@,

BiolVled Central

Methodology article

A graph-search framework for associating gene identifiers with
documents
William W Cohen*123 and Einat Minkov?

BIVIC Bioinformatics

Address: 'Department of Machine Learning, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA, 2Language Technology
Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA and 3Center for Bioimage Informatics, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Email: William W Cohen* - wcohen@cs.cmu.edu; Einat Minkov - einat@cs.cmu.edu
* Corresponding author

Published: 10 October 2006
BMC Bioinformatics 2006, 7:440 doi:10.1186/1471-2105-7-440

Received: 02 May 2006
Accepted: 10 October 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/440

© 2006 Cohen and Minkov; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: One step in the model organism database curation process is to find, for each
article, the identifier of every gene discussed in the article. We consider a relaxation of this
problem suitable for semi-automated systems, in which each article is associated with a ranked list
of possible gene identifiers, and experimentally compare methods for solving this geneld ranking
problem. In addition to baseline approaches based on combining named entity recognition (NER)
systems with a "soft dictionary" of gene synonyms, we evaluate a graph-based method which
combines the outputs of multiple NER systems, as well as other sources of information, and a
learning method for reranking the output of the graph-based method.

Results: We show that named entity recognition (NER) systems with similar F-measure
performance can have significantly different performance when used with a soft dictionary for
geneld-ranking. The graph-based approach can outperform any of its component NER systems,
even without learning, and learning can further improve the performance of the graph-based
ranking approach.

Conclusion: The utility of a named entity recognition (NER) system for geneld-finding may not be
accurately predicted by its entity-level FI performance, the most common performance measure.
Geneld-ranking systems are best implemented by combining several NER systems. With
appropriate combination methods, usefully accurate geneld-ranking systems can be constructed

based on easily-available resources, without resorting to problem-specific, engineered
components.
Background ess for MGI as consisting of three stages. First, papers are

The Geneld curation task

Curators of biological databases, such as MGI [1] or Fly-
base [2], must read and analyze research papers in order
to identify the experimental results that should be
included in a database. As one example of this analysis
process, Cohen and Hersh [3] describe the curation proc-

selected according to whether or not they use mouse as a
model organism. Second, the selected papers are triaged to
determine if they contain curatable information. For MGI,
papers must be curated when they contain evidence suffi-
cient to assign a Gene Ontology term [4] to a specific gene.
(These terms indicate some aspect of the molecular func-

Page 1 of 16

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/440
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17032441
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:440

tion, biological process, or cellular localization for a gene
product.) Third, for articles that do contain such informa-
tion, terms from Gene Ontology are assigned to specific
genes, along with the appropriate evidence code.

To accomplish the final stage of curation, a curator must
find, for each article being curated, the unique database
identifier of every gene that will be annotated. Because the
criteria for annotation is different for every model-organ-
ism database, it is useful to consider a slightly more gen-
eral version of this task, namely to find the unique database
identifier of every gene mentioned in a document. We will
henceforth refer to this process as geneld finding.

Geneld finding is an important step in the curation proc-
ess of many biological databases. It is also often a chal-
lenging task, because the nomenclature used for genes is
inconsistent for many model organisms. In particular,
authors often use novel variations of existing gene names
in their papers; hence, even a large dictionary of genes and
their synonyms will not contain all names appearing in a
newly-published article. In addition, many existing gene
names are ambiguous, corresponding to multiple unique
gene identifiers.

Geneld finding is often broken down into two substeps:
recognizing gene names in text, which is a a type of named
entity recognition (NER); and then normalization of the rec-
ognized gene names, by mapping each name to the corre-
sponding unique gene identifier. NER methods for genes
have been widely investigated, and several public corpora
for evaluation of NER techniques exist. Data for the task
of geneld finding has become available for research more
recently, in the form of the evaluation sets made available
by the BioCreAtIVvE challenge, task 1B [5,6].

