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Abstract

Background: Boolean network (BN) modeling is a commonly used method for constructing gene
regulatory networks from time series microarray data. However, its major drawback is that its computation
time is very high or often impractical to construct large-scale gene networks. We propose a variable
selection method that are not only reduces BN computation times significantly but also obtains optimal
network constructions by using chi-square statistics for testing the independence in contingency tables.

Results: Both the computation time and accuracy of the network structures estimated by the proposed
method are compared with those of the original BN methods on simulated and real yeast cell cycle
microarray gene expression data sets. Our results reveal that the proposed chi-square testing (CST)-based
BN method significantly improves the computation time, while its ability to identify all the true network
mechanisms was effectively the same as that of full-search BN methods. The proposed BN algorithm is
approximately 70.8 and 7.6 times faster than the original BN algorithm when the error sizes of the Best-Fit
Extension problem are 0 and |, respectively. Further, the false positive error rate of the proposed CST-
based BN algorithm tends to be less than that of the original BN.

Conclusion: The CST-based BN method dramatically improves the computation time of the original BN
algorithm. Therefore, it can efficiently infer large-scale gene regulatory network mechanisms.

Background

The advancement of high-throughput technologies, such
as DNA chips, has enabled the study of interactions and
regulations among genes on a genome-wide scale.
Recently, many algorithms have been introduced to deter-
mine gene regulatory networks based on such high-
throughput microarray data, including linear models
[1,2], Boolean networks [3-6], Bayesian networks [7,8],
neural networks [9], and differential equations [1,10].

In the linear modeling of a genetic network, the expres-
sion data is fitted using a regression model, where the
change in expression levels is a response for all other

genes [1]. Although such standard linear modeling
approaches enable the analysis of many different features
of the modeled system, they are not effective in genome-
wide network discovery. This is because the number of
candidate parameters and models is very high and there-
fore it is difficult to search efficiently and reliably with
tight control on many false positives.

Bayesian network algorithms have limitations with regard
to the determination of an important network structure
because of their complex modeling strategies (with a large
number of parameters to be estimated) and a long com-
putation time for searching all potential network struc-
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tures on genome-wide expression data. These limitations
of the Bayesian network may be overcome by the dynamic
Bayesian network (DBN), which models the stochastic
evolution of a set of random variables over time [11,12].
Although some improvements have been proposed, the
accuracy of prediction of the DBN is relatively low, and its
excessive computational time is still very high [13].

Recently, studies on the hierarchical scale-free network in
lower organisms [14,15] have indicated the necessity of a
network method for the simultaneous analysis of thou-
sands of genes. The human B-cell network analysis using
mutual information [16] is a type of hierarchical scale-free
analysis. Although this analysis successfully constructs
gene networks with thousands of genes, the method is
based on mutual information between two genes; there-
fore, it cannot obtain the response of a target gene when
more than two genes simultaneously affect the target
gene.

Among these methods, the Boolean network (BN) is use-
ful to construct gene regulatory networks observed by
high-throughput microarray data because it can monitor
the dynamic behavior in complex systems based on its
binarization of such massive expression profiling data
[17,18]. The Boolean function of a gene in a BN can
describe the behavior of the target gene according to
simultaneous changes in the expression levels of the other
genes.

Boolean networks

BN models were first introduced by Kauffman [3]. In these
models, a gene expression is simplified with two levels:
ON and OFF. A BN G(V, F) is defined by a set of node V =
{x, ..., x,} and a set of Boolean functions F = {f}, ..., f,}.
A Boolean function fi(x,, ..., x,), where i = {1, ..., n}, with
k specified input nodes (indegree) is assigned to node x;.
The regulation of nodes is defined by F. More specifically,
given the values of the node (V) at time ¢ - 1, the Boolean
function are used to update these values at time .

The model system has been developed into a so-called
Random BN model [19]. BNs have attracted attention
since the introduction of probabilistic Boolean network
(PBN) models by Shmulevich et al. [6]. Many algorithms
have been proposed for the inference of BNs. For example,
the REVEAL algorithm has been introduced by Liang et al.
[5] for causal inference by using mutual information,
which is the most fundamental and general measure of
correlation. Akutsu et al. [4] have constructed a BN struc-
ture based on the consistency problem, which can be used
to determine the existence of a network that is consistent
with the observed data. In one of the most recent studies
on the BN algorithm, the Best-Fit Extension problem [20]
is used for the inference of PBNs [6]. In PBNs, every node
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(gene) can have a chance of acquiring different Boolean
functions. The probabilistic selection of Boolean func-
tions adds flexibility in the determination of the steady
state of BNs and monitoring of the dynamical network
behavior for gene perturbation or intervention [18,21].

