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Abstract

Background: One main research challenge in the post-genomic era is to understand the
relationship between protein sequences and their biological functions. In recent years, several
automated annotation systems have been developed for the functional assignment of
uncharacterized proteins. The underlying assumption of these systems is that similar sequences
imply similar biological functions. However, it has been noted that matching sequences do not
always infer similar functions.

Results: In this paper, we present the correlation between protein sequences and protein
functions for the yeast proteome in the context of gene ontology. A novel measure is introduced
to define the overall similarity between two protein sequences. The effects of the level as well as
the size of a gene ontology group on the degree of similarity were studied. The similarity
distributions at different levels of gene ontology trees are presented. To evaluate the theoretical
prediction power of similar sequences, we computed the posterior probability of correct
predictions.

Conclusion: The results indicate that protein pairs of similar biological functions tend to have
higher sequence similarity, although the similarity distribution in each functional group is
heterogeneous and varies from group to group. We conclude that sequence similarity can serve as
a key measure in protein function prediction. However, the resulting annotations must be verified
through other means. A method that combines a broader range of measures is more likely to
provide more accurate prediction. Our study indicates that the posterior probability of a correct
prediction could serve as one of the key measures.
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Background

The human genome project and numerous other genome
projects have produced a large and ever increasing
amount of sequence data. One of the main research chal-
lenges in the post-genomic era is to understand the rela-
tionship between the nucleotide sequences of genes and
the functions of the proteins they encode. Traditionally,
the functional annotation of genes has been done manu-
ally by experienced individual curators with the help of
advanced searching tools. However, to unlock the poten-
tial of the huge amount of genomic-wide sequence data, it
is necessary to develop large-scale approaches for the
functional assignment of uncharacterized proteins [1-10].
In recent years, several automated annotation systems
have been developed based on homologues identified
from database searches, text mining, gene ontologies, and
co-expression relationships obtained from microarray
gene expression patterns [11-23]. In sequence similarity-
based approaches, the function of a query protein can be
deduced from those of homologous proteins of known
functions obtained from database searches. The underly-
ing assumption of these approaches is that similar
sequences imply similar biological functions. Since this
assumption is true in many cases and the approaches are
simple, this type of sequence matching schemes have
been most popular and widely used, although it has been
noted that matching sequences do not always infer similar
functions [24-26].

The Gene Ontology (GO) consortium provides a vocabu-
lary to describe gene and gene product attributes in any
organism [27]. GO includes three ontological categories:
molecular function, biological process, and cellular com-
ponent. A molecular function GO term represents a bio-
logical activity involving one or more gene products. A
biological process GO term represents a series of biologi-
cal activities. And a cellular component GO term, as the
name suggests, represents a component of a cell. The GO
terms in each category are organized in a directed acyclic
graph (DAG), i.e., a specialized GO term (child) could be
associated with one or several less specialized GO terms
(parents).

Since the establishment of GO, many ontology-based
sequence annotation approaches have been developed
[16-23], including several web-based automated GO
annotation software tools [18,19]. These attempts typi-
cally involve a search of homologous proteins in GO-
mapped databases including Genbank and Swiss-Prot.
Hennig et al.'s OntoBlast and Zehetner's GOB let present
a list of homologues together with their GO terms
[18,19]. Martin et al.'s GOtcha searches a set of seven
model genomes and returns scored matches [20]. Xie et
al.'s GO Engine combines homology search with text min-
ing [17]. Schug et al. developed a rule-based function pre-

diction method based on the intersection of GO terms
that contain protein domain at different similarity levels
[16]. Abascal et al. presented an automatic annotation
method based on protein family identification [21].
Jensen et al. used neural networks for the prediction while
Vinayagam et al. used support vector machines [22,23].
The appeal of these approaches is that they can directly
assign a biological meaning to an uncharacterized protein
sequence.

