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Abstract
Background: Mass spectrometry based peptide mass fingerprints (PMFs) offer a fast, efficient, and
robust method for protein identification. A protein is digested (usually by trypsin) and its mass
spectrum is compared to simulated spectra for protein sequences in a database. However, existing
tools for analyzing PMFs often suffer from missing or heuristic analysis of the significance of search
results and insufficient handling of missing and additional peaks.

Results: We present an unified framework for analyzing Peptide Mass Fingerprints that offers a
number of advantages over existing methods: First, comparison of mass spectra is based on a
scoring function that can be custom-designed for certain applications and explicitly takes missing
and additional peaks into account. The method is able to simulate almost every additive scoring
scheme. Second, we present an efficient deterministic method for assessing the significance of a
protein hit, independent of the underlying scoring function and sequence database. We prove the
applicability of our approach using biological mass spectrometry data and compare our results to
the standard software Mascot.

Conclusion: The proposed framework for analyzing Peptide Mass Fingerprints shows
performance comparable to Mascot on small peak lists. Introducing more noise peaks, we are able
to keep identification rates at a similar level by using the flexibility introduced by scoring schemes.

Background
Protein identification using mass spectrometry has
become one of the central tools in proteomics and sys-
tems biology [1]: With growing protein sequence data-
bases such as SwissProt [2], fast and accurate
identification of a sample protein remains a central prob-
lem. There are two common strategies for protein identi-
fication using mass spectrometry: Peptide Mass
Fingerprints [3] and protein identification from peptide
sequence information using tandem mass spectrometry
[4].

Peptide mass fingerprinting (PMF) is preceded by a pro-
tein separation step using gel or chromatographic separa-
tion. The separated protein is digested by specific
enzymatic cleavage such as tryptic digestion, followed by
mass spectrometric measurement of the resulting pep-
tides. The resulting mass spectrum has to be preprocessed
into a list of signal peaks that form the input to identifica-
tion algorithms. In our approach, we concentrate on
Matrix Assisted Laser Desorption/Ionization (MALDI) [5],
the predominant ionization technique for PMF. This tech-
nique produces mainly singly charged ions, allowing us to
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talk of the mass m of a molecule, instead of its mass-to-
charge ratio m/z.

To identify a measured protein from a sequence database,
the database sequences are digested in-silico and each pre-
dicted peak list is matched and scored with the measured
peak list. Usually, computation of the statistical signifi-
cance should follow, using a statistical background
model. Software routinely used for identification of pro-
teins using PMF includes the commercial systems Mascot
[6] which uses peak counting together with heuristic
information and ProFound [7] which relies on a bayesian
scoring scheme. These systems have a comparable per-
formance [8].

In [9], we presented a new approach for PMF protein iden-
tification. The approach is based on a re-formulation of
the identification problem as a global alignment problem.
Further, p-values of identifications are computed using a
combinatorial algorithm using uniform character fre-
quencies.

The statistics for p-value computation is extended to a
broader class of digestion enzymes and to arbitrary pro-
tein sequence models of independently and identically
distributed (i.i.d.) amino acids in [10], where this model
is also shown to be consistent with corresponding empir-
ical SwissProt data.

Here, we validate the theoretical approach of peak list
alignments as introduced in [9] and show the applicabil-
ity of this approach on real proteomics data. We discuss
several aspects of general scoring schemes to be used in
peak list alignments; such schemes provide a unified
framework that allows emulation and combination of
already existing methods and ideas. We demonstrate how
missing and additional peaks can explicitly be taken into
account and peak intensities can be consistently added
into the scoring procedure. We evaluate our method,
called SAMPI (SAMPI: aligning mass spectra for protein
identification), on real proteomics mass spectrometry
data and compare the method to PMF identification using
the standard software Mascot.