Recently, several software packages have been developed
for constructing BNs. The random BN toolbox [22] and
the PBN toolbox [6] are available in Matlab. NetBuilder
(version 0.94) [23] is a genetic regulatory network tool
used to simulate genetic network using a BN. The BN has
been widely used to describe biological processes. For
example, Huang [17] has used these networks to represent
cell growth, cell differentiation, and apoptosis. A tran-
scriptional network model in yeast has been studied using
a random BN [24]. Further, Johnson [25] has studied the
signal transduction pathways in a B-cell ligand screen.

Advantages and disadvantages of Boolean networks

The estimation of gene regulatory networks using the BN
offers several advantages. First, the BN model effectively
explains the dynamic behavior of living systems
[17,18,26]. Simplistic Boolean formalism can represent
realistic complex biological phenomena such as cellular
state dynamics that exhibit switch-like behavior, stability,
and hysteresis [17]. It also enables the modeling of non-
linear relations in complex living systems [27]. Second,
Boolean algebra is an established science that provides a
large set of algorithms that are already available for super-
vised learning in the binary domain, such as the logical
analysis of data [28], and Boolean-based classification
algorithms [29]. Finally, dichotomization to binary values
improves the accuracy of classification and simplifies the
obtained models by reducing the noise level in experi-
mental data [30,31].

However, the BN has some drawbacks. One of the major
drawbacks is that it requires extremely high computing
times to construct reliable network structures. Therefore,
most BN algorithms such as REVEAL can thus be used
only with a small number of genes and a low indegree
value. For higher indegree values, these algorithms should
be accelerated through parallelization in order to increase
the search efficiency in the solution space [5]. The consist-
ency problem [4] time complexity

Sk (1
o |,
time points; 1, the total number of genes; and poly(k), the
time required to compare a pair of examples respectively)

works in

] ~m-n-poly(k)) (m is the number of observed

k
for a fixed indegree k; this is because 22" Boolean func-
tions must be checked for each of the possible ,C;, combi-
nations of variables and for m observations. The Best-Fit
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Extension problem [21] also works in time complexity
O( 22k : (Z ) -m-n-poly(k)). Although the improved con-
sistency algorithm and Best-Fit Extension problem work
in time complexity O((:J ~m-n-poly(k)) [32], they still

exhibit an exponential increase in the computing time for
the parameters n and k. Such high computing times are a
major problem in the study of large-scale gene regulatory
and gene interaction systems using BNs.

Chi-square-test-based Boolean network

In order to overcome the time complexity problem of the
BN method, we propose a variable selection method
based on the chi-square test (CST). The proposed CST-
based BN adopts the Best-Fit Extension problem, which is
commonly used in the PBN to effectively determine all
possible relevant Boolean functions. In our method, the
maximum indegree of networks is assumed to be three.
We also focus on the Boolean functions that comprise
three different literals (input genes in the Boolean func-
tion). Each literal is connected by the three Boolean oper-
ators NOT(=), AND(A), OR(v); for example, f = X1 A =X2
v X3. Then, the time complexity of the CST-based BN

k | Ny
reduces to O( 2* z;l:lz:if [ z’l] J~m~poly(k)), where

n is the total number of genes, k is the indegree, m is the
total number of time points, n, ; is the number of first

selected genes for the jth gene, and n, ; is the number of

second selected genes when the ith gene is selected in the
first step. We have found that the dichotomization of the
continuous gene expression values allows us to efficiently
perform the independence test for a two-way contingency
table on each pairwise network mechanisms. We use the
CST to identify genes that are associated with a target
gene. A target gene would be expressed in accordance with
a Boolean function related to the selected genes. Since the
genes have only two levels, (0 and 1), we use 2 x 2 and 2
x 2 x 2 contingency tables to identify the relationship
between two and three genes respectively. The proposed
method is used along with the Best-Fit Extension prob-
lem. This method is described in detail in the Methods
section.