In this study, we investigate the mathematical underpin-
nings of the automated sequence annotation approaches
that are based on sequence similarity and gene ontology.
We explore the structures of the three ontology categories
and re-evaluate the assumption that similar sequences
give rise to similar biological functions. We introduce a
novel measure of overall similarity between two protein
sequences based on a set of local BLAST alignments. Using
the complete proteome from the model organism yeast,
we study the degree of overall similarity of yeast protein
sequences in each functional group defined by GO terms.
We examine the effects of the level of GO terms and the
size of GO groups on the degree of similarity. We present
the sequence similarity distributions at different levels of
GO DAGs and the distributions of siblings of GO groups.
To evaluate the theoretical prediction power of similar
sequences, we compute the posterior probability of the
hypothesis that protein A possesses the same biological
function as protein B, given B's biological function is
known and A and B are similar.

Results and Discussion

All-to-all pair-wise protein sequence local alignments
were performed using the alignment tool for blasting two
sequences (I) which was retrieved from the NCBI ftp site
[28]. The p-values were calculated based on a novel meas-
ure (Equation (2) in Methods section) of overall similar-
ity of two protein sequences. The distributions of the p-
values are shown in Table 1. The first column presents the
p-value distribution of protein sequence pairs from the
complete yeast proteome. This distribution serves as a
control for the distribution of the whole population. The
second, third and fourth columns show the distributions
for sequences annotated for biological processes, molecu-
lar functions and cellular components, respectively. As we
can see, the four distributions are quite similar, indicating
that the annotated proteins in each of the three gene
ontology categories provide a representative sample set of
sequences from the complete yeast proteome. On the
other hand, we clearly see that the majority of sequence
pairs are not similar. Only about 4% of the sequence pairs
have p-values less than 0.01.

The distributions of the number of GO groups at different

levels of the gene ontologies are shown in Figure 1. In this
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Table I: The p-value distributions of protein sequence pairs.

p-value range  Percentage of pairs  Percentage of pairs in biological

Percentage of pairs in molecular Percentage of pairs in cellular

process function component
[1, 101 87.81 86.08 86.92 85.96
[10-, 102) 8.559 9.466 9.105 9.589
[102, 103) 2.244 2.634 2.399 2,676
[10-3, 10%) 0.7139 0.8862 0.7671 0.8903
[10-4, 10-5) 0.2654 0.3493 0.29 0.3485
[10-3, 10-6) 0.1194 0.1618 0.1342 0.1614
[10-¢, 10-10) 0.1556 0.2208 0.1843 0.2126
[10-10, [0-15) 0.05141 0.07762 0.06913 0.06826
[10-15, 10-20) 0.02427 0.03747 0.0342 0.03117
[10-20, 10-50) 0.03834 0.06107 0.06368 0.04699
[10-50, 10-100) 0.01032 0.01468 0.016365 0.01087
[10-100, ] 0-200) 0.004558 0.005692 0.007037 0.004185
[10-200, ] 0-300) 5.74E-05 8.03E-05 7.27E-05 5.35E-05
[10-300, 0] 0.004419 0.004935 0.007291 0.002721

study, when a pair of sequences appears on multiple lev-
els, the highest level (most specialized level) was chosen
for the analysis. We see clearly that the GO groups in
molecular function and cellular component populate the
third and the fourth level of the ontologies while the bio-
logical process GO groups are mainly distributed around
level six. The average sizes of GO groups at different levels
of the ontologies are shown in Figure 2. We see that in all
three GO categories the average size of the GO groups
decreases in most of the cases as their level increases. We
note that groups of less than six protein sequences are not
shown.