Automatic Geneld finding

Much prior work on biological text-mining is relevant to
geneld finding. Named entity recognition (NER) is the task
of identifying substrings in a document that correspond to
particular entities. A large number of NER systems have
been developed to identify genes in biomedical publica-
tions (e.g., [7-10]), utilizing a variety of techniques,
including dictionary matching, rule-based approaches
and machine learning methods. More specifically, most of
these systems extract gene and protein names, without
distinguishing between them, a task often called gene-pro-
tein entity extraction. NER systems have also been built that
extract other entities from biological data, as well as rela-
tionships between entities (e.g. [9-13]).

NER systems are usually evaluated by their F-measure per-
formance. F-measure is the geometric mean of precision
(the fraction of all substrings extracted by the NER that are

http://www.biomedcentral.com/1471-2105/7/440

actually entity names) and recall (the fraction of all entity
names that are extracted).

In some domains, the output of a NER system can be
immediately used to solve the "id finding" problem for
that domain, by simply looking up each extracted entity
name in an appropriate database. For gene or protein enti-
ties, however, the "database lookup" step is non-trivial,
for the reasons detailed earlier. Therefore, even a very
accurate NER system for gene-protein entities may not be
accurate at geneld finding; likewise, NER performance, as
usually measured, is an imperfect proxy for performance
on the geneld-finding task.

An important prior experimental study of geneld-finding
was the BioCreAtIlvE challenge, task 1B [5,6], which
assembled common testbed problems and a common
evaluation framework for this task. Three separate testbed
problems were developed, one for each of three model
organisms: yeast, mice, and fruitflies. In addition to sets of
documents labeled with their associated geneld lists, the
BioCreAtIVE challenge also assembled a gene synonym list
for each organism - a list of all known gene identifiers,
with several synonyms for each gene. (As the curation
process defined here is limited to known gene identifiers,
it may be incomplete in absolute terms.) Eight teams of
researchers fielded geneld-finding systems and evaluated
them on these common datasets.

Performance on the BioCreAtIvE datasets probably some-
what overstates performance in a realistic curation setting,
as some simplifying assumptions were made in creating
the challenge problem sets. Documents were abstracts,
rather than full papers. It was assumed that a document
was relevant to only one model organism, which was
known to the geneld-finding system: thus, different ver-
sions of a system could be used for documents about dif-
ferent organisms, and no system needed to deal with the
complications arising from a non-homogenous corpus,
including documents relevant to multiple organisms, e.g.,
identically-named homologs. (This difficulty would not
typically be relevant for a model-organism database, but
could be relevant for other curation tasks, e.g., developing
a BIND-like database of interactions.) Finally, the BioCre-
AtIVE task considers finding all genes mentioned in an
abstract, not genes that should be included in a model
organism database: in reality, only genes meeting certain
(organism-specific) criteria are curated, and finding these
particular genes is more important.

In spite of these simplifications, the BioCreAtIVE geneld-
finding systems performed only moderately well for two
of the three model organisms. (Many systems performed
well for yeast, where the nomenclature for genes is fairly
consistent.) For fly, the median and top F-measure of the

Page 2 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

systems fielded were 0.66 and 0.82, and for mouse, the
median and top F-measure were 0.74 and 0.79, respec-
tively.

Geneld ranking

The results on the BioCreAtIvE challenge suggest to us that
completely automatic systems are unlikely to be useful for
geneld finding. A more realistic short-term goal would be
a system that, given a document, provides a ranked list of
genes that might be discussed by the document. Such a
ranked list would be used as an aid for, rather than as a
replacement of, a human curator. Henceforth we will call
this sort of system a geneld ranking system. A good ranked
list would have all or most of the correct gene identifiers
near the top of the list, interspersed with only a few incor-
rect identifiers.