Results

Simulation study

For our simulation study, an artificially generated network
structure is illustrated in Figure 1. It comprises 40 nodes

http://www.biomedcentral.com/1471-2105/8/37

and the maximum value of the indegree (k) is three. The
network structure is composed of 27 Boolean functions
that are randomly generated from 40 nodes. Forty sets of
binary data are obtained sequentially from the network
structure. Each data set has different initial states and
seven time points. Since the data sets are generated from
definite Boolean functions, the genes in the Boolean func-
tions tend to have strong associations. The CST-based BN
uses two thresholds ¢, and «, where ¢, is used for select-
ing variables for the main effect and ¢, is used for the con-
ditional effect. A detailed description is provided in the
Methods section. The smaller the values of ¢; and «,, the
stronger is the association of the variables. In order to
select the nodes that have strong associations with the tar-
get nodes, we used very small cutoff values - ¢, = 1 - e15
and a, =1 - €15 - for the CST-based BN. Table 1 shows the
result of the original BN and the CST-based BN for various
noise levels. The random noise is added to the binary data
generated sequentially by the Boolean functions. For
example, if the noise level is 0.1%, a Boolean function,
which generates 1 when the noise level is zero generates 1
with a probability of 99.999 and generates 0 with a prob-
ability of 0.1%. Since we have 301 time points (43 x 7)
and 1 time lag, the total noise level of a gene is 2.96% (=1
- (1 - 0.0001)301) when the noise level is 0.01% in a
Boolean function. For the correction of the multiple com-
parison problem, we compare the results of the original
BN and CST-based BN when the noise level of a Boolean
function varies from 0.01% to 0.24%.

Table 1 summarizes the simulation result. The first col-
umn shows the noise level and the second column shows
the number of Boolean functions identified by the origi-
nal BN as well as the number of true Boolean functions in
parentheses. The third column shows the result of the
CST-based BN. The number of the Boolean functions pro-
vided by CST-based BN is the same as that provided by the
original BN. The false positive rate (FPR) is defined as the
ratio of the number of false Boolean functions to the total
number of Boolean functions. For example, when the
noise level is 0, the FPR of the original BN is given by FPR
= (348 -27)/348 = 0.922. Figure 2 shows the FPRs for var-
ious noise levels. It appears that the CST-based BN reduces
the FPR of the original BN.

The CST-based BN method yielded the same estimated
Boolean functions as those obtained by the original BN
method for various noise levels. However, there are large
differences between the computing times. Table 2 shows
the selected number of nodes in the first and second steps
of the variable selection method. The first column shows
the node number. The second and third columns show
the number of nodes in the first and second steps, respec-
tively. Each number in the third column, separated by a
comma, is the number of selected nodes for each node
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Network structure with 40 nodes in simulation data
set. Network structure with 27 Boolean functions that are
randomly generated with 40 nodes.

selected in the first step. For example, in the second line of
Table 2, there are two selected nodes in the first step. For
these two nodes, there are 39 and 38 selected nodes in the
second step, respectively. From the result of the variable
selection (Table 2), the ratio of the time complexities of
the two methods can be obtained as follows:
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Time complexity of original BN
Time complexity of CST-based BN

022 -[:)-n-m-poly(k))

CCaD W Y -("2”'" ] m- poly(1))

n
n
k
= =6.8865

) nz,“
SE

In summary, the CST-based BN method was approxi-
mately 6.9 times faster than the original BN method. If the
network had a larger number of nodes (n), then the differ-
ence between the computing times of the two algorithms
would be significantly high.

Yeast cell cycle data

In order to demonstrate the improvement in the comput-
ing times, we apply the proposed variable selection
method to yeast cell cycle data [33]. The data comprises
18 time points (alpha-factor-based synchronization
experiment). In this example, the computing time and
accuracy of network estimation of the original BN method
are compared with those of our CST-based BN method.

Comparison between the network structure estimation
accuracies of the CST-based BN and the original BN

Our variable selection method significantly improves the
computing time of the BNs. However, the accuracy of our
method should be assessed before comparing the com-
puting times of the two methods. The improvement in the
computing times primarily depends on the cutoff statisti-
cal significance levels, ¢, and a,, for the selection of genes

Table I: The simulation results of the original BN and CST-based BN.

