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Abstract
Background: Haplotype analysis has gained increasing attention in the context of association
studies of disease genes and drug responsivities over the last years. The potential use of haplotypes
has led to the initiation of the HapMap project which is to investigate haplotype patterns in the
human genome in different populations. Haplotype inference and frequency estimation are essential
components of this endeavour.

Results: We present a two-stage method to estimate haplotype frequencies in pedigrees, which
includes haplotyping stage and estimation stage. In the haplotyping stage, we propose a linear time
algorithm to determine all zero-recombinant haplotype configurations for each pedigree. In the
estimation stage, we use the expectation-maximization (EM) algorithm to estimate haplotype
frequencies based on these haplotype configurations. The experiments demonstrate that our
method runs much faster and gives more credible estimates than other popular haplotype analysis
software that discards the pedigree information.

Conclusion: Our method suggests that pedigree information is of great importance in haplotype
analysis. It can be used to speedup estimation process, and to improve estimation accuracy as well.
The result also demonstrates that the whole haplotype configuration space can be substituted by
the space of zero-recombinant haplotype configurations in haplotype frequency estimation,
especially when the considered haplotype block is relatively short.

Background
The modelling of human genetic variation is critical to the
understanding of the genetic basis for complex diseases.
Single nucleotide polymorphisms (SNPs) are the most
frequent form of variation. The Human Genome Project
and other large-scale efforts have identified millions of

SNP markers. Although each marker can be analyzed
independently, it is more informative to analyze them in
groups. Therefore, it is useful to analyze haplotypes (hap-
loid genotypes), which are sequences of linked markers
on a single chromosome. In diploid organisms, such as
human beings, chromosomes come in pairs, and experi-
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ments often yield genotype information, which blend
haplotype information for chromosome pairs. There is
growing evidence that, in order to better characterize the
role of a candidate gene, full haplotype information
should be exploited instead of using only genotype infor-
mation. Unfortunately, it is both time-consuming and
expensive to derive haplotype information experimen-
tally. This explains the increasing interest in inferring hap-
lotype information, or haplotyping, computationally. In
fact, the potential use of haplotypes has led to the initia-
tion of the HapMap project which is to investigate haplo-
type patterns in the human genome in different
populations. Haplotype inference and frequency estima-
tion are essential components of this endeavour.

Genotype data can be with or without any pedigree infor-
mation, the first category is called population genotype
data while the second one is pedigree genotype data. A
large number of algorithms have been designed to esti-
mate haplotype frequencies based on population data [1-
4]. Among them, EM algorithms are most popular due to
their interpretability and stability.

For any given pedigree genotype data, we can certainly dis-
card the pedigree information and simply take the geno-
type sequences as the input of EM estimation algorithms
for population data. However, it is well accepted that
information obtained by analyzing pedigree genotype
data is more reliable: the constraint provided by other
members in a pedigree would force one genotype to settle
on a unique haplotype pair as being most probable.

Here we propose a two-stage method to estimate haplo-
type frequencies in pedigrees. The first stage is the haplo-
typing stage, which finds out all feasible haplotype
configurations for each pedigree. In the second estimation
stage, we use EM algorithm to estimate haplotype fre-
quencies in pedigrees based on the haplotype configura-
tions inferred in the former stage.

In general, haplotyping pedigrees need consider the entire
solution space of all possible consistent haplotype config-
urations. However, the genomic DNA can be partitioned
into long blocks such that recombinations within each
block are rare or even nonexistent [5,6]. Thus it is believed
that haplotype configurations with fewer recombinations
should be preferred in haplotype inference [7-9]. When
the region of interest is so small that the expected number
of recombinations in the pedigree data is very close to
zero, the solution space of all consistent haplotype config-
urations can be replaced by that of zero recombination
(provided it is non-empty) to estimate haplotype frequen-
cies. It is because the contribution of the solutions of
recombinations to the overall likelihood becomes so
small compared to those of zero recombination while

they bring considerable complexity to the computation.
Thus, we are interested in finding the consistent haplotype
configurations of zero recombination.

Wijsman [10] proposed a 20-rule algorithm, and O'Con-
nell [11] described a genotype-elimination algorithm,
both of which can be used to find out zero-recombinant
haplotype configurations for pedigrees. Recently, Li and
Jiang [8,9] showed that it could be solved in polynomial
time. Here we propose an algorithm to find out zero-
recombinant haplotype configurations in linear time
using a technique called HCL-linkage analysis.

In the second stage, we use the EM algorithm to estimate
haplotype frequencies based on haplotype configurations
obtained from the haplotyping stage. We employ the
Hardy-Weinberg Equilibrium to obtain the probabilities
of founder genotypes and use a genetic model [12] to
deduce the transmitted probabilities of non-founders.
While the likelihood of each configuration is computed
by multiplying the probabilities of each genotype, the fre-
quency of each haplotype that appears in the configura-
tion is calculated by a gene-counting method.

We implement all the algorithms in a C software package
named HANAP (Haplotype ANAlysis in Pedigrees) and
test its effectiveness and efficiency both on simulated and
real data sets. The experimental results show that, our
method runs much faster than the direct frequency esti-
mation software that discards the pedigree information.
Moreover, because our method utilizes such information,
the estimation is more reliable.