In this paper we experimentally compare a number of
methods for geneld ranking. To evaluate such systems, we
primarily use mean average precision, a measure adopted by
the information retrieval community to evaluate the per-
formance of search engines (which also return ranked lists
of results). We consider first a baseline system in which
gene-protein names extracted by a NER system are used to
look up gene identifiers in a "soft dictionary" - i.e., a dic-
tionary in which inexact matches between a dictionary
entry and an extracted name are allowed. We show that
NER systems with similar F-measures can have very differ-
ent performance as part of such a geneld-ranking system.
We then consider a scheme for geneld-ranking that com-
bines the outputs of multiple NER systems - and poten-
tially many other additional sources of evidence - in a
natural way, by formulating geneld-ranking as a search
process over graphs. In our formulation, the nodes of a
graph consist of documents, terms (i.e., words from a doc-
ument), gene identifiers, gene synonyms, extracted gene
names, or lists of genes that co-occur in previously curated
documents. We show that this graph-search formulation
improves performance over any single NER-based system.
Finally, we present a scheme for using machine learning
to improve these results further. The learning approach
can be used whenever there is training data in the form of
documents paired with lists of correct gene identifiers.

Results and discussion

Datasets

To evaluate our approach, we use the data from the Bio-
CreAtIvE challenge. Our primary focus is the mouse data-
set, which proved to be hard for the BioCreAtlvE
participants. This dataset consists of several parts.

e The gene synonym list consists of 183,142 synonyms for
52,594 genes.

http://www.biomedcentral.com/1471-2105/7/440

e The training data, development data, and test data each
consist of a collection of mouse-relevant MEDLINE
abstracts, associated with the MGI genelds for all of the
genes that are mentioned in the abstract. These datasets
contain 100, 50, and 250 abstracts, respectively.

e The historical data consists of 5000 mouse-relevant
MEDLINE abstracts, each of which is associated with the
MGI genelds for all genes which are (a) associated with
the article according to the MGI database, and (b) men-
tioned in the abstract, as determined by an automated
procedure based on the gene synonym list. Notice that the
list of genelds associated with a historical-data abstract
need not include all genes mentioned in the abstract; in
fact, only 55% of the genes mentioned in these abstracts
are found on this list [[6], Table 4].

For those familiar with BioCreAtIvE, our training set and
development set are subsets of the BioCreAtIvE "devtest"
set, and the historical data corresponds to the BioCreAtIvE
"training" set. The terminology we use here more accu-
rately reflects our use of the data. The test data is the same
as the blind test set used in BioCreAtIvE. We did not man-
ually examine the test set or use it for error analysis, pro-
gram development, or debugging - its only purpose was
as a final prospective test.

NER systems

We used two closely related NER systems in our experi-
ments. Both were trained using an off-the-shelf machine
learning system for NER called Minorthird [14] on the
YAPEX corpus [15], which contains 200 MEDLINE
abstracts annotated for gene-protein entities.

To train the first NER system, we used Minorthird's default
tokenizer and feature set, and Minorthird's implementa-
tion of a voted-perceptron based training scheme for
HMMs due to Collins [16]. This simple algorithm has per-
formed well on a number of previously-studied sequential
learning tasks [16-18], including NER, and can be proven
to converge under certain plausible assumptions [16].

This method learns a NER system with precision of 0.87
and recall of 0.62 on the YAPEX test set, which compares
favorably with the performance of the original YAPEX sys-
tem on the same data. We call this first system the likely-
protein extractor, as it has fairly high precision and lower
recall.

Precision and recall are very sensitive to slight errors in
entity boundaries. An alternative pair of measures are
token precision and token recall, defined as precision
(respectively recall) of the decision associated with classi-
fying a token as inside or outside an entity name. The

Page 3 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

likely-protein extractor has token precision of 0.95 and
token recall of 0.65 on the YAPEX test set.

A second NER system was constructed by modifying the
likely-protein extractor to improve its recall, at the
expense of precision, by tuning it to optimize F; (favoring
recall - see Methods section for the complete Fzformula)
on the YAPEX test data [19]. This higher-recall protein
extractor will be henceforth called the possible-protein
extractor. The possible-protein extractor has field-level pre-
cision and recall of 0.47 and 0.83 on the YAPEX test set,
and has token-level precision and recall of 0.49 and 0.97.
(Note, however, that these are biased measurements since
the test set was used in the optimization for F;, as
described in the Methods section.)

