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Abstract
Background: In order to recapitulate tumor progression pathways using epigenetic data, we
developed novel clustering and pathway reconstruction algorithms, collectively referred to as
heritable clustering. This approach generates a progression model of altered DNA methylation
from tumor tissues diagnosed at different developmental stages. The samples act as surrogates for
natural progression in breast cancer and allow the algorithm to uncover distinct epigenotypes that
describe the molecular events underlying this process. Furthermore, our likelihood-based
clustering algorithm has great flexibility, allowing for incomplete epigenotype or clinical phenotype
data and also permitting dependencies among variables.

Results: Using this heritable clustering approach, we analyzed methylation data obtained from 86
primary breast cancers to recapitulate pathways of breast tumor progression. Detailed annotation
and interpretation are provided to the optimal pathway recapitulated. The result confirms the
previous observation that aggressive tumors tend to exhibit higher levels of promoter
hypermethylation.

Conclusion: Our results indicate that the proposed heritable clustering algorithms are a useful
tool for stratifying both methylation and clinical variables of breast cancer. The application to the
breast tumor data illustrates that this approach can select meaningful progression models which
may aid the interpretation of pathways having biological and clinical significance. Furthermore, the
framework allows for other types of biological data, such as microarray gene expression or array
CGH data, to be integrated.

Background
Recapitulating pathways of tumor progression by tracing
specific molecular lesions is necessary for understanding

the disease and for developing novel drug targets and ther-
apies. The idea of utilizing DNA methylation profiles to
recapitulate tumor progression is even more enticing in
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that these epigenetic marks are stable and heritable in
tumor genomes [1]. Specifically, this event occurs by the
addition of a methyl group to a cytosine residue of a CpG
dinucelotide [2]. It is recognized that in the normal
genome, DNA methylation plays a role in mammalian
development, imprinting, and X chromosome inactiva-
tion [3]. Recent advances further highlight a critical role of
epigenetically mediated gene silencing in tumorigenesis
[1]. Unmethylated CpG islands, located in the promoter
regions of tumor suppressor/gatekeeper genes, become
densely methylated during tumorigenesis [4-6]. Once the
de novo methylation takes place, this new mark is main-
tained in subsequent cycles of cell replication by DNA
methyltransfereases and other associated proteins, like
polycomb repressors [7,8]. The consequence of these
molecular events is a gradual accumulation of DNA meth-
ylation in an affected promoter CpG island. In addition,
methylation-associated silencing of tumor suppressor
genes can result in cells with a growth advantage. The
number of hypermethylated genes tends to increase in
more malignant cells, and clonal expansion of proliferat-
ing cells may generate specific tumor types marked by
their unique epigenetic signatures [4,6]. This epigenetic
event is inherently stable, and the silencing information is
stored in the DNA methylation code of a tumor. There-
fore, DNA methylation analysis can be retrospectively per-
formed on clinical samples, allowing for studies of tumor
progression history and for clinicopathological correla-
tion. With the implementation of the state-of-the-art
microarray technologies, it is now possible to obtain
methylation signatures of multiple genes simultaneously
and to classify tumors based on their global methylation
patterns [9-12]. The idea of conducting a human epige-
nome project has recently been conceptualized [13] and is
expected to facilitate our fundamental understanding of
aberrant epigenetic mechanisms in cancer. In this study,
we developed novel clustering and pathway reconstruc-
tion algorithms, collectively called heritable clustering, to
evaluate a set of methylation microarray data previously
generated in our laboratory [14]. Progressive accumula-
tion of hypermethylated CpG islands was used to charac-
terize breast tumor progression pathways. Utilizing these
novel algorithms, we correlated specific methylation pro-
files with patient's clinical phenotypes and reconstructed
the epigenetic history germane to tumorigenesis.

Tumor progression pathways and recapitulation
Abstractly, a tumor progression pathway is a directed
graph with nodes corresponding to archetypal tumor
stages and a directed edge denoting possible progression
from one stage to another (see Figure 1). Tumor progres-
sion pathways are constructed based on the following
characteristics: (1) most CpG islands are unmethylated in
normal cells, (2) CpG island hypermethylation is herita-
ble in tumor cells, and (3) multiple methylated loci are