Figures 3, 4, 5 show the p-value distributions of protein
sequence pairs annotated for molecular function, biolog-
ical process and cellular component GO terms at different
levels of GO categories. Each curve in the figures repre-
sents the percentages of sequence pairs of less than or
equal to a certain p-value across different levels of GO cat-
egories. Some curves do not include the percentages for all
levels because no sequence pair on those levels has a p-
value less than or equal to certain thresholds. For the
sequences annotated for molecular function and cellular
component GO terms, we see clearly that the majority of
the sequence pairs are considered non-similar throughout
the levels. Over 59% of sequence pairs at all levels have p-
values greater than 0.01. However, the number of similar
sequence pairs does increase steadily with their GO levels.
In particular, the percentage of pairs with high similarity
scores (p < 10-10) has a steep increase from the root level
to level 5. Level 9 has the highest percentage of similar
pairs for molecular function ontology. At this level over
35% of the sequence pairs have similarity p-values less or
equal to 103 while for levels 5 through 8, over 13% of the
sequence pairs have p-values less or equal to 10-3. These
percentages are significantly higher than the 1.8%
extracted from the p-value distribution of the entire popu-

lation of sequence pairs annotated for molecular func-
tions (Table 1). Also we can see that the percentage
increase is not monotonic from levels 6 to 9. There is a
short trend that the percentage decreases with level. We
believe that this result is mainly due to the nature of the
ontology graph in which fewer GO terms are on levels
higher than 6. Another reason that may also possibly con-
tribute to the result is that in our analysis, the level of a
GO term is defined to be the lowest level on which it
appears in the GO DAG. For the cellular component
ontology, level 7 has about 12% of the sequence pairs
with p-values less than or equal to 10-3. The average for
levels 5 and 6 is about 3.6%. We also see that for the two
ontologies, significantly more pairs have high similarity
scores (p = 10-10) at levels 5 or above than those at levels
below 5. For the biological process ontology, the increase
of the number of similar pairs starts to level off around
level 7, apparently much higher than for molecular func-
tion and cellular component ontologies. About 6.2% of
pairs at levels 7 through 11 have the similarity p-values
less than and equal to 103, compared to an average of
1.74% at levels below 7. Similar to the two other ontolo-
gies, there are significantly more pairs annotated for biol-
ogy process GO terms having high similarity scores (p =
10-10) at levels 7 and above than at levels below 7.

The complete p-value distributions of sequence pairs for
each GO group of the three ontologies are shown in the
supplement tables I, II, III (Additional data file 1, 2, 3).
Table 2 shows a typical part of the supplement table II. It
presents the p-value distribution of sequence pairs in
some GO groups on the transporter activity branch of the
molecular function ontology tree. Numbers in each row
of the table represent the percentages of sequence pairs of
p-values within certain range. We see very much diversi-
fied p-value distributions over different GO groups. Most
of the distributions are independent of the sizes of the
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groups. More noticeably, the sequence pairs in the carbo-
hydrate transporter activity group have much higher sim-
ilarity scores. Over 75% of pairs have the p-values less
than or equal to 10-5. In particular, the 17 sequences in
the sub-group monosaccharide transporter activity are
extremely similar with each other. All the p-values of the
136 pairs are less than or equal to 10-50. On the other
hand, the sequences in the GO group monovalent inor-
ganic cation transporter activity which is at the same level
as monosaccharide transporter activity exhibits much low
similarity scores. More than 96% sequence pairs have p-
values greater than 10-2. Also we see, in general, within
one branch of the ontology tree, the higher level a GO
group is at, the higher similarity its sequence pairs have.
More convincingly, 707 out of 903 biological process
groups, 304 out of 362 molecular function groups, and
216 out of 284 cellular component groups have higher
percentage of sequence pairs of p-values less 10-3 than

those of their parents (in the case of multiple parents, the
averages of similarity scores of the parents are consid-
ered). This result indicates the strong correlation between
sequence similarity and function similarity/specificity.