Figure 1 gives an example of the output of these extractors
on one of the development-set abstracts, and Table 1 sum-
marizes the performance of these extractors on the mouse
development data.

Likely-protein and possible-protein still have high token
precision and high token recall on the mouse data; they
also have comparable F measures on this dataset. How-
ever, performance is much worse for both than on the
YAPEX data; in fact, the F-measure performance of the two
systems is only slightly better than merely looking for
exact matches to an entry in the mouse synonym list
(recorded as "dictionary" in the table).

Presumably most of the performance degradation is due
to systematic differences between the data on which the
NER system was tested and the data on which it was
trained; similar degradation has been documented else-
where in transferring learned gene-protein NER systems
from one distribution of documents to another [20].
Unfortunately, no large dataset of abstracts from the same
distribution as the mouse development data seems to
exist. (The BioCreAtIvE workshop distributed a subset of
the GENETAG corpus for Task 1A. GENETAG contains a
sample of MEDLINE sentences enriched for gene-protein
entity names, but not specific to the mouse model organ-
ism). In the remainder of this paper, we will describe how
even such low-performance NER systems can be used to
generate accurate geneld-ranking systems.

Geneld ranking by soft matching

The row labeled "dictionary" in Table 1, as well as the
experiences of several BioCreAtIvE participants, shows
that requiring exact matches to the synonym list will lead
to recall problems. We thus incorporated certain approxi-
mate string matching techniques in our geneld-ranking
systems.

http://www.biomedcentral.com/1471-2105/7/440

Specifically, we used a similarity metric for strings called
soft TFIDF. In prior work [21], SoftTFIDF was shown to be,
on average across several different string-matching prob-
lems, the most effective of several different heuristic simi-
larity metrics. SoftTFIDF breaks strings into tokens which
are then weighted, using a statistical weighting scheme
widely used in information retrieval called TFIDF. The
similarity of s and t is determined by the weight of the
tokens w contained in s that are are highly similar to some
token w' in t (i.e., the order of tokens is ignored by this
measure). A second similarity measure called Jaro-Win-
kler is used to measure token similarity; Jaro-Winkler is an
edit-distance-like measure used widely for record-linkage
tasks involving personal names. We note that the mouse
dataset has many multi-token gene names: the average
length of a gene name in the synonym list is 2.77 words,
and 19% of the gene names are five words long or longer

[6].

A simple baseline approach to implementing geneld find-
ing, given a NER system, is to soft-match extracted gene
names against the synonym list. Specifically, given a doc-
ument d, one takes each candidate gene name s extracted
from d by a NER system, finds the synonym s' in the gene
synonym list that is most similar to s, and adds the gene
associated with s' to the proposed gene list for d. Gene
identifiers on the list are ranked according to the number
of extracted names that were mapped to them.

We implemented and evaluated this approach for the
likely-protein and possible-protein extractors. The per-
formance of these systems on the mouse development
data is shown in Table 2.

Here and elsewhere, we evaluate the ranked lists by mean
average precision. To motivate this measurement, consider
a ranked list that has n correct entries at ranks k;, ..., k,,
and assume that the end user will scan down the list of
answers and stop at some particular "target answer" k; that
she finds to be of interest. One would like the density of
correct answers up to rank k; to be high: to formalize this,
define the precision at rank k, prec(k), to be the number of
correct entries up to rank k, divided by k - i.e., the preci-
sion of the list up to rank k. The non-interpolated average
precision of the ranking is simply the average of prec(k) for
each position k; that holds a correct entry:

n
Average Precision = 1 Z prec(k;)
=
As an example, consider a ranked list of items (gene iden-
tifiers), where the items at ranks 1,2,5 are correct and
those at ranks 3,4 are not. The precision at ranks 1 and 2
equals 1.0, and the precision at the next correct item is 0.6

Page 4 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

http://www.biomedcentral.com/1471-2105/7/440

Medline abstract, with possible and likely proteins highlighted:

A modified AFLP (amplified fragment length polymorphism) method was
employed to isolate genes differentially expressed in renal carcinogenesis
of Tsc2 gene mutant (Eker) rats. One gene, selected for further

investigation, was named "Niban" "second" in Japanese), because it is the

early-stage renal carcinogenesis.

second new gene to be found after Erc (expressed in renal carcinoma) in
our laboratory. Importantly, "Niban" is well expressed even in small

primary rat Eker renal tumors, more than in progressed cell lines, and is
also expressed in human renal carcinoma cells, but not in normal human or
rat kidneys. Chromosome assignment was to RNO 13 in the rat, and HSA 1.

This "Niban" gene is a candidate as a marker for renal tumor, especially

Associated gene identifiers and synonyms:

MGI:2137237
MGI:102548

Niban,
Tsc2 ,

niban protein

tuberous sclerosis 2,

tuberin

Figure |

Sample abstract. A sample abstract from the mouse training dataset, together with the entries from the gene synonym list
for the associated identifiers. Terms produced by the possible-protein extractor and likely-protein extractor (see text) are
highlighted in the abstract. (The missing open parenthesis after the word "Niban" is a typographical error.)

(since there are 3 correct answers before rank 5). The non-
interpolated average precision on this ranked list is thus
(1+1+0.6)/3=0.87.

Elsewhere, it has been noted that prec(k;)can be viewed as
a 1atio M; 4o,/ My Where m; ,, is the number of entries
the user must examine to find the i-th correct entry in an
optimal ranked list, and m; , ., is the analogous number
for the actual ranked list [22]. Thus, non-interpolated
average precision can also be interpreted as a measure of
the additional work imposed on the user by a suboptimal
ranking - e.g., an average precision of 0.5 means that the
user must examine twice as many list entries as needed, on
average.

In our ranking systems, it may happen that some correct
answers do not appear in the ranking at all: in this case, we
follow standard practice and define prec(k;) for that
answer to be zero. (Returning to our example, if there

were a fourth answer that did not appear anywhere on the
list, then the average precision would be (1 + 1 + 0.6 + 0)/
4 = 0.65.) If there are no correct answers for a problem, we
define the average precision of any ranking to be 1.0.
Finally, mean average precision (MAP) averages non-inter-
polated average precision across a number of problems. In
Table 2, the MAP scores are averaged across the 50
abstracts in the mouse development set.

For this dataset, the geneld ranker based on possible-pro-
tein performs statistically significantly better (withz =3.1,
p < 0.005, using a two-tailed paired test on the individual
non-interpolated average precision scores of the 50 prob-
lems) than the one based on likely-protein: the ranker
using the possible-protein extractor yields a MAP score of
0.63, compared to a MAP score of 0.45 using likely-pro-
tein (Table 2). This result might be viewed as surprising,
as the F1 scores of the likely-protein extractor are compa-
rable to, or better, than those of the possible-protein

Page 5 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

Table I: Performance of NER Systems

Token-level Field-level
precis. recall Fl precis. recall Fl

development set

likely-protein 0816 0313 0452 0667 0.268 0.382
possible-protein 0.439 0.885 0.587 0.304 0.566 0.396
dictionary 0501 0469 0484 0245 0439 0314
YAPEX test

likely-protein 0949 0.648 0.770 0872 0.621 0.725
possible-protein ~ 0.490 0.974 0.652 0.472 0.825 0.600
YAPEX system 0.678 0.664 0.671

Performance of the NER systems on the mouse development corpus
and the YAPEX test corpus. The row labeled "dictionary" is for simple
dictionary lookup using the mouse synonym list. The row labeled
"YAPEX system" is from [15].
extractor: on the YAPEX test set, the two methods have F1
scores of 0.73 and 0.60, respectively; and on the develop-
ment data, the two methods have F1 of 0.38 and 0.40,
respectively (Table 1).