progressively accumulated during tumorigenesis. Based
on these properties, we hypothesized that tumor cells
have unique epigenetic signatures that are associated with
specific cancer subtypes (phenotypic information). Spe-
cifically, we seek to construct patterns and relationships
among hypermethylated genes that are progressively accu-
mulated during tumorigenesis. As it is not possible for us
to obtain tissues from the same patients at different stages
of tumor progression over time, methylation data derived
from tumors of different patients are used as surrogates for
reconstructing tumor progression history. To accommo-
date the heritable nature of de novo methylation, a pro-
gression pathway ought to adhere to the notion that the
hypermethylated loci acquired at each node are passed on
to subsequent node(s). For two nodes A and B, A is an
"ancestor" of B and B is a "progeny" of A if there exist
nodes V1(= A),…, Vn(= B) such that there is a directed edge
from Vi to Vi+1, i = 1,… , n - 1 (i.e., a directed path from A
to B). With this provided nomenclature, the progressive
accumulation of hypermethylated loci is captured in the
progression pathway by requiring that ancestor's methyl-
ated loci are subsets of their progeny's. Furthermore, the
phenotypes of progeny nodes are hypothesized to be
more aggressive than those of the ancestors'. Although
existing clustering algorithms (e.g., hierarchical clustering
or K-means) are available for clustering samples, no suit-
able method can be applied to give temporal directions of
progression among different epigenetic clusters. In gen-
eral, clustering algorithms (see [15] for a review and com-
parison of clustering methods most widely used for
analyzing microarray data), including those that have
been recently devised for progression modeling with
genomic data (e.g., [16,17]), treat all observed events as
belonging to terminal nodes. This is in contrast with the
type of progression models that we wish to build to
accommodate the hidden temporal structure so that all
nodes, terminal or internal, contain the observed events.
Such a challenge impedes us from adopting published
clustering algorithms without major modifications.
Therefore, we developed the heritable clustering algo-
rithms to identify and organize clusters into a pathway
and to recreate tumor progression pathways.

Results
Three stages of heritable clustering are laid out in detail in
Methods. We outline them here briefly before describing
their application to a primary breast tumor dataset and
the results. First, we determined the number of clusters,
and second we assigned the tumor samples into clusters.
Finally, the clusters were organized into a pathway struc-
ture to capture tumor progression. Other well-known
clustering methods were also considered as alternatives.
Except for the likelihood approach, which is based on
probabilistic modeling, all the other methods considered
here make use of a distance metric (see Methods).
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Data
Methylation analyses were initially performed on 93
intraductal carcinoma from unrelated patients, and their
sample amplicons were deposited on the array [14]. The
studied gene probes were hybridized to the array sequen-
tially to generate composite methylation signatures [14].
A total of 10 genes were studied for their methylation sta-
tus (0, unmethylated; 1, hypermethylated) in these tumor
samples. These genes were chosen for analysis because of
their known involvement in tumor suppression [18]. For
a description of the methods used for generating the
methylation data as well as assigning the discrete methyl-
ation values see [14]. Since gene BRCA2 is not methylated

in any tumors, it is excluded from the final data analysis
and model building. The remaining 9 genes used for path-
way recapitulation are GPC3, RASSF1A, WT1, PLAU,
HOXA5, CDKN2A, HS3ST3B1, BRCA1, and DAPK1 (for a
detailed description, see Table 1). There are also five clin-
ical phenotypes, and the categorical values of each pheno-
type are considered ordinal, with the lowest level to be
adjusted to 0 for the heritable clustering analysis:

• Yl = age (1: age > 55; 2: age ≤ 55),

• Y2 = Estrogen Receptor (ER)/Progesterone Receptor
(PR) (1: +/+; 2: +/- or -/+; 3: -/-),

Progression pathway network with w = 0.8, ε = 0.8 and the LH algorithmFigure 1
Progression pathway network with w = 0.8, ε = 0.8 and the LH algorithm. The methylation data analyzed here are 
from 86 primary breast cancers. A set of 9 gene promoter CpG islands is investigated. The methylation statuses of the genes in 
each node are represented in a color-coded pie chart, with red signifying hypermethylation while green denoting lack of differ-
ential methylation. There are five phenotype measurements for each tumor. They are: age (1, age > 55; 2, age ≤ 55), ER/PR (1, 
+/+; 2, +/- or -/+; 3, -/-), histology (1, well-differentiated; 2, moderately-differentiated; 3, poorly-differentiated), clinical stage (1, 
2, 3, or 4), and metastasis status (0, M0; 1, M1). The phenotype center for each phenotype is listed above each node in the 
order described above. The pathway network presented here conforms to strict heritability and tumor phenotype progres-
sion.
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• Y3 = histology (1: well-differentiated; 2: moderately-dif-
ferentiated; 3: poorly-differentiated),

• Y4 = clinical stage (1, 2, 3, or 4), and

• Y5 = metastasis status (1: no; 2: yes).

Of the 93 samples for which epigenotypes are available,
seven have missing data on some of the phenotypic meas-
urements. Therefore only the 86 samples that have com-
plete data on both epigenotypes and phenotypes were
used in the analyses presented in this section to facilitate
comparisons among methods, although the likelihood
method is amenable to the full set of 93 samples.

Number of clusters
For the 86 samples with complete data, our model selec-
tion method was employed to find the optimal number of
clusters and its associated parameter values for weight and
similarity. Specifically, to apply our model selection pro-
cedure, we considered parameters w and ε in the range of
0.2 and 0.8, and 0.5 and 1, respectively, in increments of
0.1. We arranged the resulting values of the objective func-

tion f(w, ε) in ascending order. The result that optimizes
our objective function has 13 clusters, with both the w and
ε values being 0.8, as shown in Table 2. Also shown in the
table are the next four best results according to the crite-
rion.