Results and discussion
To evaluate our method, 375 PMF tryptic mass finger-
prints of charge state [M + H]+ from an in-house proteom-
ics experiment on the organism Corynebacterium
glutamicum (Cg) are measured on a Bruker Ultraflex mass
spectrometer. The proteins are separated using SDS-PAGE
gel electrophoresis before mass measurement. Well-sepa-
rated spots are digested with trypsin and peptide masses
measured by mass spectrometry. For identification,
trypsin is set as a cleavage enzyme, Carbamidomethyl is
set as a fixed mass modification of ≈ +57 Da for Cysteine,

a mass tolerance of 1 Da is set, and no missed cleavages
are allowed.

Processing the raw spectra
To assess robustness and flexibility of the method, two
different peak lists are derived for each raw spectrum.
First, the peak list from the manufacturers peak detection
software: It is conservative in picking only the highest
abundant peaks; with about 0–90 peaks, 20 on average,
these peak lists were comparatively small. Second, we
apply a peak detection algorithm developed in our group
that derives much larger peak lists of 34–729 peaks, 277
on average. A comparison of the peak list lengths is shown
in Figure 1. For unknown reasons, the manufacturers soft-
ware only delivers 325 peak lists, 9 of which were empty.
The other algorithm delivers 375 valid peak lists. For bet-
ter comparison, we differentiate the peak lists delivered by
the algorithm of our group in the following by "PL" and
"PL316", denoting the whole set of peak lists and the set of
peak lists where the manufacturers peak detection also
delivers a corresponding nonempty peak list. Due to the
different peak detection, the mass ranges for the measured
and predicted peak lists were set to 500–3000 Da for the
Bruker software, and 800–3000 Da for our peak lists. All
peaks outside this range are discarded.

Databases
Both sets of peak lists are identified using Mascot versions
v1.9 and v2.1 and the Gaussian scoring scheme described
below with different parameters.

For estimating the false positive rate, we proceed as fol-
lows: In a first step, all peak lists are identified using the
in-house Cg protein sequence database with 3,510

Peaklist sizesFigure 1
Peaklist sizes: Number of detected peaks using the Bruker 
software (solid) and our peak detection method (dashed).
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sequences. The sequence identifiers for each identification
are recorded for later comparison.

In a second step, all peak lists are again identified using a
concatenation of the SwissProt database, release 48 with
155,824 entries, to the above Cg database. An identifica-
tion is assumed to be correct if it is the same Cg sequence
as recorded before. Conversely, an identification is
assumed to be incorrect, if it is not a Cg sequence.

This approach makes it necessary to discard protein
sequences that are equal to or highly similar to any Cg
sequence from the SwissProt database beforehand. We
therefore do an all-against-all comparison of the Swiss-
Prot database with 194,317 sequences and the Cg data-
base with BLAST [11]. Sequences from the SwissProt
database with an e-value of 10-30 or better are discarded
and the remaining 155,824 sequences are appended to
the Cg database.

The performance of PMF identification algorithms can
thus be evaluated and compared independently on the set
of sample mass spectra.

Results
The runtimes of both SAMPI and Mascot on the modified
SwissProt database (FASTA format, no database indexing)
and each of the two peak lists including all preprocessing
times are listed in Table 1. The results for both versions of
Mascot and the Gaussian scheme with several additional/
missing scores are listed in Table 2. All parameter combi-
nations were tested with and without use of peak intensi-
ties. Not surprising, different parameter sets lead to
different numbers of correct identifications. Nevertheless,
these numbers do not change rapidly with changing
parameters, indicating a robust behavior of the alignment
identification procedure. Using the small manufacturer's
peak lists, a small penalty of additional and missing peaks
yields a comparable number of correct identifications as
Mascot. Using peak intensities in the scoring, this number
drops considerably. This is most likely due to the fact that
these peak lists already consist of the highest abundant
peaks, which are now scaled to 1/3 to 1, distorting the rel-
evance of peaks. This problem might be resolved by using
a full rank statistic to scale peak intensities as used, e.g., in
[12], instead of the implemented robust linear rescaling.