Methods
Haplotyping stage: haplotyping algorithm based on HCL-
linkage analysis
Excoffier's EM algorithm was widely applied in haplotype
analysis [14,15]. Unfortunately, it should calculate the
frequencies of all possible haplotype pairs consistent to
each given genotype, which is unbearable in storage when
the haplotype length grows to more than 20 [16]. O'Con-
nell [10] showed that genetic information from relatives
could be used to resolve one genotype's ambiguity, and
thus reduce the number of haplotypes that should be con-
sidered. However, O'Connell's method had an exponen-
tial time complexity. Recently, Li and Jiang [8,9] showed
that, for any genotype in a given pedigree, its ambiguity
could be solved in cubic time (O(m3n3)), where n is the
number of members in the pedigree and m is the number
of loci in each genotype. Here we present a so-called HCL-
linkage analysis method to do haplotyping in linear time
(O(mn)).
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HCL-linkage definition
Trios are simple pedigrees that contain only a pair of par-
ents and a child. A consistent zero-recombinant haplotype
configuration for a general pedigree should also be a con-
sistent zero-recombinant haplotype configuration when
restricted to each trio in this pedigree. Given trio T = (F, M,
C), here F is the father, M is the mother and C is the child,
suppose that locus i of F, M, and C have alleles {a, b}, {c,
d} and {e, f} (note that {e, f} ⊂ ({a, b} ∪ {c, d})). The
genotype information of C can be homozygous or hetero-
zygous. If it is homozygous (e = f), then it is clear that the
paternal allele and the maternal allele are the same (e or
f). The situation becomes complicated if it is a hetero-
zygous site (e ≠ f). Table 1 lists out all possible situations.
We can see that given the locus genotype information for
the three members, it may or may not be possible to deter-
mine the paternal allele and the maternal allele for the
child. We call a locus ambiguous if its inheritance relation-
ship cannot be resolved.

In fact, for any trio, ignoring the ambiguous loci, the con-
sistent (partial) haplotype configuration for the unambig-
uous loci is unique and specifies a linkage of alleles on
some heterozygous loci for each node in the trio. We
define such linkage as HCL-linkages (linkages of Haplo-
type Configuration on the non-ambiguous Loci).

Definition
An HCL-linkage ψ is a quadruplet <v, RE, LS, PH> defined
on node v and specified by the unique consistent (partial) hap-
lotype configuration within a trio that contains v. Here v
denotes the node to which the HCL-linkage belongs. LS =
{a1,...,al} is the set of heterozygous loci where the haplotype
configuration has been inferred. PH = {ph, ph'} = {(h1...hl),
(h1'...hl')} records the two (partial) haplotypes imputed on
these loci. RE = (R, R') denotes that ph (respectively ph') is
inherited from or will be passed on to the node in set R(R').

An HCL-linkage describes the partial haplotype configura-
tion of a node and the inheritance relationship between
the parents and their children. Under our definition, we
can conclude that every haplotype configuration should
be consistent with any HCL-linkage specified by each trio
in the pedigree.

Merge and transfer operations over HCL-linkages
In the case of multiple generations and multiple children,
loci on one node may be linked by different HCL-link-
ages. HCL-linkages of the same node should be merged if
they can. There are three cases when merging two HCL-
linkages ψ1 = <v, (R1, R1'), LS1, {ph1, ph1'}> and ψ2 = <v,
(R2, R2'), LS2, {ph2, ph2'}> on node v.

Case (1): (R1 ∪ R1') ∩ (R2 ∪ R2') ≠ Φ

l.a) R1 ∩ R2 ≠ Φ or R1' ∩ R2' ≠ Φ, it means that both ph1 and
ph2 are from the nodes in R1 and R2 said ph1' and ph2' are
from the nodes in R1' and R2', so ph1 and ph2 should be on
the same haplotype, and ph1' and ph2' on the other: i) LS1
∩ LS2 = Φ, or LS1 ∩ LS2 ≠ Φ but ph1 equals ph2 when
restricted to loci in LS1 ∩ LS2, it means that ψ1 and ψ2 are
compatible. In this case, they should be merged to ψ = <v,
(R1 ∪ R2, R1' ∪ R2'), LS1 ∪ LS2, {ph1 ∪ ph2, ph1' ∪ ph2'}>,
here ph1 ∪ ph2 denote a longer partial haplotype, which
alleles equal to those of ph1 and ph2 when restricted to loci
in LS1 and LS2; ii) LS1 ∩ LS2 ≠ Φ and ph1 doesn't equal ph2
when restricted to LS1 ∩ LS2, it means that ψ1 and ψ2 are
incompatible, i.e. no haplotype configuration can satisfy
the two HCL-linkages in the same time.

1.b) R1 ∩ R2' ≠ Φ or R1' ∩ R2 ≠ Φ, it means that ph1 and ph2'
should be on the same haplotype, and ph1' and ph2 on the
other. Similarly, ψ1 and ψ2 can be merged to ψ = <v, (R1 ∪
R2', R1' ∪ R2), LS1 ∪ LS2, {ph1 ∪ ph2', ph1' ∪ ph2}> when
they are compatible.