Clustering analysis
We applied the two clustering algorithms detailed in
Methods, SIM (similarity/distance based) and LH (likeli-
hood based), to group the 86 tumor samples into 13 clus-
ters. For the LH approach, the nine epigenotypes were
treated as independent binomial variables, as was the age
phenotype. However, since ER/PR status and histology (ρ
= 0.46; p < 0.0001) were significantly positively corre-
lated, these two variables were modeled jointly as follows:

p0 = P(|Y2 - Y3| = 0), p1 = P(|Y2 - Y3| = 1), and p2 = P(|Y2 -
Y3| = 2) = 1 - p0 - p1. Similarly, the high positive correlation
between clinical stage and metastasis (ρ = 0.62; p < =
0.0001) led us to the joint modeling of these two varia-
bles, which in essence was a binomial probability distri-
bution with parameter p = P((Y4 ≤ 2 &Y5 = 1) or (Y4 ≥ 2
&Y5 = 2)).

Table 2: The top five clustering outcomes (ranked by the values of the objective function f) and the corresponding w and ε values.

Rank w ε #Cluster(K) Total Similarity (TS) f (w, ε)

1 0.8 0.8 13 12.10 1.56
2 0.7 0.8 17 15.86 1.55
3 0.5 0.7 10 8.95 1.48
4 0.3 0.7 10 8.80 1.46
5 0.2 0.8 22 20.73 1.46

Table 1: Genes used in model construction.

Gene Symbol Accession Number GeneID Gene Description Function

GPC3 NM_004484 2719 glypican 3 Cell surface heparan sulfate proteoglycans; may play a role in the 
control of cell division and growth regulation

RASSF1A NM_007182 11186 Ras association domain 
family 1

Protein similar to the RAS effector proteins; interact with DNA 
repair protein XPA; inhibit cyclin D1 accumulation thereby inducing 
cell cycle arrest

WT1 NM_000378 7490 Wilms tumor 1 A transcription factor; mutated in a small subset of patients with 
Wilm's tumours

PLAU NM_002658 5328 plasminogen activator, 
urokinase

A serine protease involved in degradation of the extracellular matrix.

HOXA5 NM_019102 3202 homeobox A DNA-binding transcription factor which may regulate gene 
expression, morphogenesis, and differentiation.

CDKN2A NM_000077 1029 cyclin-dependent kniase 
inhibitor 2A

Functions as a stabilizer of the tumor suppressor protein p53.

HS3ST3B1 NM_006041 9953 heparan sulfate 3-O-
sulfotransferase 3B1

An enzyme that possesses heparan sulfate glu-cosaminyl 3-O-
sulfotransferase activity

BRCA1 NM_007294 672 breast cancer 1, early onset A nuclear phosphoprotein that plays a role in maintaining genomic 
stability and acts as a tumor suppressor

DAPK1 NM_004938 1612 death-associated protein 
kinase 1

A positive mediator of gamma-interferon induced programmed cell 
death
Page 4 of 11
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004484
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_007182
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000378
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_002658
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_019102
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_000077
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_006041
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_007294
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004938


BMC Bioinformatics 2007, 8:38 http://www.biomedcentral.com/1471-2105/8/38
In addition to these two novel clustering methods, we also
analyzed the same set of data using three popular cluster-
ing methods in the literature, namely, K-means, PAM, and
hierarchical clustering (H-clust), setting the number of
clusters to 13. For these three popular algorithms and
SIM, the distance measure was as described in Methods
with w and ε set to correspond to the choice of the optimal
number of clusters (Table 2), which uses both phenotypic
and epigenotypic data. For all algorithms, the starting
clustering assignments all use the by-product from the
model selection step.

Three objective criteria, likelihood, silhouette, and
entropy, were used to evaluate the outcomes of the vari-
ous clustering algorithms. These criteria either try to meas-
ure the tightness of the samples within each cluster
(likelihood and entropy) or the separation between clus-
ters (silhouette). Our results in Table 3 show that LH out-
performed the others under the likelihood and entropy
criteria, with SIM being second in both cases. On the other
hand, SIM came out a winner as far as the silhouette crite-
rion is concerned. Both PAM and H-clust were not too far
off from the optimal achieved by SIM in terms of silhou-
ette, but they are not competitive under the other two cri-
teria. The performance of K-means is also mixed. While it
did a descent job evaluated under the entropy criterion, its
likelihood and silhouette values are quite far from the
optimal ones.

Pathway recapitulation
Shown in Figure 1 is the recapitulated pathway built from
the nodes derived from the LH algorithm, which per-
formed the best for two of the three criteria evaluated. The
red wedges in each pie (denoting a node) correspond to
hypermethylated loci, while their green counterparts rep-
resent the loci that are not hypermethylated. The legend
accompanying the figure annotate the organization of the
nine loci. The numbers in the parentheses above each
node are the phenotype centers arranged in the same
order as that described in the Data subsection. The num-
bers in the brackets at the bottom right of each node is a
node phenotype score defined by the phenotype center
(see Methods). Finally, the pathway network built adheres
to strict heritability.