Since we describe a proof-of-concept of the peak list align-
ment framework, we did not investigate this issue further.
Using the larger, noisy peak lists results in the complete
opposite behavior: Now, without using intensities to dis-
criminate important and non-important peaks, the iden-
tification rate drops to about 1/2 for both the Gaussian
schemes and Mascot. Additionally using the robust inten-
sities leads to a good identification rate again. Note that
now, higher penalties for additional and missing peaks
are also helpful.

We found the score separation of correct and incorrect
identifications to be comparable to Mascot (Figures 2 and
3).

Conclusion
We propose a new formulation of protein identification
using Peptide Mass Fingerprinting as an alignment problem.
We introduce general peak-wise scoring schemes and show
how these can be used to score two peak lists by dynamic
programming. The scoring schemes provide a large
amount of flexibility by allowing the user to independ-
ently set matching, additional and missing scores. They
also allow consistent inclusion of additional features such
as peak intensities into the identification process.

A mathematical model based on random weighted strings is
used to efficiently estimate the statistical significance of an
alignment score. This model only needs character fre-
quencies as parameters, which can be estimated even with
small sequence databases, allowing the use of species-spe-
cific protein data. The significance score is then computed
to get comparable scores independent of the underlying
database and sequence lengths. We also propose a first

Table 1: Runtimes

Bruker PL

SAMPI 23 min (4.2 sec) 99 min (15.8 sec)
Mascot 43.5 min (8 sec) 192 min (30.7 sec)

Runtimes for identification of 325 small (Bruker, Bruk.) and 375 large 
(PL) peak lists with an average of 20 and 277 peaks, respectively. 
Values in parentheses are runtimes per spectrum.

Table 2: Identification results

w/out intensity w/intensity
Bruk. PL PL316 Bruk. PL PL316

Mascot v1.9 123 58 53 - - -
Mascot v2.1 119 59 53 - - -

SAMPI
c1 c2

-0.1 -0.1 112 56 51 72 106 87
-0.2 -0.2 111 56 51 78 96 92
-0.3 -0.3 96 54 48 65 103 98
-0.4 -0.3 89 53 48 52 110 105
-0.4 -0.4 91 54 49 54 108 103
-0.4 -0.5 94 53 48 57 109 104

Number of correctly identified spectra in the Cg+SwissProt database, 
using Gaussian score, missing/additional peak penalties shown in first 
two columns. Three different peak lists are considered: Bruk: The 
peak lists by the Bruker software, PL and PL316 which refer to the peak 
lists by our detection algorithm where PL316 are restricted to the 316 
out of 325 peak lists that the Bruker software also detected.
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example of an alignment scoring scheme, called Gaussian
score, using mass difference and robust intensities. We
tested our approach on biological PMF data and com-
pared our results to the standard software Mascot. We
were able to correctly identify a comparable number of
proteins using peak lists produced by the machine ven-
dor's peak detection software. Using our own peak detec-
tion with about 8–10 times as many peaks, we showed the
flexibility of our approach by correctly identifying approx-
imately the same number of proteins whereas the per-

formance of Mascot dropped considerably to about half
the number of correct identifications.

For the near future, we plan to incorporate missed cleav-
ages into the program. They can easily be handled by the
alignment algorithm, but the statistical model has to be
extended slightly. Further, we plan to incorporate the
method into the ProDB proteomics platform [13] and to
compare it to other protein identification tools besides
Mascot. As already discussed in the Results and Discus-
sion section, the incorporation of intensity information is
not optimal. This is not due to the framework but rather
due to the use of scaled intensity values. Nevertheless,
using full rank statistics or other probabilistic intensity
incorporations are to be investigated in the future. As a
last point, the score normalization is not as good as
expected, especially on smaller peak lists; the reasons and
possible improvements are to be investigated. The flexible
alignment framework together with the deterministic,
model-based significance computation seems promising,
although some improvements are clearly necessary.

Methods
To identify a measured peak list using peak lists predicted
from database sequences, a measure is needed for the sim-
ilarity of two peak lists. Our scoring of similarity is based
on a peak-wise scoring function to score a pair of peaks,
one of them possibly being a "gap" peak. The optimal
matching of two peak lists can then be computed in a way
similar to global sequence alignment.