Case (2): (R1 ∪ R1') ∩ (R2 ∪ R2') = Φ, but LS1 ∩ LS2 ≠ Φ,

2.a) ph1 equals ph2 (and ph1' equals ph2' consequently) or
ph1 equals ph2' (then ph1' equals ph2) when restricted to
LS1 ∩ LS2, it means that ψ1 and ψ2 are compatible, in this
case, they should be merged to ψ = <v, (R1 ∪ R2, R1' ∪ R2'),

Table 1: Imputing the paternal allele and the maternal allele for 
the child at a single locus

Conditions Paternal Maternal

e = f e f
e ≠ f, a = b

e = a e f
f = a f e

e ≠ f, a ≠ b, c = d
e = c f e
f = c e f

e ≠ f, a ≠ b, c ≠ d
a = c, b = d Ambiguous
a = c, b ≠ d

e = b or f = d e f
e = d or f = b f e

a ≠ c, b = d
e = a or f = c e f
e = c or f = a f e

a = d, b = c Ambiguous
a = d, b ≠ c

e = b or f = c e f
e = c or f = b f e

a ≠ d, b = c
e = a or f = d e f
e = d or f = a f e

a ≠ c ≠ b ≠ d
e = a or e = b e f
e = c or e = d f e
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LS1 ∪ LS2, {ph1 ∪ ph2, ph1' ∪ ph2'}> or ψ = <v, (R1 ∪ R2',
R1' ∪ R2), LS1 ∪ LS2, {ph1 ∪ ph2', ph1' ∪ ph2}>.

2.b) Else, ph1 doesn't equal ph2 or ph2' when restricted to
LS1 ∩ LS2, it means that ψ1 and ψ2 are incompatible.

Case (3): (R1 ∪ R1') ∩ (R2 ∪ R2') = Φ, and LS1 ∩ LS2 = Φ,

In this case, ψ1 and ψ2 cannot be merged and both should
be recorded in a HCL-linkage set Ψv for node v.

With the merge operation, we can define the normalizing
of a set of HCL-linkages Ψv: normalizing a set Ψv of HCL-
linkages on node v means repeatedly applying the merge
operation for pairs of HCL-linkages in Ψv until, ∀ψi, ψj ∈
Ψv, (Ri ∪ Ri') ∩ (Ri ∪ Ri') = Φ, and LS1 ∩ LS2 = Φ. Ψv is then
said to be normalized. From now on, if there is no further
notice, Ψv should be normalized after any changes.

Like genetic information, HCL-linkages will be passed on
from generations to generations. Without loss of general-
ity, let us define the transfer of HCL-linkage information
from child C to its parent F. The other case from F to C
would be similar. Let ΨC and ΨF represent the normalized
HCL-linkage sets of C and F respectively, and let HS be the
set of homozygous loci of F. The transfer of ΨC from C to
F results in changes to ΨF, where each ψC = <C, (RC, RC'),
LSC, {phC, phC'}> ∈ ΨC is transferred independently. There
are two cases to consider.

Case (1): if F ∈ RC (or respectively, F ∈ RC'), add ψF = <F,
({C}, Φ), LSC - HS, {phF, phF'}> to ΨF, here phF equals the
resulting partial haplotypes of phC (respectively phC')
when restricted to loci in LSC - HS and phF' is the compen-
satory partial haplotypes of phF consistent to genotype gF.

Case (2): else, F ∉ RC ∪ RC': i) both phC and phC' are con-
sistent with the partial genotype gF when restricted to loci
in LSC, then add ψF = <F, (Φ, Φ), LSC - HS, {phF, phF'}> to
ΨF, here phF and phF' equal the resulting partial haplotypes
of phC and phC' when restricted to loci in LSC - HS; ii) phC'
(respectively phC) is not consistent with the partial geno-
type gF when restricted to loci in LSC, then add ψF = <F,
({C}, Φ), LSC - HS, {phF, phF'}> to ΨF, here phF equals the
resulting partial haplotypes of phC (respectively phC')
when restricted to loci in LSC - HS and phF' is the compen-
satory partial haplotypes of phF consistent to genotype gF.
Note that at least one of phC and phC' should be consistent
with the partial genotype gF.

Remember that ΨF should be normalized whenever add-
ing a new HCL-linkage to it. In the case of transferring an
HCL-linkage ψF from F to C, resulting in adding ψC = <C,
(RC, RC'), LSC, {phC, phC'}> to ΨC, note that we should add
M into RC' whenever we have determined that F ∈ RC.

Our merge and transfer operations will not bring more or
lose any HCL-linkage information for building consistent
haplotype configurations.

Main HCL-linkages analysis haplotyping algorithm
Before the algorithm, we preprocess each trio in the pedi-
gree. Whenever a trio specifies an HCL-linkage for node v,
it will be stored in the HCL-linkage set Ψv. The objective
of the algorithm is to collect the complete HCL-linkage
information for each node, which is accomplished by tra-
versing the tree twice.