Interpretation
The progression pathway presented in Figure 1 depicts the
outcome from PD using the methylation profiles of 9 pro-
moter CpG islands found to be hypermethylated in pri-
mary breast tumors. These promoter CpG islands were
selected because they are linked with known tumor-asso-
ciated and/or tumor suppressor genes and their expres-
sion levels were shown previously to be perturbed by
promoter hypermethylation. In this progression pathway,
the proposed clustering method selects node centers that
not only preserve strict heritability of promoter methyla-
tion but also uncover pathways with perfect progression
in the 5 selected breast tumor phenotypes. This is a sound
approach to construct the model as tumor phenotypes
progress in a reasonably predictable manner (e.g., from
small tumors to large tumors and from tumors that are
contained within the primary site to tumors that have
metastasized). This coupled with the cumulative nature of
promoter methylation in genes whose expressions are
known to be perturbed by methylation become the basis
of our model. As such, we propose that tumors with more
aggressive phenotypes should exhibit higher levels of
methylation in this gene panel than the less aggressive
tumors. A key utility of the reconstructed progression
pathway is that it provides the opportunity to visualize the
relationship between methylated gene promoters and the
phenotype score. As readily apparent in Figure 1, this algo-
rithm portrays complex and non-linear interplays
between the methylation data and the phenotype scores.

Age phenotype
The first phenotype under consideration is the age of diag-
nosis. It is known that a young age of tumor onset gener-
ally correlates with a more aggressive disease. Often DNA
methylation plays less of a role in tumorigenesis in this
subset as evident in Nodes Al and B3. There are 47
patients older than 55 and 39 patients younger than 55.
As such, an age of 55 is a reasonable cutoff to segregate
pre-menopausal patients (thus patients with the more
aggressive cancer, phenotype measurement = 2) from the
post-menopausal patients (phenotype measurement = 1).
This distinction is clearly illustrated by the phenotype
summary of Node Al verses those of Nodes A2, and A3. All
of these nodes are made up of tumors with little to no pro-
moter methylation in the 9 studied genes, yet Nodes A2
and A3 had favorable phenotype scores of 0.233 and

Table 3: Goodness-of-fit test for different cluster methods with different criteria.

Method LH SIM K-means PAM H-clust

-log(LH) 70.05 85.05 97.15 107.73 97.88
Entropy 64.79 65.82 68.10 86.29 82.94
Silhouette 0.08 0.41 0.28 0.36 0.40
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0.196, respectively, while Node Al had a metastasis phe-
notype and a phenotype score of 0.7. This age effect is also
evident when we examine all of the node phenotype score
(an average score of 0.34 for old age tumor vs. 0.63 for
young age tumor).

Hormone receptor status
ER/PR status is another phenotype that distinguishes early
stage, less aggressive tumors from late stage, more aggres-
sive tumors. Therefore, tumors expressing a measurable
level of ER and PR (an assigned value of 1 or 2) should be
clustered to the early and less aggressive nodes of the path-
way while tumors without ER and PR expression should
appear closer to the terminal nodes. Upon inspection of
Figure 1, we noted the phenotype score for ER/PR = 1 or 2
is 0.37 and 0.63 for ER/PR = 3.

Tumor metastasis and histology
Another tumor phenotype that should follow stringent
progression is tumor metastasis. A tumor that has shed a
portion of its cells to distant sites such as lymph nodes
represents a late stage, aggressive tumor. As such, tumors
with a metastasis value of 1 should not appear in a node
before tumors with no metastasis (metastasis value = 0).
Tumor phenotypes relating to histology and tumor stag-
ing should progress similarly from a low grade or stage to
a high grade or stage in the progression pathway. An
intriguing observation is that nodes with a metastasis
value of 1 have methylation events on average in 5 of the
genes whereas nodes without metastasis has on average
3.6 methylation events. Node Al is an exception in that
methylation events of these 9 genes are not involved in
this archetypal tumor.

Promoter hypermethylation
Previous analysis on this data set showed that a large
number of tumors have concurrent hypermethylation in
the promoters of GPC3 and RASSF1A [12]. The progres-
sion pathway presented in Figure 1 shows that promoter
methylation of these two genes is an early event in tumor-
igenesis as evident by the presence of hypermethylation in
either RASSF1A or GPC3 or both in Nodes A2, A3, and A4.
In the same vein, methylation of WT1 and HS3ST3B gene
promoters seem to be a late event in that WT1 methyla-
tion occurs in 3 out of 4 terminal nodes (Nodes B2, B5,
and C2) whereas HS3ST3B occurs in 2 out of 4 terminal
nodes (Nodes C2 and D1). BRCA1 encodes a tumor sup-
pressor gene that functions, in part, in maintaining
genomic stability. In this progression pathway, BRCA1
methylation occurs exclusively in ER/PR negative tumors
(Nodes B1, B6, C1, and D1). This is intriguing in that
most BRCA1 mutant breast cancers are hormone receptor
negative and here we showed that BRCA1 hypermethyla-
tion is also associated with hormone receptors negativity
[19]. We also noticed that hypermethylation occurs con-

currently in PLAU and HOXA5 as evident in Nodes A4, B4,
B5, and C2. Both of these genes are known to be associ-
ated with apoptosis regulation in the mammary gland
involution [20]. Having both of these gene promoters
methylated would indeed confer survival advantage to the
tumor clones. These types of relationships will not be at
all apparent without breaking down the data according to
clusters of common phenotype measurements.