For computing a statistical significance of an alignment
score, we introduce a null-model based on a random pro-
tein model and estimate the alignment score distribution.

The general method works as follows, where the individ-
ual steps are explained in detail below: In a pre-processing
step, a peak list is computed from each entry in the partic-
ular protein sequence database; it is called the predicted
peak list of the sequence. Further, several statistics are com-
puted for later use in the identification's significance esti-
mation. These statistics are the length distribution and the
joint length-mass distribution of cleavage fragments.
From these, the occurrence probabilities are computed for
each possible fragment mass and each protein length con-
tained in the database. Now, the highest scoring protein
sequence is computed for each measured spectrum by
aligning this spectrum to each predicted spectrum, com-
puting the alignment score and returning the sequence
with the highest scoring predicted spectrum. Further, a
statistical significance is computed for each such align-
ment score.

Score distributionsFigure 3
Score distributions. SAMPI: Distribution of SAMPI scores 
of correct (solid line) and incorrect (dashed line) identifica-
tions using the Cg+SwissProt database, parameter set B, no 
missed cleavages, and 316 spectra.
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Score distributionsFigure 2
Score distributions. Mascot: Distribution of Mascot scores 
of correct (solid line) and incorrect (dashed line) identifica-
tions using the Cg+SwissProt database, 1 Da mass tolerance, 
no missed cleavages, and 316 spectra.
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Spectra alignments
Peaks and peak lists

Every peak pi has a mass mi ∈  and possibly other

attributes (ai,1, ..., ai,k) ∈ , k ≥ 0. A peak list  of length

n is a list  = {p1, ..., pn} of peaks pi ∈  × . A peak list

is sorted by mass, thus mi <mj if i <j.

Note that we allow the set  of peak attributes to be
empty. The simplest type of peak is a peak having only its

mass m ∈ �. A peak with mass and relative intensity could
be represented as an element of � × [0,1].

Scoring peaks and spectra

Let p = {p1, ..., pn} and m = {p'1, ..., p'n'} be two peak

lists of length n and n', respectively. For 1 ≤ i ≤ n and 1 ≤ j

≤ n', let pi ∈  ×  and p'j ∈  × ' where we allow

the sets of additional peak attributes  and ' to be dif-

ferent. An example would be a measured peak list m,

with relative intensity and a predicted peak list p with

the generating string fragment as additional attributes. To

compute an optimal matching between peak list p and

peak list m, we first define a scoring function that scores

two individual peaks.

A peak-wise scoring function score is a function

score: ( p ∪ {ε}) × ( m ∪ {ε}) → �

mapping a predicted and a measured peak to a real value.

Here, ε denotes a special "gap" peak. For two peaks p ∈ p

and p' ∈ m, we say that score(p, p') is a matching score. We

call score(p, ε) a missing score and p a missing peak, as it is

not matched to any peak in m. Similarly, score(ε, p') is

called an additional score for an additional peak p'. For com-

pleteness, we define score(ε, ε) := -∞.

We want to stress that missing and additional peaks are
likely to be seen even if the measured spectrum stems
from a measurement of a known sequence. Additional
peaks, peaks that are seen in the measurement but cannot
be explained by the sequence, may simply be chemical
noise from the biochemical sample preparation. Missing
peaks may occur due to incorrect peak detection or failed
ionization of the corresponding fragment. Of course,
missing and additional peaks also occur if the measured
spectrum does not stem from the sequence under investi-
gation.

Example 1 (Peak counting)
Using only peak mass as attribute, a peak counting score
could ignore missing and additional peaks, i.e. set score(p, ε) =
score(ε, p') = 0, and give a positive score whenever the differ-
ence of the two peak masses m and m' is not too large:

for some positive constant δ.

Noting that it would be meaningless to match two pairs of
peaks that overcross in mass, we compute the optimal
matching between two spectra, i.e. the matching yielding
the highest sum of peak-wise scores, as a global align-
ment, using the well-known dynamic programming recur-
rence. Let E[i, j] denote the score for the optimal matching
between the two spectra up to peaks pi and p'j, respectively.
Then the alignment table is computed as

The score score( p, m) of the optimal matching, given

in E[n, n'], is called the alignment score of the spectra p

and m.