Noise level Original BN Number of Boolean functions FPR CST-based BN Number of Boolean functions FPR
0 348(27)* 0.922 286(27) 0.899
0.01% 326(22) 0.932 264(22) 0916
0.02% 269(22) 0918 207(22) 0.893
0.04% 313(20) 0.936 289(20) 0.930
0.06% 264(18) 0.931 244(18) 0.926
0.08% 168(12) 0.928 139(12) 0913
0.1% 271(17) 0.937 216(15) 0.930
0.12% 243(16) 0.934 209(16) 0.923
0.14% 614(19) 0.969 514(19) 0.963
0.16% 73(9) 0.876 73(09) 0.876
0.18% 269(15) 0.944 217(15) 0.930
0.2% 198(9) 0.954 167(9) 0.946
0.22% 54(5) 0.907 54(5) 0.907
0.24% 369(3) 0.991 318(3) 0.990
* Total number of Boolean functions (Number of true Boolean functions).
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False positive rates. The result obtained by the CST-based
BN is more accurate than that obtained by the original BN. It
appears that the Boolean networks determine Boolean func-
tions with significantly higher false positive genes than those
in the case of the proposed variable selection method.

attime t - 1 via the CST (Methods section). Depending on
the choice of appropriate values of «; and «,, the pro-
posed CST-based BN method may not be able to deter-
mine some Boolean functions that can be estimated by
the original BN method. This may be attributed to the
missing essential variables due to the usage of extremely
stringent cutoff values.

We define the error rate as the discrepancy between the
Boolean functions estimated by the original BN and the
proposed CST-based BN as follows:

Number of (BEoyiginaisn M BEcsThasedsn )
Error rate =1—

(1)

Number of (BFoyiginaian )

where BF, ;058 and BFcgryaseapy are sets of Boolean func-
tions estimated by the original BN and the CST-based BN,
respectively. Three data sets with randomly selected 80,
100, and 120 genes were used to compute the error rate.
We have calculated the error rate for various values of «;
and «, (Figure 3(a),(b) and Figure 4(a)-(d)). Figure 3
shows the error rate when the error size of the Best-Fit
Extension problem is 0, while Figure 4 shows the error
rate when the error size is 1. In each plot, the y-axis repre-
sents the error rate and the x-axis represents the value of
a,. The error rate decreases with an increase in ¢; and «,;
this implies that a less conservative cutoff value would be
more suitable to construct a BN.
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In order to select appropriate values of ¢; and «,, the error
rates were obtained for various combination of (¢, ;).
Some of the results are shown in Figures 3 and 4. To
obtain an error rate of zero, the values of ¢; and «, should
be greater than 1% and 2%, respectively, when the error
size is zero (Figure 3(a),(b)). However, when the error size
is one, larger values of «; and «, are required to obtain an
error rate of zero (Figure 4(a)-(d)). Based on these results,
we suggest that the following values be used when the
error size is 0, ; = 1%, &, = 2% and when the error size is
1, @, = 7.5%, a,=10%.

Comparison between the computing times of the original

and the proposed BN algorithms

In order to compare the computing times, we executed the
BN program based on the Best-Fit Extension problem
(written in C language). Figure 5 shows the computing
times with a change in the number of genes from 40 to
120. We set the value of error size in the Best-Fit Extension
problem as 0 and 1 and used the variable selection criteria
o, = 1%, a, = 2% and «a, = 7.5%, a, = 10%, respectively.
The line with circles represents the computation time of
the original BN. The dotted line with rectangles and the
dashed line with triangles represent the computation
times of the CST-based BN when the error size are 0 and
1, respectively. As shown in Figure 5, the original BN
required 14489.2 s to estimate all Boolean functions with
120 genes for k = 3. On the other hand, the proposed CST-
based BN required only 219.3 s for o; = 1%, a, = 2% and
2127.7 s for a; = 7.5%, a, = 10%. Therefore, the overall
computation times of the proposed CST-based BN are
approximately 70.8 times (error size = 0) and 7.6 times
(error size = 1) faster than those of the original BN
method.

Construction of gene networks with yeast cell cycle related
800 genes

We also applied the CST-based BN to the subset of the
yeast cell cycle data with 800 genes [33] for demonstra-
tion. Figure 6 shows a partial structure of the gene network
structure constructed by using the CST-based BN. The
Best-Fit Extension problem provided several Boolean
functions for a gene at time ¢. For the demonstration, we
randomly selected a Boolean function from the estimated
Boolean functions of each gene; the method used for this
purposed was similar to that used by the PBN [6,34] to
select a set of Boolean functions for a given gene using the
coefficient of determination (COD).