Discussion and conclusion
In this paper, we have developed novel methods for each
of the three stages of the heritable clustering procedure.
Although existing clustering methods are applicable to the
second stage of the procedure, our proposed clustering
algorithms, SIM and LH, outperformed their counterparts
based on three objective evaluation criteria, for the data
examined. Furthermore, our heritable clustering proce-
dure seems to be able to capture the biological essence of
tumor progression, as discussed below in general, and as
elaborated in the above section for the breast tumor exam-
ple in particular. Armed with these encouraging results
from the breast tumor data, we plan to apply this frame-
work to build progression models for genome-wide
stroma and tumor methylation data that we are currently
generating. However, in order for our proposed method
to be applicable, judicious selection of relevant loci is an
indispensable pre-processing step. In this regard, the
resulting plausible and interpretable pathway model from
our application to the breast tumor data owes largely to
the set of loci that are known to be tumor-associated and/
or tumor suppressor genes. Furthermore, since our focus
of the current paper is on the particular breast tumor data,
and our observations of the satisfactory performance of
the heritable clustering methods are based on them, fur-
ther assessment of the performance of heritable clustering
for data from other tumor types is warranted in future
applications.

The preliminary application of the heritable clustering
algorithms to the breast tumor data demonstrates its effec-
tiveness in identifying pathways with unambiguous epige-
netic and phenotypic progression. The constructed
pathway summarizes the epigenetic and phenotypic data
in a way that corresponds to the current understanding of
tumor progression. Further, the potential of methylation
profiles to be used for characterizing tumor progression
has been demonstrated. The resulting pathways from our
tumor progression pathway recapitulation procedure
depend on a number of factors including: 1) distance
between tumors (epigenotype and phenotype); 2) bal-
ance between epigenotype and phenotype data; 3) simi-
larities within clusters; and 4) heritability between nodes.
The best results are those that reflect the underlying bio-
logical processes that lead to the formation of the primary
tumors. Our heritable clustering method is designed
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based on the assumption that epigenetic changes are sta-
bly passed from progenitor to progeny cells [6]. Depend-
ing on what stage each tumor is diagnosed, some might
have accumulated more epigenetic alternations than oth-
ers as they have progressed more. In this paper, we capital-
ize on these epigenetic hallmarks to recapitulate breast
tumor progression pathways utilizing CpG island hyper-
methylation data. In building the tumor progression
pathway, the assumption is based on the heritable nature
of CpG island hypermethylation passing from the parent
node to its progeny nodes as tumor progresses. Therefore,
the progeny nodes of tumor cells accumulate more hyper-
methylated gene promoters as they are further along in
the progression pathway. The progeny tumor cells are
likely to be more aggressive and have more proliferative
advantages than the parental cells. Hence, we built a
tumor progression model by linking the nodes or clusters
based on strict heritability and their phenotype scores.

In practice, it is unlikely to recreate a linear temporal clin-
icopathological history of a cancer developing over time
in a single patient as it is unethical to remove part of the
tumor and allows a portion to grow for research purposes.
To overcome this challenge common to all human genetic
and epigenetic studies, we propose to view CpG island
hypermethylation as "molecular relics" whereby one can
trace how much each tumor has progressed by examining
the overall methylation profile as such information is sta-
bly transmitted from parent cells to their progeny. The
heritable clustering method developed in this paper is
designed to uncover the different paths breast tumors can
progress. Our results from the breast tumor application
indicate that this approach is likely to select meaningful
progression models and hopefully will assist in the inter-
pretation of pathways having biological and clinical sig-
nificance.

In this present application of the heritable clustering
method, the epigenetic and clinical phenotypic values
took on discrete values. However, the method can be
extended to analyze other data types where the numerical
values of the data are continuous. For instance, the
method is well suited for modeling methylation data
expressed as intensity ratios from two-color microarray
experiments or transcription factor binding enrichment
on gene promoters from ChIP-on-chip experiments. The
framework would also allow for other types of biological
data, such as microarray gene expression or array CGH
data, to be integrated. Particular characteristics could also
be employed in the selection of genes to be used directly
or to be used collectively as a phenotype in the construc-
tion of tumor progression pathway. For example, 'CpG
island methylator phenotype' (CIMP) is a distinct trait
studied extensively in colorectal cancer. In colorectal can-
cer, a high frequency of Type C (cancer-associated methyl-

ation) loci was recently described by Weisenberger et al.
[21]. The authors believe that they have arrived at a gene
panel to classify CIMP comprised of unique underlying
genotypes associated with microsatellite instability and
BRAF mutation. The use of the methylation status of this
panel of CIMP genes or the use of this panel collectively as
a CIMP phenotype (by performing cluster analysis to
group tumors into CIMP+ or CIMP-) to construct the
tumor progression pathway recapitulation would add
another dimension to the model. However, we wish to
note that the value of using CIMP may be cancer-type
dependent. For example, whereas CIMP is clearly valued
for studying colorectal cancer, whether it should be used
in building breast tumor progression pathway is debata-
ble as much less is known about CIMP in breast cancer.

