algorithm, FORCE
can solve the problem for graphs with several thousands
of nodes in reasonable time.

One of our motivations to develop a rapid and high-qual-
ity clustering algorithm arose from the need to extend the
data warehouse CoryneRegNet with protein family infor-
mation. Consequently, the clustering derived by FORCE
has been integrated into the system.

We emphasize that FORCE can cluster any set of objects
connected by any kind of similarity function using the
concept of editing a graph into a transitive graph with
minimum cost changes. The integrated evolutionary

parameter training method ensures good performance on
any kind of data.

Several issues remain to be resolved with the cluster edit-
ing or transitive projection approach. One disadvantage
of the method is that it uses the same threshold for all
clusters to determine the cost of adding or removing
edges. The authors of SYSTERS [6] report an interesting
approach to choose thresholds in a dynamical way. Find-
ing a way of incorporating dynamic thresholds into clus-
ter editing would certainly enhance its applicability.

The other issue we need to discuss is more global and
applies to any clustering algorithm and concerns the
choice of parameters. For evaluating the WGCEP model
with the SCOP datasets, we have optimized similarity
function and threshold (the "parameters") by using the
known truth as a reference and thus determined that there
exists a (reasonably simple) similarity function that mod-
els the truth rather well. In practice, given an unknown
dataset, we do not know which parameters lead to the
unknown truth. Therefore we need to find properties of
the resulting clustering (beyond the target function) that
tell us something about the quality of the clustering. For
CoryneRegNet, we were able to use the cluster size distri-
bution, as we had expert biological support. In other
cases, it is an open challenge to find properties of the clus-
tering that can be easily verified by knowledgeable experts
in the field.

Availability and Requirements
Project name: FORCE

Project home page: http://gi.cebitec.uni-bielefeld.de/
comet/force/

Operating system(s): Platform independent

Programming language: Java 6

License: Academic Free License (AFL)

Any restrictions to use by non-academics: License needed.
User should contact

Jan.Baumbach@CeBiTec.Uni-Bielefeld.DE.

Comment: Source code, all used datasets, and the cluster-
ing results can be obtained from the FORCE project web-
site.

Authors' contributions
TW and JB developed and implemented the heuristic
FORCE. Together with FPL, TW and JB evaluated the data
with ASTRAL95. JB integrated FORCE into CoryneRegNet.
Page 10 of 12
(page number not for citation purposes)

http://gi.cebitec.uni-bielefeld.de/comet/force/
http://gi.cebitec.uni-bielefeld.de/comet/force/

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
SR proposed to examine the clustering problem from the
transitive graph projection viewpoint, modeled the simi-
larity functions and supervised the whole project. All
authors contributed to writing; and all authors read and
approved the final manuscript.

Appendix
Algorithm 1 – Graph layouting
Input: similarity matrix (Sij)1 ≤ i<j ≤ n with Sij : = s(ij) - t; cir-
cular layout radius ρ, attraction factor fatt, repulsion factor
frep, number of iterations R

Output: node positions pos = (pos[1], ..., pos [n]); each pos
[i] ∈ �2.

1: pos = arrangeAllNodesCircular(ρ) Ј initial layout

2: for r = 1 to R do

3: Ј Compute displacements ∆ for iteration r

4: initialize array ∆ = (∆ [1], ..., ∆[n]) of displacement
vectors to ∆[i] = (0, 0) for all i

5: for i = 1 to n do

6: for j = 1 to i - 1 do

7: if Si, j > 0 then

8: fi ← j = log(d(i, j) + 1)·Si, j·fatt Ј attraction
strength

9: else

10: fi ← j = (1/log(d(i, j) + 1))·Si, j·frep Ј repulsion
strength

11: ∆[i] + = fi ← j·(pos [j] -pos [i])/d(i, j)

12: ∆[j] - = fi ← j·(pos [j] -pos [i])/d(i, j)

13: Ј Move nodes by capped displacement vectors

14: for i = 1 to n do

15: ∆ [i] = (∆ [i]/||∆[i]||)·min{||∆[i]||, M(r)}

16: pos [i] + = ∆ [i]

17: return pos

Algorithm 2 – Partitioning the layouted graph
Input: layout positions pos, initial and maximal clustering
distances δinit, δmax, initial step size σinit, step size factor fσ,
similarity matrix (Sij)1 ≤ i<j ≤ n to compute costs

Output: best found n × n adjacency matrix E* describing
a clustering, associated cost c*