Firstly, we will convert the input pedigree into a rooted
searching tree T (at an arbitrary node R) (Step 1). Then we
traverse T in post-order to transfer and merge the HCL-
linkage information for each node from its relatives (Step
2). We do this from the left lowest nuclear family Fo. The
HCL-linkages in nuclear family Fo will be merged at both
parents, and then be transferred to the root of the sub-tree.
The same operations will be conducted in its parental
nuclear family on HCL-linkages specified in this family as
well as on those transferred from its child families. And at
last, we collect all the HCL-linkages at the root R. In Step
3, we traverse T again in pre-order and transfer the linkage
in another direction from R to its farmost descendants.

After step 3, the HCL-linkage set of each node preserves all
HCL-linkages in the pedigree. In step 4, we choose a node
v arbitrarily. Set Ψv contains several HCL-linkages ψ1,
ψ2,...,ψl defined on disjoint locus set LS1, LS2,...LSl. When
a set of loci are linked by one HCL-linkage, they can be
viewed as a compound locus, and the two partial haplo-
types can be viewed as two compound alleles. These "loci"
(and "alleles") will be treated equally as the other hetero-
zygous loci and homozygous loci that are not involved in
any HCL-linkage. We arbitrarily select one allele from the
two at each locus to form a haplotype; the other alleles
form another haplotype. It is called an imputing schema.
Whenever the haplotype configuration of one node is
determined, it can be used to determine the configura-
tions of its relatives, and those of the whole pedigree at
last.

During our algorithm, Incompatibleness may occur when
normalizing HCL-linkage set Ψv. Then we declare that
there is no solution and exit from the algorithm immedi-
ately. Even in step 4, incompatibleness may still occur
when applying the haplotypes of the parents to resolve the
genotype of the children in the case that an individual
node has multiple children. Figure 1 shows an example.
The key point is, if it exists a consistent haplotype config-
uration for a nuclear family (F, M, C1, C2,...,Cd), every arbi-
trary imputing schema s can output one feasible solution
ζ. Contrarily, if one imputing schema ends with incom-
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patibleness, other schemata will fail too. We will prove
this in the appendix.

The time complexity and space complexity of our algo-
rithm are both O(mn) where n is the number of the mem-
bers in the pedigree and m is the length of the loci.

Frequency estimation stage

Suppose that we are given K pedigrees P = {P1, P2,...,PK}.

Each Pi consists of ni nodes vi,j (1 ≤ i ≤ K, 1 ≤ j ≤ ni), in

which the first ni' are founders. The genotype of node vi,j

(1 ≤ j ≤ ni) is gi,j. Suppose that there are πi consistent solu-

tions for pedigree Pi and the s-th solution is: Ss,i = <Ss,i,1,

Ss,i,2,..., > (1 ≤ s ≤ πi), where Ss,i,j = <αs,i,j,1, βs,i,j,2> is a

haplotype pair of genotype gi,j. All haplotypes appear in

these solutions form a list of haplotypes H = {h1, h2,...,hl}

with frequencies Θ = {θ1, θ2,...,θl}, here θ1 + θ2 + ... + θt =

1 is what we want to estimate.

The likelihood of haplotype frequencies given the
observed pedigree data is,

Under the assumption of random mating, the paternal
haplotype configuration and the maternal haplotype con-

figuration are independent, and the child's haplotype
configuration is transmitted from its parents. We have:

Here Pr (Ss,i,j|Θ) is the probability of haplotype configura-

tion of the founder nodes, it can be computed using the

Hardy-Weinberg Equilibrium. Pr(Ss,i,j'|< , >) is

the gamete transmission probabilities of haplotype con-
figuration Ss,i,j with the parental haplotype configurations

of  and . It can be computed using a genetic

model presented by Elston and Stewart [6].

EM algorithm estimates the haplotype frequencies Θ start-
ing with the initial arbitrary values Θ(0) = {θ1

(0),
θ2

(0),...,θl
(0)}. These initial values are used as if they were

the unknown true frequencies to estimate solution fre-
quencies Pr(Ss,i|Θ) (the expectation step). These expected
solution frequencies are used in turn to estimate haplo-
type frequencies at the next iteration Θ(1) = {θi(1),
θ2

(1),...,θ(1)} (the maximization step), and so on, until
convergence is reached.

Suppose that in the r-th iteration, Θ = Θ(r) and we want to
estimate Θ(r+1). Then we have:

Let δi,j,t be an indicator variable equalling the number of
haplotype ht appear in solution Ss,i. Then the haplotype
frequencies can be computed using a gene-counting
method,

There are several ways to initialize the haplotype frequen-
cies Θ = {θ1, θ2,...,θl}. For instance, the initial haplotype
frequencies can be chosen at random, or all haplotypes
are equally frequent, i.e. Θt

(0) = 1/l (t = 1, 2,...,l). Or that all
initial haplotype frequencies are equal to the product of
the corresponding single-locus allele frequencies (i.e., a
complete linkage equilibrium). Also, we can set all feasi-
ble solutions for each pedigree to be equally likely, i.e.
Pr(Ss,i|Θ(0)) = 1/πi, (j = 1,2,...,πi). We can even initialize the
haplotype frequencies by counting their occurrence in all
the feasible solutions. Since in practical applications the
EM algorithm could be trapped in some local maximum,
we recommend to restart the algorithm several times with
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different initial haplotype frequencies and better with a
randomized additive perturbation.