Methods
The three stages of heritable clustering are laid out in
detail here. First, we will describe an algorithm for deter-
mining the number of clusters. Then, we discuss two new
procedures for clustering that are appropriate for our
problem. Finally, we provide an algorithm that organizes
the clusters into a pathway network to capture tumor pro-
gression epigenetically and phenotypically. Except for the
likelihood approach, which is based on probabilistic
modeling, all the other methods considered here make
use of a distance metric. Thus, we describe our chosen dis-
tance, or the equivalent – similarity measure, next before
we detail the three stages of heritable clustering.

Similarity measures for epigenotypes and phenotypes
For our purposes, the data generated by methylation
microarray are interpreted as categorical in nature (hence-
forth described as epigenotype) – 1: hypermethylated; 0:
unmethylated. Methylation progression patterns among
tumor samples are integral to the inheritance property of
our model; hence, the capacity to capture such patterns is
a requisite of any clustering method employed. Under
these constraints, we choose to design our algorithm
based on the concept of ε-similarity [22], which defines
distance and similarity measures suitable for our analysis.
Specifically, the Hamming distance [23] defines the dis-
tance between two binary vectors of equal length as the
number of elements that have different bits. This distance
measure is adopted for describing the distance between
the epigenotypes of two tumor samples. For each tumor t,
t = 1,… , T, let Xt = {Xtg, g = 1,… , G} be the epigenotype
vector at G loci. The epigenotype distance between two
tumor samples ti and tj is then defined as

Since most phenotype data (e.g., clinical stage, histologi-
cal grade, or hormone receptor status) are categorical in
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nature, we assume that each tumor phenotype is a discrete
ordinal, or can be ordered sensibly beginning from 0 to Kp
- 1, where Kp is the number of the categories for phenotype
p. Similar to the notation for epigenotypes, we use Yt =
{Ytp, p = 1,… , P} to denote the vector of phenotypes for
tumor t. Then the phenotype distance between two
tumors ti and tj is

Finally, the similarity measure between two tumors ti and
tj is defined as

S(ti, tj) = 1 - (w·dp(i, j) + (1 - w)·dg(i, j)),

where 0 ≤ w ≤ 1 is a weight parameter to balance the con-
tributions from epigenotype and phenotype similarities.
Two tumors, ti and tj, are said to be ε-similar if and only if
S(ti, tj) ≥ ε, where 0 ≤ ε ≤ 1 represents the level of similar-
ity. In the proposed heritable clustering method, if two
tumors are sufficiently similar, they will be clustered into
the same group. The selection of an appropriate ε depends
on the desired degree of similarity within a cluster. The
lower the ε value, the less similarity (i.e. more variation)
within each cluster is allowed. To balance the contribu-
tions from epigenotypes and phenotypes, and to guaran-
tee a reasonable level of similarities among tumor
samples within each cluster, we suggest considering the
parameters w and ε in the following ranges: 0.2 ≤ w ≤ 0.8
and 0.5 = ε ≤ 1.

Determination of number of clusters
For each combination of weight and similarity (w, ε) (e.g.,
0.2 ≤ w ≤ 0.8,0.5 ≤ ε ≤ 1), we use the following steps to
determine the number of clusters.

1. Begin with two tumors {ti, tj} that maximize the simi-
larity measure S(ti, tj). If the maximal value of S is less than
ε, assign each tumor into separate clusters and stop. Oth-
erwise let C1 = {ti, tj} and go to the next step.

2. Suppose there exist K clusters C1,… , Ck. Let nk be the
number of tumors in Ck and tki be the i-th tumor to be
added to Ck, k = 1,… , K, and i = 1,… , nk. Let t ∈ T be a
tumor sample that has not yet been assigned to any of the
clusters. The similarity score between t and each of the
existing cluster is defined as:

Let (t*, k*) = argmax{S(t, Ck), t ∈ T, k = 1,… , K}. If S(t*,
Ck*) ≥ ε, then Ck* = Ck* ∪ {t*}; otherwise create a new clus-
ter CK+1 = {t*}.

3. Repeat step 2 until all tumor samples are assigned to
clusters. Then calculate the total similarity score

where  is the average simi-

larity in cluster k and K(w, ε) is the corresponding number

of clusters with parameters w and ε.

What remains is to find the optimal cluster number K and
its corresponding parameter pair (w, ε). In general, if the
number of clusters K is large, then TS is also large, and con-
sequently log(TS) is also large. This leads us to propose a
model selection criterion following the formulation of
Akaike's Information Criterion (AIC) [24]. The main idea
is to maximize total similarity subject to a penalty term for
over stratification. Specifically, we seek (K, w, ε) that satis-
fies

where P and G denote the number of phenotypes and epi-
genotypes, respectively, as defined before. Note that the
second term in the objective function f is to penalize over
estimation of the number of clusters. It is designed to bal-
ance the number of clusters and total similarity, as in AIC.