For all 800 genes, the CST-based BN required approxi-
mately three days to construct the network structure. In
order to estimate the total computation time of the origi-
nal BN, we selected the first target gene and constructed
the BN, which required approximately 37,011 s. There-
fore, the total computation times for all 800 genes will be
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Table 2: The selected number of nodes in the first and second steps of variable selection

Node number

Number of selected nodes at the first step

Number of selected nodes at the second step

0O NOoNUT A WN —

FEeEm 5w

W WwWWwwWwWwiNNNNNNNNNNONDN — — — —
VA WN—O VONONULIANWN—O VOOWNO
5\l—omoomr\)mmo—wo.&.ooo@ow.&—mo———N—

w w w w
O 0 N o
OO —OMN—O — 0

N
o

39
39, 38
39
39
39
0
39, 37, 36, 36, 32, 32, 33, 32
39
39,37,37,35
39, 38,37
0
39, 38, 37, 36, 32, 32, 33, 32, 31
0
0
0
39,37,37, 36
0
39, 38, 37
39
0
39, 37,37, 36,35
39, 37,37, 36, 35
39, 38
39, 37,37, 36,35
0
0
39, 38,37, 33,33
0
39
39, 34, 35, 35, 35, 34, 33
39, 34, 33, 32, 31, 32, 33,32, 31, 30
39, 34, 33, 32, 33, 33, 33, 32
39
0
39
39, 38
0
39
0
0

approximately 342 days to build the network structure.
Hence, the computing time of the proposed CST-based
BN method is approximately 114 times faster than that of
the original BN method.

Discussions and Conclusion

Recent studies [14,15] have emphasized that thousands of
genes must be considered simultaneously in order to con-
struct gene regulatory networks in an organism. The BN
method is useful for constructing a gene regulatory net-
work. If the gene expression data contain a considerable
amount of noise, the binary transformation of these data
can reduce the error [35]. The BN has been successfully
used to model a nonlinear system [27] and the dynamic
behavior of living systems [18,26]. Despite these advan-

tages, it is difficult to apply the BN method to large-scale
gene regulatory network studies due to the extremely high
computation times.

In order to overcome this computational drawback, we
proposed the variable selection method using the CST for
the two-way and three-way contingency tables of Boolean
count observations. This method reduces the computa-
tion times significantly; for example, for 120 genes, the
computation time is approximately 70.8 times faster than
that of the original BN method. If the total number of
genes and the value of k increase, the improvement in the
computation time is expected to be significantly greater
than the original BN method. Also the proposed method
can be easily implemented with the existing BN modeling
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Error rates of estimated Boolean functions using variable selection method when the error size is 0. The error
rates were calculated from the three data sets with a different number of genes: 80, 100, and 120. The genes were randomly
selected from the yeast cell cycle data set. (a) and (b) show the plots when the cutoff values are a; = 1% and «; = 2%, respec-
tively. The appropriate values of ¢ and &, are 1% and 2% when the error size is 0.

algorithms such as the PBNs by efficiently selecting only
the most relevant genes for determining the Boolean func-
tions. This method is thus demonstrated to reduce the
false positive rate, which is an important problem in net-
work studies conducted on a genome-wide scale.

In our method, the value of k is assumed to be three. How-
ever, it is possible to use a large value of k greater than 3.
Since our method uses the Best-Fit Extension problem, a
gene can be controlled by more than one Boolean func-
tion. Therefore, it appears that k = 3 provides a large
number of Boolean functions that can model the gene reg-
ulatory network successfully.

The proposed CST-based BN used the two-step discovery
of 3-indegree Boolean functions because the prediction
information of addtional genes in such high-dimensional
Boolean functions is mainly observed after considering, or
conditional on, primary genes' effects. This strategy, in
turn, resulted in much more efficient discovery of the
most predictive high-dimensional Boolean functions in
our BN modeling.

The result of the proposed CST-based BN may be sensitive
to the sample size n. When n is small, the contingency
table may contain many cells with low and zero frequen-
cies. To ensure that the expectation value is not equal to
zero, a continuity correction is used by adding a small
constant 0.1 to the observed frequency in each cell [36].
This simple correction produces a successful result in the
real data set [33] that contains 17 time points. However,
we should be more careful while applying the CST
method to data with small time points because the result
of the CST can be less reliable for the sparse data set. In
this case, we suggest that the CST be replaced with Fisher's
exact test that provides a more reliable result for the small
sample size data [36]. The small sample size problem also
makes it difficult for the original BN algorithm to produce
a reliable result. We think that in the near future the
advancement of high throughput techniques and the cost-
down of microarrays will enable us to solve the sparse
data problem by producing large data sets easily.