The stopping (convergence) criterion is defined as the
absolute value of the difference of Θ between consecutive
iterations being less than some small value ε > 0.

Results
Simulated data set
In order to generate a pedigree genotype data set for sim-
ulation experiments, we generate a population of haplo-
types H* first, where each locus of each haplotype is set to
some allele according to the probability distribution func-
tion P. In our simulation, we generated haplotypes of SNP
loci as well as haplotypes of micro-satellite loci. For a bial-
lelic SNP locus i, suppose that i happens to be one state
with a probability of pi, and to be the other state with a
probability of (1 - pi). For a micro-satellite loci, suppose it
has w different alleles: a1, a2,...,aw, each appears with the
probability of p1, p2,...,pw (p1 + p2 +...+ pw = 1).

Each founder node in any tested pedigree is arbitrarily
assigned a pair of haplotypes according to their frequen-
cies θ*. The two haplotypes of a non-founder node are
arbitrarily selected from those of its parents (one from the
father, one from the mother). At last, the pair of haplo-
types of the same node is blended to form a genotype cor-
responding to that node.

All experiments are conducted on a Windows server with
1.7G Hz CPU and 256 MB RAM. And for each parameter
setting, 100 copies are randomly generated and the per-
formance is evaluated by computing the average numbers
in these 100 runs.

Running time of the haplotyping algorithm
One of the main contributions of our paper is to do hap-
lotyping in linear time, so we firstly examine the running
time with respect to different number of nodes of each
pedigree (n) and different number of loci in each
sequence (m).

Several different tree pedigree structures are used in the
simulation, the first pedigree is Figure 1 in [15], which is
a tree with 13 nodes. The second one is Figure 8 in [9],
which is a tree with 29 nodes. The third one is a 21 node
pedigree from Figure 5 of [15]. The results are given in Fig-
ure 2. It is obvious that our HCL-analysis haplotyping
algorithm runs in linear time and thus could be applied to
large-scale haplotype analysis.

Number of solutions
We compare the numbers of haplotypes that should be
considered in the estimation stage, with and without the
haplotyping stage. In our experiment, we set P1 (p1 = p2 =

0.5) and P2 (p1 = 0.9, p2 = 0.1) for SNP loci, and set w = 4,
P3 (p1 = p2 = p3 = p4 = 0.25) and P4 (p1 = 0.5, p2 = p3 = 0.2, p4
= 0.1) for micro-satellite loci. We let |H*| = 20, and θ1* =
0.2, θ2* = θ3* = θ4* = 0.1, θ5* = θ6* = θ7* = θ8* = 0.05, θ9*
= θ10* = ... = θ20* = 0.025.

When only trio pedigrees are considered, the average
numbers of haplotypes are recorded in Table 2. We can see
from the table that the numbers of haplotypes that should
be estimated have been greatly reduced after the haplotyp-
ing stage (HANAP vs. directly), which will immediately
bring the improvement on the running time.

We also consider a more complex pedigree that contains
13 nodes (Figure 1 of [15]). The average numbers of hap-
lotypes are recorded in Table 3. We find that the number
of haplotypes that should be estimated is even much

Running time of the haplotyping algorithmFigure 2
Running time of the haplotyping algorithm: (a) running time 
vs. number of nodes (m = 100); (b) running time vs. number 
of loci (n = 13).
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smaller. We also notice that the number of haplotypes is
growing with the length of haplotypes and the number of
pedigrees. However, it grows very slowly.

Running time of HANAP
EM-DeCODER is a popular software using the EM algo-
rithm to estimate the haplotype frequencies based on
population data. As we have pointed out, it can be used to
estimate haplotype frequencies in pedigrees, simply by
discarding the pedigree information. Here we also com-
pare the running times of HANAP and EM-DeCODER.

Figure 3 shows their running times over different number
of trios (k), length of haplotypes (m) and distributions of
allele-probability (P). We can learn from the figure that
HANAP runs much quicker than EM-DeCODER, and thus
can be applied to much larger instances. We also notice
that the running time of both HANAP and EM-DeCODER
increase exponentially with the length of haplotypes
while increasing near-linearly with the number of trios
(the running time of EM-DeCODER is not plotted in Fig-
ure 3(b) because haplotypes of length 100 are out of its
capability).

Accuracy rate of HANAP
We define a parameter Δ to incarnate the deviation of the
estimate haplotype frequencies from the underlying ones.
Because the simulation data are generated according to
the Θ*, we recognize that as the underlying true frequen-
cies. Suppose the estimate haplotype set is HE with fre-
quencies ΘE. Compare HE with H*. Suppose the estimate
frequencies of the 20 haplotypes in H* are θ1

E, θ2
E,...,θ20

E.
We let,

Figure 4 shows the deviation of the estimate of HANAP
and EM-DeCODER over different number of trios (k),
length of haplotypes (m) and distributions of allele-prob-
ability (P). We can learn from the figure that the deviation
of HANAP is smaller than that of EM-DeCODER, which
means HANAP is more accurate. We have also noticed
that the deviation of the estimate increases with the length
of haplotypes, and decreases with the number of trios.