A different clustering algorithm other than the one
described above may be used to determine the number of
clusters for each w and ε. However, existing algorithms
cannot easily accommodate the requirement of ε-similar-
ity, which is what prompted us to devise the above algo-
rithm.

Clustering samples
We then turn to clustering algorithms to group samples
into K clusters, where K is the optimal number of clusters
determined from the previous stage. Here we describe two
novel algorithms, one based on distance (similarity) and
the other based on likelihood. Both methods are iterative
procedures like that of k-means, and therefore it is worth
noting that the first stage of heritable clustering also pro-
duces clusters as a by-product, which can be conveniently
used as initial clusters here. For the three existing distance-
based algorithms that we also consider, K-means, PAM,
and hierarchical clustering, the distance measure used is
the same as that for SIM, to be described, which uses both
methylation status and phenotypes. We note that this dis-
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tance measure differs from what usually used in these
popular algorithms (e.g., Euclidean distance or correla-
tion based) as we are dealing with discrete data and want
to take both epigenotype and phenotype information into
consideration. However, the proposed method is equally
applicable to continuous data or a combination of contin-
uous/discrete data from an operational point of view,
albeit with a different distance measure suitable for the
data type(s).

Distance-based similarity approach
This can be regarded as a hybrid clustering algorithm that
combines the essence of K-means and Silhouette (princi-
pal criterion in PAM) to balance within-cluster similarity
and between-cluster distinctiveness. Let a(t) denote the
average similarity between tumor t and all the other
tumors in cluster Ck* to which t belongs. For any of the
other clusters Ck, k ≠ k*, let S(t, Ck) be the average similar-
ity of t to all samples in Ck. We denote by b(t) = maxk ≠ k*
S(t, Ck) the similarity between t and its nearest "neighbor"
cluster. If ab(t) = a(t) - b(t) ≥ 0, we say that t is correctly
assigned to its current cluster, Ck*, otherwise, it is a candi-
date for switching its cluster membership.

Algorithm: SIM

1. Calculate ab(t) for each t and let abmin = mint ab(t).

2. If abmin < 0, move the corresponding t to its "neighbor"
cluster.

3. Repeat 1–2 until abmin ≥ 0.

Likelihood-based method
Unlike the SIM algorithm or most other existing algo-
rithms in the literature, the likelihood-based method pro-
posed here does not depend on any measure of distance.
This leads to greater flexibility, in that the approach can
deal with both discrete and continuous data, missing
observations for some of the variables, and dependencies
among the variables. The idea is similar, in spirit, to that
reported in Cai et al. [25] for SAGE data. It also shares the
commonality of a parametric clustering formulation with
Siegmund et al. [26] for analyzing methylation data,
although the two address two completely different prob-
lems. We assume that the epigenotype vectors (Xt) for
tumor t follows a common parametric family of distribu-
tions with its own parameter vector θtG. Analogously, we
use θtp to denote the parameter vector for the distribution
of the clinical phenotype vector Yt. That is,

Xt = {Xt1, Xt2,… , XtG}~P(. | θtG),

Yt = {Yt1, Yt2,… , YtP}~P(.| θtP).

Thus, Xt and Yt are jointly distributed as

(Xt, Yt) ~ P(.|θt = (θtG, θtP)).

If Xt and Yt are assumed to be independent, then

P(Xt, Yt | θtG, θtP) = P(Xt | θtG)P(Yt| θtP).

The goal is to group tumors with similar epigenotypes and
phenotypes according to their parameter vectors. That is,
we assume that tumors within a cluster (Ck) share the

common distributional parameter vector ,

which represents the cluster profile. Let Ik(t) = 1 if tumor t

is in cluster Ck, otherwise it is 0, in the current iteration.

Then, the joint likelihood is

where K is the number of clusters, and T is the number of

tumor samples. Suppose that  and  are the maxi-

mum likelihood estimate of  and , respectively, k =

1,… , K, then it is natural to evaluate how well a particular
tumor sample fits into the assigned cluster by computing

k* = argmink{- log P(Xt, Yt | , ); k = 1,… , K}.

If Ck* is not the same as its currently assigned cluster, then
tumor t is a candidate for switching cluster membership.
This basic idea may lead to various clustering algorithms,
including the one below used for our primary breast
tumor data.

The above formulation of the likelihood clustering
approach provides a general setting in which dependen-
cies among epigenotypes (e.g., hypermethylated pro-
moter regions binded to the same transcription factor)
and phenotypes (e.g, tumor grade and metastasis status)
can be easily incorporated. In the breast tumor example,
we have discrete epigenotypes (hypermethylated or not)
and phenotypes (ordinal), therefore binomial and multi-
nomial are the natural choice of parametric families for
the distributions of the variables. However, the frame-
work can be flexibly adapted to any other type of data,
such as continuous measurements of methylation intensi-
ties. Finally, the approach can make use of tumor samples
that have missing data on some of the variables; the con-
tribution to the corresponding likelihood from such a
sample will be set to unity by convention.
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1. For each tumor t ∈ Ck*, calculate Lt(k*) = -log P(Xt,

Yt| ) and L(k ≠ k*) = mink≠k*{-log P(Xt, Yt| )}.