The improvement of the computing times using the CST-

based BN will significantly increase the utility and appli-
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Error rates of estimated Boolean functions using variable selection method when the error size is |. The error
rates were calculated from the three data sets with a different number of genes: 80, 100, and 120. The genes were randomly
selected from the yeast cell cycle data set. (), (b), (c), and (d) show the plots when the cutoff values of &, are 1%, 2.5%, 5%,
and 7.5%, respectively. The appropriate values of o and «, are 7.5% and 10%, respectively, when the error size is |.

cability of the BN to the inference of various regulatory
networks, particularly those based on current large screen-
ing biological data such as microarrays. In order to apply
the proposed variable selection method, we must first
select the values of ; and «,. A small values of « cause the
exclusion of essential Boolean functions and produces a
high error rate. On the other hand, large values of y cause
the inclusion of most of the genes, thereby resulting in
long computing times. For the yeast cell cycle data, we

applied various combinations of (¢;, @,). As shown in
Figure 3, it appears that the cutoff values do not signifi-
cantly affect much the accuracy of the method for the
yeast cell cycle data, provided the values of ¢ and «, are
greater than 1% and 2%, respectively, when the error size
of the Best-Fit Extension problem is zero.

Therefore, for practical application, we suggest that «; =

1% and a, = 2% be used when the error size of the Best-
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Change in the computation times when the total
number of genes varies from 40 to 120 for k= 3. The
line with circles represents the computation times of the
original BN. The dotted line with rectangles and the dashed
line with triangles indicate the computation times of the
CST-based BN when the error sizes are 0 and |, respec-
tively. The computation times of the proposed method are
approximately 70.8 and 7.6 times faster than those of the
original BN method when the error sizes are 0 and |,
respectively.

Fit Extension problem is zero. We select the cutoff values
such that the Boolean functions obtained by the CST-
based BN are the same as those obtained by the original
BN. However, we can use smaller cutoff values to reduce
the number of false positive Boolean functions, because
the original BN method tends to yield many false positive
relationships, as shown in the simulation result.

In addition, a more careful dichotomization is required
for a more accurate biological interpretation of the net-
work structure. For example, since microarray data have
continuous expression values with a considerably large
amount of information, the dichotomization may require
the selection of an appropriate threshold value depending
on the biological function of each gene [35]. The perform-
ance may not be remarkable when a small number of time
points and genes are available. However, we show that the
proposed variable selection method is significantly more
efficient for large-scale gene regulatory network studies.
For example, the CST-based BN is approximately 114
times faster than the original BN for 800 genes (Figure 6).

http://www.biomedcentral.com/1471-2105/8/37

The next step would be to perform a biological evaluation
of the selected network structure. However, the main
focus of our study is to improve the computation times of
the BN by using the CST. Our approach allows the appli-
cation of the BN to genome-wide network construction
and discovery. A future study will evaluate the accuracy of
the BN and compare it with other network methods such
as the Bayesian network and hierarchical scale-free net-
work.

Methods

The proposed CST-based BN consists of two steps. The
first step is to determine a pair of genes that are associated
with each other. The second step is to determine the third
gene that is conditionally associated with the pair of genes
identified in the first step.

First step for the main effect

Let n be the total number of genes. In the first step, 2 x 2
contingency tables are constructed from the dichot-
omized gene expression data. The pth row comprises the
ith gene expression level at time ¢ - 1 while the gth column
of the table comprises the jth gene expression level at time
t(i=1,..,mj=1,.,np=01;q=0,1). For the ith and
jth genes, a 2 x 2 contingency table is constructed with
four cells: {0, 0}, {0,1}, {1, 0}, and {1,1}, where {p, q}
represent the ith gene expression level at time ¢ - 1 and the
jth gene expression level at time ¢, respectively.

A CST statistic is then computed for testing the independ-
ence between two genes. For multinomial sampling with
probabilities {7, } in the contingency table, the null
7, (the ith
gene at time ¢ - 1 and the jth gene at time ¢ are independ-
ent) forall p (= 0,1) and g (= 0,1). The conventional Pear-
son's CST can be used to test H, using the observed

hypothesis of independence is H, : 7,

frequency O,, and the expected frequency E,, under H,,
For the continuity correction, we add an arbitrary small
number a to each observed frequency in order to prevent

E,, from becoming zero [36]. We use a = 0.1 for the cor-
rection. Generally, {7, } and {7} are unknown. The
maximum likelihood (ML) estimates are the sample mar-
- Op+/o++} and { ﬁ’- +q = O+q/o++}’

o is estimated as E,; = O, , 7

ginal proportions {7 ,,
where O, , = £,% O, E
= OerOJrq/O++ Therefore,

expressed as follows:

Ty
the chi-square statistic is

) W

Pﬁi
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Figure 6

Gene network structure with 800 genes. 800 gene network structure with yeast cell cycle using CST-based BN. The cut-
off values are o, = 1% and o, = 2%. This structure is an example of many possible structures. Only a partial structure is pre-

sented.