Δ =
−

=
∑( )

( )

*θ θi
E

i
i

2

1

20

20
1

Table 3: Comparison of number of haplotypes (|H|) on a general pedigree

Parameter 
settings (m, k)

directly HANAP

P1 P2 P3 P4 P1 P2 P3 P4

(20, 20) 2.31e5 1.07e3 3.65e6 1.65e6 20.78 18.34 20.15 20.05
(20, 50) 2.53e5 2.38e3 6.82e6 2.24e6 21.0 19.39 21.2 20.67
(20, 100) 2.96e5 4.51e3 1.08e7 3.38e6 20.9 19.5 20.75 20.8
(200, 20) N/A N/A N/A N/A 26.8 21.3 22.1 22.4
(200, 50) N/A N/A N/A N/A 34.4 22.1 23.5 24.2
(200, 100) N/A N/A N/A N/A 54.7 23.9 28.9 32.8
(500, 20) N/A N/A N/A N/A 1.41e2 22.4 23.2 23.9
(500, 50) N/A N/A N/A N/A 2.24e2 29.5 35.7 30.7
(500, 100) N/A N/A N/A N/A 4.06e2 30.1 41.4 42.5

Table 2: Comparison of number of haplotypes (|H|) on trio pedigrees

Parameter 
settings (m, k)

directly HANAP

P1 P2 P3 P4 P1 P2 P3 P4

(20, 20) 3.18e4 3.43e2 2.06e6 1.02e6 5.83e2 72.2 1.12e2 76.4
(20, 100) 1.49e5 1.68e3 1.02e7 5.02e6 2.67e3 3.55e2 5.72e2 3.61e2
(20, 200) 2.56e5 3.30e3 2.02e7 0.98e7 4.45e3 5.96e2 1.14e3 6.02e2
(100, 20) N/A 8.13e6 N/A N/A 5.90e5 2.60e2 6.91e2 2.74e2
(100, 100) N/A 1.62e7 N/A N/A 2.68e6 1.31e3 3.42e3 1.52e3
(100, 200) N/A 3.21e7 N/A N/A 4.65e6 2.55e3 6.91e3 2.89e3
(200, 20) N/A N/A N/A N/A N/A 7.92e2 6.08e3 1.07e3
(200, 100) N/A N/A N/A N/A N/A 4.09e3 3.21e4 5.17e3
(200, 200) N/A N/A N/A N/A N/A 7.79e3 6.22e4 1.03e4
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The running time of HANAP and EM-DeCODERFigure 3
The running time of HANAP and EM-DeCODER: (a) running time vs. length of haplotypes (K = 100); (b) running time vs. 
number of trios (m = 100).
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The estimate deviation of HANAP and EM-DeCODERFigure 4
The estimate deviation of HANAP and EM-DeCODER: (a) deviation vs. length of haplotypes (K = 100); (b) deviation vs. 
number of trios (m = 100).
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Two real data sets
We also test the efficiency and accuracy of HANAP on two
real data sets. The first real data set is from dbMHC|ABDR,
a set of 122 trios. Each genotype of these trios contains 31
markers of the same position on chromosome 6, 10 of
which are micro-satellite markers and others are SNPs. We
run HANAP to find the most frequent haplotypes (with
frequencies larger than 0.01). A list of 20 haplotypes is
found by HANAP. Their frequencies are shown in Table 4.
It only takes HANAP 0.97 second to find these haplotypes
while it is out of the capability of EM-DeCODER.

The second data set is from the CEPH database [17],
which contains 65 families; each consists of only three
generations, usually with four grandparents, two parents
and a number of children. Figure 5 in [15] shows a typical
family with 21 nodes.

A great portion of the alleles in this data set have not been
identified, and will be viewed as missing data. We care-
fully selected a data set of 28 families (totally 482 nodes)
on a block (48 markers) from chromosome 14 (452
markers in total) with no recombination. Both HANAP
and PHASE (another widely used software package [3]
based on the GS algorithm) are applied to this data set.
HANAP inferred 36 haplotypes with frequency larger than
0.01 and PHASE inferred 39 ones, among which 31 are
common. Although we are not sure which output is closer
to the real cases, the running time of HANAP (13m24s) is
extremely shorter than that of PHASE (21h14m).

Discussion
Complexities of the HCL-linkage analysis haplotyping 
algorithm
We show that the algorithm runs in O(mn) time and
O(mn) space. The pre-process need calculate no more
than 3n HCL-linkages in no more than n trios. Each HCL-
linkage can be computed in O(m) time, so the pre-process
can be done in O(mn) time. It takes step 1 O(n) time to
construct the rooted tree. In step 2 and step 3, we have to
traverse the whole tree, and visit each node for no more
than constant times.

When we process the HCL-linkages from the left lowest
nuclear family, we should merge the d1 HCL-linkages at

each parent node (if we can), it need O(d1m) time, here d1

is the number of children in this family. We need another
O(d1m) time to exchange the HCL-linkage information

between the two parents and transfer that to its root R1 in

the search tree T. So we need O(d1m) time in total to proc-

ess this nuclear family. When we transfer the normalized

HCL-linkage set  = {ψ1, ψ2,...ψk} to the upper nuclear

families, we only need to remember that all ψi is coming

from R1, so for each ψi, it will only take O(1) time to proc-

ess REi, and O(|LSi|) time to process LSi and PHi. The sum-

mation time is no more than O(k + LS1 + LS2 +...+ LSk) =

O(m) because LSi are disjoint subsets of {1,2,...,m}. In

other words, the HCL-linkages in one nuclear family
won't increase the processing time of its adjacent families.
So the total running time to process all nuclear familes is
no more than O(d1m + d2m +...+ dxm) = O(nm), here x is

the number of nuclear families in the whole pedigree.