The dependence of sequence similarity on group size was
also examined. No strong correlation was found although
there is a vague trend of increasing degree of sequence
similarity as the group gets smaller. The Pearson correla-
tion coefficient of group size versus percentage of
sequence pairs with p-values less than or equal to 10-5 for
molecular function ontology is about -0.124. The coeffi-
cients for biological process and cellular component are -
0.137 and -0.136, respectively. As an example, the protein
kinase activity group has 94 annotated sequences. About
70% of the 4371 sequence pairs have p-values less than or
equal to 10-5. On the other hand, the nucleobase, nucle-
oside, nucleotide kinase activity group has only 10 anno-
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tated sequences. Only 10 out of the 45 pairs have p-values
less than or equal to 10-5, although both groups are at the
same level (level 5) of the molecular function ontology
tree. The fact that most child groups have higher similarity
scores than their parents might be the main factor contrib-
uting to the weak negative correlation between sizes and
similarity scores.

The above results indicate that proteins of similar biolog-
ical functions tend to have higher sequence similarity. The
level of GO groups on a gene ontology tree depicts to a
certain degree the functional similarity of the groups,
although it's far from being able to accurately characterize
the relationship between protein sequence similarity and
biological function similarity. To evaluate how much pro-
tein sequence similarity can contribute to biological func-
tion prediction, we computed the posterior probabilities
of correct predictions using equation (4). The results for
the protein kinase activity branch of the molecular func-

tion ontology tree are presented in Table 3 while the p-
value distributions of sequence pairs for the branch are
shown in Table 4 for comparison. As we can see from the
results, the posterior probability of a correct assignment
varies greatly from group to group. For example, if a data-
base search hits the nucleotide kinase activity group with
a p-value less than or equal to 10-199, one can almost be
certain that the protein with that query sequence belongs
to the nucleotide kinase activity group. On the other hand
a hit to the protein kinase activity group with the same p-
value would carry only 13% of the confidence that the
protein belongs to the group. We believe that the high
degree of variation observed in the posterior probabilities
indicate that the posterior probability could serve as a key
measure in protein function predictions.

Conclusion
In this paper, we studied the correlation between protein
sequence similarity and function similarity for the yeast
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The p-value distributions of sequence pairs annotated for molecular function. Each curve represents the percentages of
sequence pairs of less than or equal to certain p-value across different levels of the GO category. (Some curves do not include
the percentages for all levels because no sequence pair on those levels has a p-value less than or equal to certain thresholds.)

proteome in the context of the three gene ontologies. The
results indicate that protein pairs in a GO group tend to
have higher sequence similarity than a randomly drawn
sequence pair, although the p-value distributions of
sequence pairs in GO groups are heterogeneous and vary
from group to group. We conclude that sequence similar-
ity can serve as one of the key measures in protein func-
tion prediction. However, the results do not directly
translate into a high confidence of the function prediction
provided by automated protein annotation systems that
are solely based on sequence similarity and GO defini-
tions. These methods can serve as a preliminary tool for
functional predictions. The resulting annotations have to
be verified through other means. A method that combines
a broader range of measures, including sequence similar-
ity, GO definitions, gene expression patterns, as well as

available knowledge of the organism under study, is more
likely to provide more accurate function prediction. Our
study indicates that the posterior probability of a correct
prediction could serve as one of those key measures.

Methods

The complete yeast (Sacchyromyces cerevisiae) proteome
was obtained from Swiss-Prot [29] on July 2005. It
includes 6467 protein sequences. GO definition files were
obtained from the Gene Ontology consortium web site
[30]. In the version of July 15tof 2005, there are 19094 GO
terms including 9856 biological process terms, 7559
molecular function terms, and 1679 cellular component
terms. Among the 6467 protein sequences, 4175 are
annotated with 1084 biological process terms, 3317 are
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The p-value distributions of sequence pairs annotated for biological process. Each curve represents the percentages of
sequence pairs of less than or equal to certain p-value across different levels of the GO category. (Some curves do not include
the percentages for all levels because no sequence pair on those levels has a p-value less than or equal to certain thresholds.)

annotated with 1060 molecular function terms, and 4735
are annotated with 354 cellular component terms.