As in the case of sequence alignment, the optimal match-
ing itself can be recovered by backtracking in the dynamic
programming table E[·, ·]. The alignment score can be
computed in time O(n·n'), but faster implementations
are possible, using only a diagonal band in E[·, ·].

This approach is a standard technique [14,15], and has
been successfully applied to such diverse problems as tree
ring and liquid chromatography matching [16,17]. A
more formal model of peak list alignment can be found in
[9].

Scoring schemes
Although a peak in a measured peak list is described at
least by its mass and absolute intensity, most identifica-
tion algorithms only make use of its mass [18]. This is
partly because mass is the most discriminative parameter
measured and partly because intensity depends heavily on
the actual parameter settings of the machine. The basis for
many schemes is the observation that a measurement
error between the "real" mass of a molecule and the meas-
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ured mass can be described by a Gaussian distribution
with mean 0 and a standard deviation sd dependent on
the machine settings and experiment type. The mean
might also deviate from 0 if the machine is not calibrated
correctly. We will now introduce a family of scoring
schemes, the Gaussian scores, that will be used in further
sections to demonstrate the applicability of our approach.
Note however, that the approach is by no means limited
to this mass measurement error distribution.

Mass difference
The matching score score(p, p') for two peaks p and p' with
masses m and m', respectively, is the probability of a Gaus-
sian distributed random variable Z with mean 0 and
standard deviation sd to exceed ±|m - m'| in the respective
direction, i.e., score(p, p') = (|Z| ≥ |m - m'|). This score
drops exponentially from 1 to 0 with increasing mass dif-
ference. As it is always positive, we set the score to -∞ if it
falls below 0.05, that is, if the mass difference exceeds ≈
2·sd. A similar approach is taken in ProFound and the
tandem MS software SCOPE [19], whereas Mascot uses a
constant positive matching score similar to that of Exam-
ple 1.

Robust incorporation of intensities
In order to incorporate intensities of measured peaks into
the scoring, we applied methods from robust statistics
successfully used in tandem MS scoring [20]: All peaks in
the peak list were ranked according to their absolute
intensity. The intensity of the 10% highest abundant
peaks were set to 1, the intensity of the 10% lowest abun-
dant peaks to 0. The intensities of the remaining peaks
were scaled linearly between 0 and 1. Thus, a very high
abundant peak of chemical noise or a small number of
wrongly detected, low abundant peaks cannot spoil the
interpretation of the whole peak list. Up to this point, we
only use intensity values of measured peaks, resulting in
an asymmetric scoring scheme. Given an appropriate pre-
diction model [18,21], it would also be possible to incor-
porate predicted intensities into the scoring. Writing
int(p') for a peak's scaled intensity, the matching score is
multiplied with (1 + 2 int(p'))/3, yielding a factor of 1/3
for lowest and 1 for highest abundant peaks. Again, the
approach is suitable for using any other incorporation of
intensity information, such as logarithmic transforms as
proposed, e.g., in [22].

Scoring gap peaks
Using peak-wise scoring schemes allows us to explicitly
take additional and missing peaks into account.

For additional peaks, a constant penalty c1 is given. If
intensities are used in the scoring, this penalty is again
multiplied by the scaled intensity of the peak: score(ε, p')
= c1·int(p'). Very low abundant peaks are then penalized

by 0 and thus simply ignored, and very high abundant
peaks that are not explained are highly penalized. For
missing peaks, the Gaussian score always gives a constant
penalty c2, but as with matching scores, predicted peak
intensities could also be used.