1: δ = δinit, σ = σinit, c* = ∞, E* = (0)n × n

2: while δ ≤ δ max do

3: construct auxiliary graph Gδ = (V, Eδ) with Eδ : = {uv :
d(u, v) ≤ δ }

4. detect connected components of Gδ

5: compute transitively closed adjacency matrix E' from
Eδ

6: if cost(E') <c* then

7: E* = E'; c* = cost(E')

8: σ = σ·fσ; δ = δ + σ

9: return (E*, c*)

Additional material

Additional file 1
Graph layout I. This file is an image illustrating the layout process of a
graph with 41 nodes after (A) 3, (B) 10, and (C) 90 iterations.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-396-S1.jpeg]

Additional file 2
Graph layout II. This file is an image illustrating the layout process of a
graph with 10 nodes after (A) 3, (B) 10, and (C) 40 iterations.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-396-S2.jpeg]

Additional file 3
Graphical clustering summary. This zipped file contains images summa-
rizing the FORCE clustering results for the two similarity functions BeH
and SoH, and all four datasets, similar to our Figure 1. We used MATLAB
scripts provided by Paccanaro [7] to create these images.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-396-S3.zip]
Page 11 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-396-S1.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2105-8-396-S2.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2105-8-396-S3.zip

BMC Bioinformatics 2007, 8:396 http://www.biomedcentral.com/1471-2105/8/396
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
The authors wish to thank Andreas Dress for helpful discussions. Anke
Truss, Sebastian Briesemeister, and Sebastian Böcker generously made
available an implementation of their fixed-parameter algorithm for compar-
ison. We are grateful to Marcel Martin and Ralf Nolte for expert technical
support. Further thank to Alberto Paccanaro, for providing the MATLAB
scripts used for the painting of the graphical clustering summary. Addition-
ally, we would like to thank Constantin Bannert for helpful advice.

References
1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lip-

man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25(17):3389-3402.

2. Rahmann S, Wittkop T, Baumbach J, Martin M, Truß A, Böcker S:
Exact and Heuristic Algorithms for Weighted Cluster Edit-
ing. Comput Syst Bioinformatics Conf 2007, 6(1):391-401.

3. Delvaux S, Horsten L: On best transitive approximations of
simple graphs. Acta informatica 2004, 40(9):637-655.

4. Shamir R, Sharan R, Tsur D: Cluster graph modification prob-
lems. Discrete Applied Mathematics 2004, 144:173-182.

5. Pipenbacher P, Schliep A, Schneckener S, Schoenhuth A, Schomburg
D, Schrader R: ProClust: improved clustering of protein
sequences with an extended graph-based approach. Bioinfor-
matics 2002, 18(Suppl 2):S182-S191.

6. Krause A, Stoye J, Vingron M: Large scale hierarchical clustering
of protein sequences. BMC Bioinformatics 2005, 6:15.

7. Paccanaro A, Casbon JA, Saqi MA: Spectral clustering of protein
sequences. Nucleic Acids Research 2006, 34(5):1571-1580.

8. Enright AJ, Dongen SV, Ouzounis CA: An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Res 2002,
30(7):1575-1584.

9. Everitt BS: Cluster Analysis 3rd edition. Edward Arnold, London; 1993.
10. Enright AJ, Ouzounis CA: GeneRAGE: a robust algorithm for

sequence clustering and domain detection. Bioinformatics 2000,
16(5):451-457.

11. Frey BJ, Dueck D: Clustering by Passing Messages Between
Data Points. Science 2007, 315(5814):972-976.

12. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin
EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS,
Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The
COG database: an updated version includes eukaryotes.
BMC Bioinformatics 2003, 4:41.

13. Fruchterman TMJ, Reingold EM: Graph drawing by force-
directed placement. Software – Practice and Experience 1991,
21(11):1129-1164.

14. King AD, Przulj N, Jurisica I: Protein complex prediction via
cost-based clustering. Bioinformatics 2004, 20(17):3013-3020.

15. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin
AG: SCOP database in 2004: refinements integrate structure
and sequence family data. Nucleic Acids Research 2004,
32:D226-D229.

16. Chandonia JM, Hon G, Walker NS, Conte LL, Koehl P, Levitt M, Bren-
ner SE: The ASTRAL Compendium in 2004. Nucleic Acids
research 2004, 32:D189-D192.