Sequence similarities can be measured through pair-wise
global alignments or local alignments. Homologous pro-
tein sequences are usually similar over active domains and
thus share common folds and functions. Therefore, local
alignment is a more appropriate method for comparing
protein sequences for their functional similarity. There are
several local alignment schemes for comparing protein
sequences, including BLAST that can be used together
with different scoring systems such as BLOSUMG62 and
BLOSUMS80. The program returns a list of local align-
ments of certain statistical significance. However, how to

measure the overall similarity of two protein sequences is
not obvious. For example, proteins with two similar
domains with certain similarity scores could be consid-
ered to be much more similar than proteins with only one
domain with a higher similarity score. In this study, we
introduce a novel measure of overall similarity of two pro-
tein sequences. We utilize the alignment tool for blasting
two sequences to obtain the list of optimal local align-
ments. Let {S;,...,S,} be scores of a list of best local align-
ments with certain statistical significance. Instead of using
the highest score (max{S,,...,S,}) in the list to measure the
overall similarity of the two protein sequences, we use the
following score S to measure the overall similarity of two
sequences:
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The p-value distributions of sequence pairs annotated for cellular component. Each curve represents the percentages of
sequence pairs of less than or equal to certain p-value across different levels of the GO category. (Some curves do not include
the percentages for all levels because no sequence pair on those levels has a p-value less than or equal to certain thresholds.)

S=-Y1Inp, 1)

where p; =1- ¢ fi stands for the probability of finding a

high-scoring segment pair (HSP) with a local alignment
score of at least S;, and E; is the expected number of HSPs

of score at least S; and can be obtained directly from the

alignment tool. Assuming the HSPs are independent of
each other, the p-value:

p= Hpi =e 2)

measures the probability of finding a pair of protein
sequences with a list of scores at least {S;, ..., S, }. The cor-
responding E-value for the overall similarity (the expected
number of the lists that have scores at least {S,, ..., S,})
therefore can be written as:

E=-In(1-¢%). (3)

We use the p-values and the E-values to measure the over-
all similarity of a pair of protein sequences. Since when ||
<1, -In(1 - x) = x + x2/2 + O(x3), the E- and p-values are
essentially the same when they are small. For example,
when p = 105, |p - E| is of order 10-10. For convenience, we
use p-values to present our results in this paper. The align-
ment tool used for blasting two sequences (b12seq) was
retrieved from the NCBI ftp site [28]. We used version
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Table 2: The p-value distribution of sequence pairs in some GO groups on transporter activity branch.

GO ID! p-values GO group description

[1,10) [102105) [105 100 [10-10, 1020 [1029, 10-50) [10-50, [0-190) [10-1%0, 0]

*GO0005215(392) 94.13 3.68 0.66 0.42 0.52 0.26 0.33  transporter activity

** GO0042626(43) 85.6 2.1 221 4.1 221 1.99 1.77  ATPase activity, coupled to transmembrane
movement of substances

*#* GO0042625(30) 85.75 1.84 1.6l 3.68 391 2.07 1.15  ATPase activity, coupled to transmembrane
movement of ions

R GO0019829(19) 92.4 2.92 0 1.75 1.75 0 1.17  cation-transporting ATPase activity

R GO004696 1 (18) 92.16 2.6l 0 1.96 1.96 0 .31 hydrogen-transporting ATPase activity,
rotational mechanism

R GO0015662(12) 303 0 10.61 19.7 21.21 13.64 4.55 ATPase activity, coupled to transmembrane
movement of ions, phosphorylative mechanism

**GO0015267(11) 87.27 3.64 1.82 0 0 1.82 5.45 channel or pore class transporter activity

** GO0015268(9) 88.89 5.56 2.78 0 0 2.78 0 alpha-type channel activity

*k GO0005216(7) 85.71 4.76 4.76 0 0 4.76 0 ion channel activity

* GO0015238(14) 41.76 10.99 15.38 12.09 10.99 1.1 7.69 drug transporter activity

. GO0015239(11) 47.27 9.09 14.55 9.09 12.73 0 7.27 multidrug transporter activity