Background model and significance of alignment scores
To estimate the significance of a score of a measured spec-
trum and a sequence of certain length L, we compute a
table of mass occurrence probabilities in random
weighted strings in a preprocessing step. Using these prob-
abilities, we get a background model for predicted spectra
allowing us to estimate the contribution of each measured
peak to the overall alignment score under a well-defined
null-model without sampling. We proceed as follows:
After introducing a formal model of random protein
sequences and their digestion, we compute the joint
length-mass distribution of cleavage fragments in such
random proteins. We then compute the probability that
in a random protein of given length, at least one fragment
of certain mass m occurs and will thus give rise to a corre-
sponding peak in the predicted spectrum. All these quan-
tities can be computed once in a pre-processing step.
Using the mass occurrence probabilities, we estimate the
expectation and variance of an alignment score for com-
puting p-values of such the score.

Weighted strings

A weighted alphabet is a finite alphabet Σ together with a

weight or mass function μ: Σ → ∨>0, assigning a mass to each

of its characters. Its domain can be extended to strings s ∈

Σ* by setting . Such strings are called

weighted strings.

If each character σ ∈ Σ occurs with probability (σ), we call
an i.i.d. sequence of such characters a random weighted
string. The parameters of this model, i.e., the character fre-
quencies, can be robustly estimated from a sequence data-
base. As they are the only parameters needed for
subsequent significance computations, we can use spe-
cies-specific models where only small sequence databases
are available.

Here, we use the alphabet of amino acids of size 20
together with the molecular mass of the amino acids in
Dalton (Da), with 1 Da approximately the weight of a
neutron. For the computations, we require the masses to
be integers. As measured masses are only known to some
precision, we can simply scale the real mass by an appro-
priate precision factor (0.1 or 0.01 for PMF/MALDI) and
denote the resulting integer masses by μ*(σ). For a preci-
sion of 0.1 and character frequencies estimated from

μ μ( ) : ( )| |
s sii

s= =∑ 1
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SwissProt, release 48, a sample of the weighted amino
acid alphabet is given in Table 3:

This model is readily extendible to capture distributions
of masses for each character, such that copies of the same
amino acid in a protein may have different masses. This
allows to model isotopic mass distributions and different
amino acid masses due to post-translational modifica-
tions such as phosphorylation or methylation.

Cleavage schemes
Most proteases cleave a peptide right after the occurrence
of a specific cleavage character in the amino acid sequence,
except in the presence of a prohibition character directly fol-
lowing the cleavage character. In the case of trypsin, the
set of cleavage characters is Γ = {K, R} and the set of pro-
hibition characters is Π = {P}. Together, Γ and Π form a
cleavage scheme.

Applying a cleavage scheme on a weighted string results in
a fragmentation of this string, a set of successive, non-over-
lapping substrings, the fragments.

Example 2 (Fragmentation of a string)
Let Σ := {A, B, C}, be a weighted alphabet with weights μ(A)
= 1, μ(B) = 2, μ(C) = 3, let Γ := {B}, Π := {A} be a cleavage
scheme on Σ. Then the string s = ABBACCBACBBB is frag-
mented into the fragments AB, BACCBACB, B, B of weights
μ(AB) = 3, μ(BACCBACB) = 17 and μ(B) = 2.

For the sake of brevity, we concentrate on cleavage
schemes without prohibition characters. Then, a fragment
is simply a string of non-cleavage characters followed by a
cleavage character. Generalizations to arbitrary cleavage
schemes and more details on the stochastic models and
efficient computation can be found in [10].

Mass occurrence probabilities
Let fL[l, m*] denote the probability that the first fragment
of a random weighted string of length L has length l and
integer mass m*. The main recurrence is given for the
length-mass distribution of the inner part of a fragment,
consisting solely of non-cleavage characters:

with initial condition f'[0, 0] = 1.

The fragment length-mass distribution can be computed
by adding the cleavage character to the right and taking
care of the finite string length L.

Lemma 1 (Fragment probabilities)
The fragment probability fL[l, m*] is given for l <L by

and for the boundary l = L by

The probability that a fragment of length l does not have

mass m is computed as L[l, m*] = u[l] - fL[l, m*], where

u[l] denotes the probability that a fragment has length l; it
is a geometric distribution.