Using this CST, the significant genes are selected by an
appropriate selection criterion ¢;. A further discussion on
the appropriate choice of ¢, is provided in the Result sec-
tion.

Second step for the conditional effect

Assume that the ith gene at time t - 1 is selected in the first
step for the jth gene at time t. Then, a 2 x 2 x 2 contingency
table can be constructed that consists of three genes - the
ith and jth genes selected in the first step and an addi-
tional new gene h at time ¢ - 1. This contingency table con-
sists of eight cells: {0,0,0}, {0,0,1}, {0,1,0}, {0,1,1},
{1,0,0}, {1,0,1}, {1,1,0}, and {1,1,1}, where {0, p, q}
represent the hth gene expression level at time ¢ - 1, ith
gene expression level at time ¢ - 1, and jth gene expression
level at time ¢, respectively (i=1, ... n;j=1,...,mh=1, ..,
n,0=0,1,p=0,1,4=0,1).

For the given expression value of h, there are two 2 x 2
contingency tables for the i and j genes. We focus on the
conditional independence test. The null hypothesis that
the ith gene at time ¢ - 1 and the jth gene at time ¢ are con-

ditionally independent when the hth gene expression
level at time ¢ - 1 is given by Hy: 7, = 7,07, o for all p (=
0, 1) and g (= 0,1), where 7 |, represents the conditional
probability for the given 0. We use the CST to test H, using

the observed frequency O,,, and the expected frequency

opq
E,pqunder H,. We also add 0.1 to each observed frequency

for the continuity correction. The ML estimates of 7,,|,

and 7, are the sample conditional proportions { 7

qlo plo =

OysfO,..} and, {7

Oovs = ZpZ(O0pg- Epglo palo = +qlo
= 04+ 0444/ O,...- Then, the chi-square statistic are given by

+qlo = Oorg/Ooss ) Tespectively where

is estimated as E Opir T s T

(3)

Oypa — Eopa )
2 ( 0 0
p q opq

for 0 = 0,1. We assume that the ith and jth genes are not
independent from the first step. We select the hth gene if
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at least one of the two CST in the second step is significant
(the p-value of the test is less than «,).

The rationale for using this conditional independence test
is that h affects the association between two genes i and j.
The conditional test approach is very effective in the deter-
mination of a relationship for more than two genes.

Implementation of two step variable selection method

Weselectn, ;genesattime - 1 thatare associated with the
jth gene at time ¢ in the first step where 1 <n; ;<n. If the
ith gene is one of the n; ;genes, we select n, ; genes in the
second step for 1 <n, ;;<n -1 (excluding the ith gene).
Then, we consider all possible combinations for selected
three genes (when k = 3); one gene is the ith gene selected
in the first step and the other two genes are selected in the
second step. These combinations are used instead of all
possible combinations in the original BN algorithms. The
time complexity of determining the Boolean functions for

k ) N
the jth gene is O( 22 2"1'] ( i’l] ] -m-poly(k)) and that

i=1

of variable selection using the CST is O(n? + n, ;- (n - 1)).
Hence, the total time complexity of the proposed algo-
rithm is expressed as follows:

O(n? +y ;- (n-1))+ 02> 22[";1 ]-m-poly(kn (4)

j=1i=1

As n increases, the time complexity of determining the
Boolean functions dominates the time complexity of var-

Table 3: Example of dichotomized gene expression profiles

http://www.biomedcentral.com/1471-2105/8/37

iable selection because the former increases more rapidly
than the latter.

EXAMPLE

Table 3 shows the expression profiles of eight genes with
17 time points. Here, only two Boolean functions - f; =
=G3 v (=G4 A =G8) and f; = -G1 v (G2 A G6) - are true.
To determine these functions, the original BN searches all
possible combinations of genes at time ¢ - 1 for every tar-
get gene at time t (3C; x 8 = 448 when the indegree is
three). We can reduce the BN combinations by using the
proposed variable selection method. Table 4 shows the
result obtained by using the proposed variable selection
method. Five genes at time ¢ (2nd, 4th, 5th, 6th, and 8th
genes) are excluded because they do not have any genes
selected in the first step.