* GOO0015144(27) 21.08 1.71 3.13 8.55 23.65 57 36.18 carbohydrate transporter activity

% GOO0051119(24) 0.36 1.81 3.62 10.87 30.07 7.25 46.01  sugar transporter activity

*E GOO0015145(17) 0 0 0 0 0 11.03 88.97 monosaccharide transporter activity

R GO0015149(17) 0 0 0 0 0 11.03 88.97 hexose transporter activity

Rk GO0005354(6) 0 0 0 0 0 3333 66.67 galactose transporter activity

ke GO0015578(15) 0 0 0 0 0 0 100 mannose transporter activity

Rk GO0005353(15) 0 0 0 0 0 0 100 fructose transporter activity

ke GO0005355(16) 0 0 0 0 0 0 100 glucose transporter activity

** GO0015075(140) 95.6 3.02 0.16 0.29 0.37 0.2 0.36 ion transporter activity

* GO0046873(38) 91.18 4.98 0.14 0.28 0.71 1.28 1.42  metal ion transporter activity

Rk GO0046915(29) 88.67 6.9 0.25 0.25 0.49 1.48 1.97  transition metal ion transporter activity

R GO0005375(8) 82.14 10.71 0 3.57 0 3.57 0 copper ion transporter activity

*eeek GO0005381(10) 75.56 6.67 0 0 0 8.89 8.89 iron ion transporter activity

i GO0042625(30) 85.75 1.84 1.6l 3.68 391 2.07 1.I5  ATPase activity, coupled to transmembrane
movement of ions

week GO0019829(19) 924 2.92 0 1.75 1.75 0 1.17  cation-transporting ATPase activity

R GO004696 1 (18) 92.16 2.61 0 1.96 1.96 0 .31 hydrogen-transporting ATPase activity,
rotational mechanism

ek GO0015662(12) 30.3 0 10.61 19.7 21.21 13.64 4.55 ATPase activity, coupled to transmembrane

movement of ions, phosphorylative mechanism

IThe tree structure of the transporter activity branch is embedded in the first column of the table. The number of stars before a GO ID indicates
the level of the GO group. If a group (A) is at one level higher than the group (B) on a row immediate above, A is a child of B. Otherwise, A is a
sibling of the group that is at the same level as A and described on a nearest row above A. The numerical number in the parentheses after the GO
ID represents the size of the group.

Table 3: Posterior probability of a correct assignment for sequences in GO groups on kinase activity branch.

GO ID p-value threshold GO group description

| 102 105 1010 020 1050 |0-100

ek GOO0016301(161) 125 270 29.14 30.75 3348 457 18.67 kinase activity
R GO0019205(10) 0.070 021 1020 2941 5453 2854 99.90 nucleobase, nucleoside, nucleotide kinase activity
Rk GO0019201(6) 0.039 020 811 1935 60.00 33.33 99.98 nucleotide kinase activity

R GO0004672(94) 0.72 352 30.07 3037 3181 3325 13.76 protein kinase activity

R GO0004674(65) 050 270 21.43 20.10 1871 3.00 14.07 protein serine/threonine kinase activity

Rk GO0004693(6) 0.039  0.176  1.21 142 283 286 0 cyclin-dependent protein kinase activity

weEEESE GO0004680(7)  0.046 023 1.83 1.34 450 6.67 10.00 casein kinase activity

ek GO0004702(8) 0.054 033 229 267 264 1.03 5.88 receptor signaling protein serine/threonine kinase activity
R GO0004713(6) 0039 024 .70 145 087 0 0 protein-tyrosine kinase activity

R GO0019200(15) 0.11 023 I511 2543 6524 65.24 28.6 carbohydrate kinase activity

s GO0001727(8) 0.054 0.6 353 438 2858 25.03 25.06 lipid kinase activity

R GO0004428(12) 0085 0.15 321 497 2939 2996 33.22 inositol or phosphatidylinositol kinase activity
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Table 4: The p-value distribution of sequence pairs in GO groups on kinase activity branch.