Taking the complementary probability L[l, m*], we can

compute the mass occurrence probability p[L, m*] that at
least one fragment of mass m* occurs in the fragmentation
of a random weighted string of length L.

Lemma 2

The occurrence probability p[L, m*] = 1 - [L, m*] of mass m*

in a random weighted string of length L is given by [0, m*]

= 1 and

′ = ′ − − ⋅∗ ∗ ∗

∉
∑f l m f l m[ , ] [ , ( )] ( ),1 μ σ σ
σ

P
Γ

f l m f l mL[ , ] [ , ( )] ( )∗ ∗ ∗

∉
= ′ − − ⋅∑ 1 μ σ σ
σ

P
Γ

f L m f L m f L mL[ , ] [ , ] [ , ( )] ( ).∗ ∗ ∗ ∗

∈
= ′ − + ′ − − ⋅∑1 1 μ σ σ

σ
P

Γ

f

f

p

p

p L m p L l m f l mL

l

L
[ , ] [ , ] [ , ].∗ ∗ ∗

=
= − ⋅∑

1

Table 3: Example weighted amino acids

σ A (Ala) C (Cys) D (Asp) E (Glu) ... Y (Tyr)

μ(σ) 71.0371 103.0092 115.0269 129.0426 ... 163.0633
μ*(σ) 710 1030 1150 1290 ... 1631

(σ) 0.0785 0.0154 0.0531 0.0661 ... 0.0306

Example weighted alphabet for amino acids. Five amino acids with their average molecular weight in Dalton, derived integer molecular weight with 
precision 0.1 and relative frequencies estimated from SwissProt, release 48.
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Both tables have to be computed up to the largest
sequence length Lmax in the sequence database and up to

the largest integer fragment mass . For PMF using

MALDI, mmax ≈ 3,000 Da and for SwissProt as sequence

database, Lmax ≈ 10,000. For a mass precision of one deci-

mal, using doubles, we would need about

30,000·10,000·8 ≈ 2.24 GB of main memory for each

table. As L[·, ·] is only needed during computation of

[·, ·], only a very small part of about 3–4 MB is

required at any time. To efficiently compute the signifi-
cance of an alignment score, however, the occurrence
probability table p[·, ·] needs to be kept in memory. Its
columns can be computed independently and entries of
each column depend smoothly on L (the occurrence prob-
ability will not change abruptly if the sequence length
grows), it is thus sufficient to store only the first 100
entries of each column completely and then store every
25th row, performing a linear interpolation to get inter-
mediate values. Comparing the exact values in each col-
umn to the values computed by the described
interpolation scheme, we found the interpolation error to
be smaller than 10-9 in every case. Note that the interpola-
tion nodes are the exact values, so the interpolation error
does not accumulate with growing string length. The mass
occurrence probability p[L, m] is given for masses m =
1000.0, 1500.0, 2000.0, 2500.0, 3000.0 Da and a preci-
sion of 0.1 Da in Figures 4 and 5, for string length up to
50 and 1000, respectively, showing the continuous behav-
ior of the function for L > 40. The "hump" at small string
lengths can be explained by the fact that for these lengths,
the only possible fragment of mass m is whole the string
itself. For greater string length, the corresponding frag-
ment(s) must be "real" fragments, subject to tighter con-
straints on their combinatorial character composition, e.g.
they must have a cleavage character at the end. This

"hump" is located around L ≈ m/μavg, where μavg denotes

the average character mass. For average molecular masses

and SwissProt frequencies we have μavg ≈ 111.2 Da. By fur-

ther exploiting the fact that fL[l, m*] = 0 for l > m*/ ,

where  is the smallest integer character mass in Σ,

both L[l, m*] and [L, m*] can be computed in time

O(Lmax· ). We would like to refer the interested

reader to [10] for details and proofs on the memory- and
time efficient implementation.
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f p

mmax
∗ Occurrence probabilitiesFigure 5

Occurrence probabilities. The mass occurrence probabil-
ities p[L, m] for masses. m = 1000.0, 1500.0, 2000.0, 2500.0, 
3000.0 Da and string length L = 1 ... 1000. Precision 0.1 Da.
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Occurrence probabilitiesFigure 4
Occurrence probabilities. The mass occurrence probabil-
ities p[L, m] for masses. m = 1000.0, 1500.0, 2000.0, 2500.0, 
3000.0 Da and string length L = 1 ... 30. Precision 0.1 Da.
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Alignment score distribution