We need another O(mn) time to complete step 4. There-
fore, the time complexity of this algorithm is O(mn).

For the computation, we need to maintain a data structure
to store the HCL-linkage set Ψv for each node v; we can
maintain the storage always below O(dim) for nuclear
family Fi. So the space complexity of the algorithm is also
O(d1m + d2m +...+ dxm) = O(nm).

Effectiveness of the haplotyping phase
Excoffier used the EM algorithm to estimate haplotype fre-
quencies while ignoring the pedigree information. Here
we adopt a two-stage method, which tries to reduce the
number of possible haplotypes to be considered in the
stage of estimation by utilizing the relatives' information
to do haplotyping at first.

ψR1

Table 4: The frequencies of the 20 most frequent haplotypes 
found by HANAP

Id Alleles of Marker Set θ

1 CCAGGTAGCGCGAAGCATTTCTGTAGTACGA 0.037
2 CCAGGTAGCGCTCTAAGCAACTGGCGACGAG 0.043
3 CCCGGTGGTACGAAGCACAATCGGCGAACAC 0.025
4 CCCGGTGGTACGAAGCACAATCGTAGTACGA 0.102
5 CCCGGTGGTACGAGGTATCTCTAGCAGTCGT 0.016
6 CCCGGTGGTACGAGGTATCTCTAGCGACGAG 0.026
7 CTCGGTGGCGCGAGGTGTATCTATAAACGGC 0.023
8 CTCGGTGGCGCTCTAAGCAGCTGTAGATCGC 0.117
9 CTCGGTGGCGCTCTATGCAACTGGCGACGAG 0.178
10 GACGGTGATATGAGGTATCTCTAGCGTACGC 0.015
11 GACGGTGATATTCTAGGCTTTCGGAAACGAC 0.021
12 GCCGGTCGCGCGAGGCATATCTATAGATCGC 0.027
13 GCCGGTCGCGCTCTAAGCAGCTGTAAACGGC 0.022
14 GTATCGCATATGAAGCACAATCGGAAACGAC 0.078
15 GTATCGCATATGAGGTGTATCTAGAAACGAC 0.041
16 GTATCGCATATGAGGTGTATCTAGCAGTCGT 0.034
17 GTATCGCATATGCGGAGCCGTCAAAATTGGA 0.023
18 GTATCGCATATGCGGCGCCGTCAGAAACGAC 0.055
19 GTATCGCATATTCTAAGCAGCTGTAGATCGC 0.068
20 GTATCGCATATTCTAGGCTTTCGGAAACGAC 0.021
∑ 0.97
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Suppose we are estimating haplotype frequencies in trios
and each haplotype consists of m biallelic SNP loci. For
locus i, suppose that i happens to be one state with a prob-
ability of pi, and to be the other state with a probability of

(1 - pi). Then locus i of the genotype is heterozygous with

the probability of 2pi(1 - pi). Suppose the expected value

of pi is p, then the genotype is expected to have 2p(1 - p)·m

heterozygous loci. As a consequence, a total number of
22p(1-p)·m-1 possible haplotype pairs is expected to be con-
sidered if we use the EM algorithm directly. However, the
probability that locus i in a trio is ambiguous is 2pi(1 -

pi)·2pi(1 - pi)·2/4 = 2pi
2(1 - pi)2. So the expected number

of possible haplotype configurations for the trio is

. If p = 1/2, our method can handle λ = (2p(1
- p))/(2p2(1 - p)2) = 4 times longer genotypes than Excof-
fier's methods. Moreover, in most cases, the more fre-
quent allele at one locus appears with a probability of

more than 0.9, so our method usually can handle λ = 1/
p(1 - p) > 10 times longer genotypes.

Furthermore, if each locus of the haplotype is a micro-sat-
ellite locus, and it has l different alleles: a1, a2,...,al, each

appears with the probability of p1, p2,...,pl. then the

expected number of possible haplotype pairs for a geno-

type is , the expected number of feasible hap-

lotype configurations for a trio is , so our

method usually can handle 

times longer genotypes. For example, when l = 8, and p1 =

p2 = ... = p8 = 1/8, λ = 64, i.e. our method can be applied to

cases of much larger scale.

Conclusion
We present a two-stage method to do haplotyping and to
estimate haplotype frequencies for pedigree genotype data
in this paper. Given a set of pedigrees, it firstly determines
all feasible haplotype configurations for each pedigree,
then uses the EM algorithm to estimate the haplotype fre-
quencies based on the inferred haplotype configurations.
Because a large number of illegal haplotypes have been
eliminated from the possible haplotype list, our method
is both more efficient and more accurate. The experimen-
tal results show that, HANAP runs much faster than EM-
DeCODER, and thus can be applied to much larger scale
of instances. Moreover, the deviation of the estimate of
HANAP is smaller than that of EM-DeCODER, which
means it is more accurate.