GO ID p-values GO group description
[1,102) [102,105) [105, 1019 [10-19, [029) [10-20, [050) [10-50, 10-100) []0-190, Q]

R GO0016301(161) 70.45 4.28 5.17 10.82 8.48 0.5 0.31  kinase activity

ek GO0019205(10) 66.67 1111 0 8.89 8.89 0 4.44 nucleobase, nucleoside, nucleotide kinase
activity

ik GO0019201 (6) 40 20 0 0 26.67 0 13.33  nucleotide kinase activity

R GO0004672(94) 25.14 5.51 14.37 29.83 235 I.14 0.5 protein kinase activity

Rk GO0004674(65) 18.89 5.19 17.31 33.65 22.45 1.59 0.91 protein serine/threonine kinase activity

R GO0004693(6) 33.33 0 0 0 26.67 40 0 cyclin-dependent protein kinase activity

R GO0004680(7) 47.62 0 19.05 9.52 4.76 14.29 4.76  casein kinase activity

ik GO0004702(8) 0 0 0 42.86 42.86 10.71 3.57 receptor signaling protein serine/threonine
kinase activity

ik GO0004713(6) 0 0 26.67 53.33 20 0 0 protein-tyrosine kinase activity

ek GO0019200(15) 78.1 1.9 5.71 0 0 8.57 5.71 carbohydrate kinase activity

R GO001727(8) 53.57 7.14 14.29 10.71 7.14 3.57 3.57 lipid kinase activity

R GO0004428(12) 7273 6.06 6.06 7.58 3.03 1.52 3.03 inositol or phosphatidylinositol kinase activity

2.2.11 with default parameters and the substitution
matrix BLOSUMG62. All processing scripts were written in
Perl.

GO terms in each of the three ontology categories were
parsed and stored in a tree structure similar to the one
used in AmiGO [31] to form gene ontology trees. Since
GO terms are originally organized in a DAG, a GO term
may have several parent terms. In this case, the child term
appears multiple times on the same or different levels of
the tree. In this paper, we define the level of a GO term to
be the lowest level on which it appears, i.e. the shortest
distance of the GO term from the root. Protein sequences
were then parsed and mapped onto the gene ontology
trees to form GO groups. GO groups with less than six
protein sequences were removed for statistically meaning-
ful results. As a result, 4175 sequences in 906 distinct bio-
logical process groups, 3317 in 362 distinct molecular
function groups, and 4735 in 284 distinct cellular compo-
nent groups are included in the analysis. The final biolog-
ical process ontology tree consists of 11 levels and 11091
tree nodes (GO groups), of which 903 are unique. The
molecular function ontology tree consists of 9 levels and
471 tree nodes, of which 362 are unique. The cellular
component tree has 7 levels and 1692 tree notes, of which
284 are unique.

To evaluate how much protein sequence similarity can
contribute to biological function prediction, the posterior
probabilities of correct predictions can be computed using
Bayes' theorem [32]:

P(sy € G,51 € G, p(s1,57) <€)
P(s; € G,p(s),52) <€)

_P(p(s1,5)<€e|s;€ Gsy€ GP(s, € G,51€ G) _

- P(p(s1,55) < €51 € G)P(s; € G) -

_P(p(s1,5)<€|s;€ G,51€ G)P(sy € G,51€ G)

- P(p(s;,50)< €| s €G) P(s; € G)

where G represents a GO group, ¢ represents the p-value

threshold for a sequence pair s, and s,, while the p-value
p(sy, s,) is calculated based on equation (2).

P(s; € G|s;€ Gp(s1,50)<€)=

(4)
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tribution of sequence pairs in all GO groups of molecular function ontol-
ogy

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-S4-S11-S1.xls]

Additional data file 2
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