2. If maxt {Lt(k*)/Lt(k ≠ k*)}> 1, move the corresponding

t to cluster  where  = argmink≠k*{-log P(Xt, Yt )}.

3. Repeat 1–2 until maxt ≤ 1.

Building progression pathway
In the final stage of heritable clustering, clusters generated
from the previous stage will be assembled into a pathway
structure to represent the pathway of tumorigenesis. We
first describe the concepts of cluster centers and scores,
which are essential for our pathway discovery (PD) algo-
rithm.

The clusters as previously described become the nodes of
the tumor progression model. In order to derive pathways
between nodes, a vector representative of the epigenotype
and phenotype signatures of the tumors within a given
node needs to be defined. Node centers and scores (both
epigenotypic and phenotypic) derived from each cluster
are used to define such a vector and is referred to as the
node label. The epigenotype center of a cluster is deter-
mined by the epigenotype status common to the majority
of tumors in the cluster. Let Vkg denote the set of epigeno-
type statuses at locus g over all tumors in cluster Ck, and
P(Vkg) be the number of 1s in Vkg. Then the epigenetic node
center (ENC) for locus g in cluster Ck is defined as:

where card{Vkg} is the cardinality of the set Vkg. The epig-
enotype score, or degree, of the node k is then defined
based on the calculated node centers as follows:

i.e., the proportion of 1s in the set of ENCs for the node.
The epigenotype score of a node is interpreted as measur-
ing the extent of methylation of the tumors within the
cluster.

With the definition of epigenotype centers and scores, it is
now possible to define heritability of a progeny Cj from a
parental node Ci :

The value of H(Ci, Cj), which is between 0 and 1 and
meaningful only if GSi ≤ GSj, is the degree of heritability.
Strict inheritance is defined when H = 1. Under this con-
dition, all hypermethylated loci in a parental node are
inherited by its progeny nodes. Note that the heritability
is defined on the loci methylation signature of the ENC
and not the methylation signature of the tumors that
comprise the node. Such a definition of heritability is
faithful to the recapitulation nature of the method. In an
analogous manner, phenotype centers and scores are used
to capture the clinical progression in tumorigenesis. The
center of a phenotype in a cluster is taken to be the
weighted average of the phenotype values of the samples
in the cluster rounded to the nearest integer. Let np be the
number of categories for phenotype p and cki = card{Ytp =
i| t ∈ k} be the count of category i in cluster Ck, i = 1,… ,
np. Then the phenotypic node center of phenotype p in
cluster Ck is

where Q N is the floor of the value being bracketed.

The phenotype score for cluster Ck is then calculated as

where Kp, as defined before, is the number of categories
for phenotype p. This score can be interpreted as measur-
ing the average phenotypic value of the tumors in the clus-
ter, with a larger score being indicative of more advanced
tumors. Analogous to the concept of epigenotype herita-
bility, we assume that phenotypic scores follow a tempo-
ral order. That is, a node with a small score represents a
tumor that occurred temporally before a tumor repre-
sented by a node with a larger score. Our PD algorithm is
built to capture this chronological characteristic.

Algorithm: PD

1. Sort nodes in ascending order according to their epigen-
otypic scores with ties determined by their phenotypic
scores. In the unlikely case that at least two nodes have the
same epigenotypic and phenotypic scores, their ordering
is determined randomly. Assume, with possible relabe-
ling, that the set of ordered nodes is C = {1, 2, … , K}. Set
node 1 as the initial node in the pathway network.

2. Suppose CN is the set of nodes already used to construct
the pathway. The ordering of C determined in the previ-
ous step is inherited by CN. Let C* = CN, and also note that
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C* will be reset at each iteration in Step 3. Add the node k
= min{C\CN} to the pathway (i.e., to CN but not to C*)
and finding all possible directed paths to it from other
nodes already in the pathway in Step 3.

3. While C* ≠ ∅:

Let j = max{C*}. If (a) H(j, k) ≥ h, and (b) for each phe-
notype p, PCjp ≤ PCkp, then k is added as a downstream
node to node j; then the node j and all nodes upstream of
it (i.e., nodes i such that there exists a directed path from i
to j) are removed from the set C*. Otherwise, only j is
removed from the set C*.

4. Repeat Steps 2 and 3 until all nodes have been added to
the pathway.

5. If there does not exist a node that is upstream of all
other nodes, then a pseudo-origin is created by defining a
node C0 with both phenotype and epigenotype score of
zero. All nodes in CN without upstream nodes are added
as downstream adjacent nodes of C0.

In step 1 of the PD algorithm, different ordering of the
tied nodes will not lead to altered pathways. In fact, step
1 is needed only for designing an efficient algorithm. One
may work with the nodes in any order, but then one
would also need to check whether a new node to be added
is a upstream node of a node already in the pathway (in
addition to checking whether it is a downstream node). In
this way, regardless of the ordering, the same pathway will
result.
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