17. SCOP website [http://scop.mrc-lmb.cam.ac.uk/scop/]
18. ASTRAL website [http://astral.berkeley.edu/]
19. COG website [http://www.ncbi.nlm.nih.gov/COG/]
20. COG sequences (FTP) [ftp://ftp.ncbi.nih.gov/pub/COG/COG/

myva]
21. Baumbach J, Brinkrolf K, Czaja L, Rahmann S, Tauch A: CoryneReg-

Net: An ontology-based data warehouse of corynebacterial
transcription factors and regulatory networks. BMC Genomics
2006, 7:24.

22. Baumbach J, Wittkop T, Rademacher K, Rahmann S, Brinkrolf K,
Tauch A: CoryneRegNet 3.0-An interactive systems biology
platform for the analysis of gene regulatory networks in
corynebacteria and Escherichia coli. J Biotechnol 2007,
129(2):279-289.

23. Gramm J, Guo J, Hüffner F, Niedermeier R: Automated genera-
tion of search tree algorithms for hard graph modification
problems. Algorithmica 2004, 39(4):321-347.

24. Gramm J, Guo J, Hüffner F, Niedermeier R: Graph-modeled data
clustering: Exact algorithm for clique generation. Theor Com-
put Syst 2005, 38(4):373-392.

25. Dehne F, Langston MA, Luo X, Pitre S, Shaw P, Zhang Y: The Clus-
ter Editing Problem: Implementations and Experiments. In
Proc of International Workshop on Parameterized and Exact Computation
(IWPEC 2006) Volume 4169. LNCS, Springer; 2006:13-24.

26. CoryneRegNet website [http://www.CoryneRegNet.DE]
27. Beckstette M, Homann R, Giegerich R, Kurtz S: Fast index based

algorithms and software for matching position specific scor-
ing matrices. BMC Bioinformatics 2006, 7:389.

Additional file 4
Quality evaluation for different scoring themes and datasets. This file is
tab-delimited and stores F-measures for a wide range of thresholds and
coverage factors, for all used datasets and similarity functions. column 1:
F-measure, column 2: coverage factor f, column 3: threshold, column 4:
dataset/similarity function.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-396-S4.txt]

Additional file 5
Quality evaluation for different thresholds and fixed coverage factor, data-
set and similarity function. This file is tab-delimited and stores F-measures
for a range of thresholds, and fixed coverage factor f = 20, dataset
ASTRAL95_1_161, and similarity function BeH. Column 1: threshold,
column 2: coverage factor f, column 3: F-measure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-396-S5.txt]

Additional file 6
Quality evaluation of Affinity Propagation for different scoring themes
and datasets. This file is tab-delimited and stores F-measures for a wide
range of parameter constellations and coverage factors, for all used data-
sets and similarity functions. Column 1: F-measure, column 2: coverage
factor f, column 3: preference pre, column 4: damping factor df, column
5: dataset/similarity function.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-396-S6.txt]
Page 12 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-396-S4.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-8-396-S5.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-8-396-S6.txt
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17951842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17951842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17951842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12386002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12386002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15663796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15663796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16547200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16547200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10871267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10871267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17218491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17218491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681391
http://scop.mrc-lmb.cam.ac.uk/scop/
http://astral.berkeley.edu/
http://www.ncbi.nlm.nih.gov/COG/
ftp://ftp.ncbi.nih.gov/pub/COG/COG/myva
ftp://ftp.ncbi.nih.gov/pub/COG/COG/myva
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16478536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16478536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16478536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17229482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17229482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17229482
http://www.CoryneRegNet.DE
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16930469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16930469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16930469
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	The problem
	Graph cluster editing problem (GCEP)
	Weighted graph cluster editing problem (WGCEP)

	Previous work and novel contributions

	Methods
	Clustering via graph layouting
	Layout phase
	Partitioning phase
	Postprocessing phase

	Analysis
	Evolutionary parameter training
	Datasets, similarity functions, and parameters
	SCOP and Astral95
	Protein sequences from the COG database
	Similarity functions and thresholds
	Best hit (BeH)
	Sum of hits (SoH)
	Coverage (Cov)
	Parameter choices

	Results
	Evaluation of the WGCEP model
	Quality and running time of the heuristic
	CoryneRegNet

	Discussion and Conclusion
	Availability and Requirements
	Authors' contributions
	Appendix
	Algorithm 1 - Graph layouting
	Algorithm 2 - Partitioning the layouted graph

	Additional material
	Acknowledgements
	References