The alignment score distribution is efficiently and deter-
ministically estimated by adding the contribution of each
peak to the overall alignment score. To compute the con-

tribution of each measured peak p'j, ∈ m, let j denote

the support of peak p'j, that is the set of integer masses m*

for which a predicted peak p having integer mass m*
would contribute a positive matching score score(p, p'j) >

0. Let  be the random variable that contains the

sum of the matching scores over all peaks p in any spec-

trum p generated by a random weighted string of length

L that have masses in . The expectation and variance

of this random variable are then given by

Similarly, we define random variables  for the

additional scores. Assuming independence of peaks, the
overall matching and additional scores are simply the sum
of these scores:

The missing scores are given for all masses that are not
inside the support of any measured peak:

We omit the details for additional and missing peaks and
again refer the interested reader to [9]. The alignment

score score( p, m) for a measured spectrum m and a

random predicted spectrum p generated by a random

weighted string of length L is finally given by

score( p, m) = Xmatch(L) + Xadd(L) + Xmiss.

As score( p, m) is the sum of nearly independent ran-

dom variables, we can expect it to have a normal distribu-
tion for reasonable scoring schemes and peak lists. This
distribution is completely determined by its expectation
and variance.

Note that the alignment algorithm computes an optimal
one-to-one peak matching score, whereas the estimation
procedure corresponds to a many-to-one matching of
peaks. As shown below, neither the peak independence
assumptions nor the one-to-one peak matching are a
problem in practice, as violations of either assumption do
not contribute enough to alter the score distribution not-
icably.

We tested the two assumptions using two different param-
eter sets A and B for the Gaussian score given in Table 4,
and computing the alignment scores of 10,000 random
amino acid sequences of length 250 and a randomly cho-
sen measured spectrum from our dataset. We found the
estimated distributions in good agreement with their
empirical counterparts, as shown in Figures 6 and 7.

Using significance as score
As the alignment score is an additive score, its value and
distribution is dependent on the number of peaks in the
measured and predicted spectra. This makes it difficult to
compare alignment scores for different measured spectra
and sequence lengths.

To avoid these problems, we will not use the alignment
score itself, but its significance to rank the candidate
sequences, a method previously shown to be effective for
tandem MS data [20]. For each pair of measured and pre-
dicted spectra, the alignment score is computed, its distri-
bution is estimated using the method described, and the
p-value – the probability that a random sequence of the
same length as the aligned sequence gives an alignment
score at least as good as the computed one – is computed
from this distribution. We then take – log10(p-val.) as the
significance score to rank the candidates. In the evaluation,
we always used the significance score unless explicitly
stated otherwise.

  j

X Lj
match( )


′ j

E( matchX j j
m

L p L m score p p

j

( )) [ , ] ( , )= ⋅ ′∗

∈ ′∗
∑


Var( (match matchX Xj j
m

jL p L m score p p L

j

( )) [ , ] ( , ) ( ))= ⋅ ′ −∗

∈ ′∗
∑ 2


E(( )2

X Lj
add( )

X L X L X L X Lj
j

n

j
j

n
match match add addand( ) ( ) ( ) ( )= =

=

′

=

′

∑ ∑
1 1

X X
m

m j

miss miss= ∗
∗∉ ′
∑

∪

  


 

 

Table 4: Parameter sets for evaluation

Parameter std. dev. sd missing score additional score intensity used

A 0.8 -0.1 -0.1 No
B 0.8 -0.4 -0.3 Yes

The two parameter sets A and B used for the evaluation. Shown are the standard deviation for the Gaussian mass deviance distribution, the missing 
and additional scores and whether relative peak intensities are used.
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