Our method suggests that pedigree information is of great
importance in haplotype analysis. It can be used to spee-
dup estimation process, and to improve estimation accu-
racy as well. The result also demonstrates that whole
haplotype configuration space can be substitute by the
space of zero-recombinant haplotype configurations in
haplotype frequency estimation, especially when the con-
sidered haplotype block is relatively short.
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Appendix
Correctness of the HCL-linkage analysis haplotyping 
algorithm
First, we point out that every consistent haplotype config-
uration for pedigree P should be consistent with all HCL-
linkages calculated by the unique partial solutions within
trios, and our merge and transfer operations keep this fea-
ture during the whole process, i.e. if ζ is a haplotype con-
figuration for P, and ζ is consistent with all the HCL-
linkages in the pedigree, it should also be consistent with
those after the merge and transfer operations.

Obviously, HCL-linkages are sufficient to generate a con-
sistent haplotype configuration within a trio. We prove
that:

Lemma
If it exists consistent haplotype configuration for a nuclear fam-
ily (F, M, C1, C2,...,Cd), every imputing schema s of arbitrarily
imputing the (compound) alleles at one node can output one
feasible solution ζ. Contrarily, if one imputing schema ends
with incompatibleness, there is no consistent haplotype config-
uration.

Proof
Firstly, HCL-linkages are necessary for constructing the
consistent haplotype configurations, which means that if
there is a feasible solution, it should correspond to one
imputing schema.

Secondly, we show that if one imputing schema outputs a
feasible solution, all the schemas output feasible solu-
tions.

In particular, for a trio (F, M, C1), without loss of general-
ity, we suppose that Step 4 starts by imputing the "alleles"
of node F. For a specified "locus" i, the two alleles of F, M
and C1 are denoted as (a, b), (c, d) and (e, f), and the par-

22 12 2p p m−( ) ⋅

2
1p p mi ji j ⋅ −≠∑

2
2 2p p mi ji j ⋅≠∑

λ = ≠ ≠∑ ∑p p p pi ji j i j i j

2 2
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tial haplotypes from locus 1 to locus (i - 1) are denoted as
(ph1, ph2), (ph3, ph4) and (ph5, ph6).

Suppose in schema s, allele a is imputed to ph1, denoted
as ph1 ← a, and ph2 ← b, ph3 ← c, ph4 ← d, ph5 ← e, ph6 ←
f. If s outputs a consistent haplotype configuration for trio
(F, M, C), we proof that s': ph2 ← a, ph1 ← b, ph4 ← c, ph3
← d, ph6 ← e, ph5 ← f outputs another consistent haplo-
type configuration.

The loci from 1 to (i - 1) can be viewed as a compound
locus I. Let's refer to Table 1, because we can impute a or
b to ph1, either or both of "locus" I and i should be ambig-
uous. Else, they will be linked to a bigger compound
"locus" in Step 2 or 3 by HCL-linkages. Whatever a or b
will be linked with ph1, we can not impute that arbitrarily
in Step 4. Without loss of generality, we assume that locus
i is ambiguous, which means that a ≠ b, and {a, b} = {c,
d} = {e, f} (please refer to Table 1). We can prove that s' is
also a consistent haplotype configuration by enumera-
tion. Because nuclear family (F, M, C1, C2,...,Cd) is the
intersection of trio (F, M, C1), (F, M, C2),...,(F, M, Cd), the
above prove shows that both both s: ph1 ← a, ph2 ← b, ph3
← c, ph4 ← d and s': ph2 ← a, ph1 ← b, ph4 ← c, ph3 ← d will
lead to a consistent haplotype configuration for the fam-
ily.

We call s to s' a walk step by switching ph1 ← a to ph1 ← b.
Obviously, for any two imputing schemata s1 and s2, we
can transfer s1 to s2 by consecutive walk steps. So s1and s2
will lead to a consistent haplotype configuration or nei-
ther can.

This lemma indicates that our algorithm works in a
nuclear family. We now can prove the correctness of our
HCL-linkage analysis haplotyping algorithm by induc-
tion, i.e. if there is at least one feasible solution for a gen-
eral pedigree, HCL-linkages are sufficient to generate all
solutions.

Suppose that the root R has multiple child mating nodes:
O1,...,Or, each represents a nuclear family; and the algo-
rithm works in all sub-trees, i.e. all of the feasible solu-
tions for those sub-trees can be directly deduced from the
HCL-linkages collected from the sub-trees and stored at
their roots. From the former lemma, we know that if
incompatibleness of type II occurs, there is no feasible
solution. We assume that there is no incompatibleness of
type II and there are always feasible solutions for all sub-
trees. Suppose that haplotype configuration ζ is consistent
with all the HCL-linkages at root R (and all the HCL-link-
ages in the P consequently). Then ζ should be consistent
haplotype configuration when restricted to any nuclear
family of O1,...,Or, and it should also be consistent with
the HCL-linkages at the root of lower sub-trees of O1,...,Or.

By induction, ζ should be a feasible solution when
restricted to any of these sub-trees. So ζ is a consistent
haplotype configuration of the whole pedigree P.
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