Figures 7(a) and 7(b) show the 2 x 2 contingency tables
using (G1, G3t-1) and (G3!, G1¢-1), respectively. The sec-
ond step is performed only for the selected genes in the
first step in order to identify genes that are conditionally
associated with the target gene. Figure 8 shows 2 x 2 x 2
tables with three genes — a gene at time ¢, a gene at time ¢t
- 1 from the first step, and new gene at time ¢ - 1: (a) for
(G1t, G3t-1, G4t-1), (b) for (G1t, G3t-1, G8t-1), (c) for (G1Y,
G3t-1, G2t-1), and (d) for (G1%, G3t-1, G6!-1). The total
number of possible combinations of the CST-based BN is
47. Therefore, the total time complexity of the CST-based
BN is 9.5 times faster than that of the original BN.

Availability and requirements
Project name: Boolean networks for Large-scale gene reg-

ulatory network Project home page: http://bibs.snu.ac.kr/
supplement/2006/Boolean/
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Table 4: Result of variable selection with 8 genes

First step Second step
jth gene(t) ith gene(t - 1) p-value hth gene(t - ) p-valuel p-value2 combinations

Gl Gl 0.0013 G5 0.0185 0.0252 (=6
Gé6 0.0191 0.033
G7 0.0059 0.0656
G8 0.1049 0.0192

G3 0.0253 G2 0.0059 0.0208 G, =15
G4 0.0208 0.0059
G5 0.0185 0.0071
Gé6 0.0191 0.0058
G7 0.0414 0.0035
G8 0.1049 0.0021

G3 Gl 0.0013 G2 0.0065 0.0835 G, =15
G4 0.0035 0.1165
G5 0.0185 0.0252
Gé6 0.0033 0.1016
G7 0.033 0.0191
G8 0.1049 0.0192

G3 0.0078 G5 0.0185 0.1443 I

G7 G4 0.0078 Gl 0.0102 0.2063 G, =10
G2 0.4774 0.0033
G3 0.0059 0.3535
G5 0.5469 0.0071
G8 0.0143 0.4864

Total number of combinations 47
GI1*
(a)
0 1

0 0.1 8.1

G3t1

(b)

G1v!

Figure 7

First step for the main effect. 2 X 2 contingency table
with (a) G3 at time tand G| at time t - | and (b) G3 and Gl at
time t - . We added 0.1 to each cell for the continuity cor-
rection.
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(@) o (b) ar
0 1 0 1
0 0.1 3.1 0 0.1 5.1
0 G3+t 0 G3t!
1 5.1 1.1 1 1.1 1.1
G4t-1 th-l
0 0.1 5.1 0 0.1 3.1
1 G3+t 1 G3t!
1 3.1 0.1 1 7.1 0.1
G3t G3t
(©) (@)
0 1 0 1
0 0.1 21 0 0.1 4.1
0 G1rt 0 G1rt
1 6.1 0.1 1 5.1 0.1
G2t-1 G6t-1
0 0.1 5.1 0 0.1 3.1
1 G1tt 1 G1rt
1 2.1 2.1 1 3.1 2.1

Figure 8

Second step for the conditional effect. 2 x 2 x 2 tables with three genes: a gene at time t, a gene at time t - | from the first
step, and a new gene at time t - |. (a) (GIt, G3t- !, G4t-1), (b) (GIt, G3t-!, G8t- 1), (c) (G, G3t-!, G2t- 1), and (d) (G, G3t- !, Gét
- |)'
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Boolean functions for a toy example. R code for true Boolean functions in
a toy example.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-37-S1.txt|

Additional file 2

Data set for toy example. Binary data set of 18 time points x 8 genes gen-
erated by using the two Boolean functions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-37-S2.txt|

Additional file 3

27 Boolean functions for the simulation study. R code for true functions
in the simulation study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-37-S3.txt|

Additional file 4

Data set for the simulation study. 43 data set of 7 time points x 40 genes
generated by using 27 Boolean functions

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-37-S4.txt|

Additional file 5

Yeast cell cycle data. Binary data set of randomly selected 40-120 genes.
The Each data set consist of time points (row) number of genes (column).
The mean value was used as a dichotomization criterion.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-37-S5.txt|
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