We thus observe that for this dataset, the widely-used F1
score does not predict the relative performance of these
two NER systems, when they are used as components of a
geneld-ranking using soft matching. This may be because
in a geneld finding pipeline, NER systems that have higher
recall are preferable, as the subsequent process of normal-
ization to unique ids may downweight gene names that
are incorrect. More generally, F1 score may be an imper-
fect measure of performance for any NER system that is
used in the context of a larger problem - an observation
which has implications on the proper evaluation of such
systems.

Table 2: Geneld-Ranking Methods on Development Data

Mean Average Precision (MAP)

mouse development data

likely-prot + softTFIDF 0.450
possible-prot + softTFIDF 0.626
graph-based ranking 0513
+ extra links 0.730
+ extra links & learning 0.807

Mean average precision of several geneld-ranking methods on the 50
abstracts from the mouse development dataset. The first two lines are
NER systems, coupled with using softTFIDF to matching extracted
names with gene synonyms. The graph-based ranking method (see
text) ranks genelds by proximity to a query abstract in a graph that
includes the results of both NER systems.

http://www.biomedcentral.com/1471-2105/7/440

Graph search for Geneld ranking

Motivation

We will now describe a scheme for combining multiple
NER systems into a single unified geneld-ranking system.
The core of the idea is to first represent all information as
a labeled directed graph which includes the test abstracts,
the extracted names, the synonym list, and the historical
data; and then to use proximity in the graph for ranking. A
simplified version of the graph we used is illustrated in
Figure 2. Nodes in this graph can be either files, strings or
terms; alternatively, nodes can belong to a user-defined type.
Abstracts and gene synonyms are represented as file and
string nodes, respectively. Files are linked to the terms (i.e.,
the words) that they contain by edges labeled hasTerm,
and terms are linked to the files that contain them by
edges labeled inFile. String nodes are linked with terms
(i.e., words) in the same way (conceptually, they are sim-
ply short files). File nodes are also linked to string nodes
corresponding to the output of a NER system on that file:
here, an abstract is linked to strings extracted by the likely-
protein extractor by edges labeled hasLikelyProtein, and
linked to strings extracted by the possible-protein extrac-
tor by edges labeled hasPossibleProtein. (For simplicity, in
Figure 2 we show only one such edge type, which is
labeled hasProtein.)

The nodes and edges listed above are all produced auto-
matically by our system as it reads in NER-annotated files.
(The graph structure produced is slightly more complex
than suggested by Figure 2, as noted in the Methods sec-
tion.) In our experiments we annotate and store all the
historical-data abstracts, as well as the development- or
test-data abstracts. The graph also contains one user-
defined node type, and several user-defined edges: nodes
of the type genelds are created from the gene synonym list,
and for every synonym s associated with the geneld x, we
create a string node y, that is linked to the node for x via an
edge labeled synonym. For each historical-data abstract, we
also have a list of gene identifiers that are known to co-
occur in that abstract; thus we link historical-data abstract
nodes to the appropriate geneld nodes with an edge
labeled hasGene. (Hence, we are using the historical-data
gene lists as background data, which may guide the geneld
ranking process, but not as training data for the learner.
Recall that the lists of genelds associated with historical
data are incomplete.) Although edges in the graph are
directed, all of the edge labels described above also have
inverses: for instance, there is an edge labeled synonym-1
from a synonym node to the geneld(s) to which it corre-
sponds.

Given this graph, gene identifiers for an abstract are gen-
erated by traversing the graph away from the abstract, and
looking for geneld nodes that are "close" to the abstract
according to the proximity measure that we will formally

Page 6 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

abstracts hasProtein
hasProtein |
extracted @ “HT4”
proteins

S oSS

terms @

)

gene
synonyms
synonym
genelds @
hasGene '
historical
data abstract214

Figure 2

http://www.biomedcentral.com/1471-2105/7/440

hasProtein

hasTerm hasTerm

hasTerm

inFile

inFile

MGI:95298

<7
e

Graph used for geneld-ranking. Part of a simplified version of the graph used for geneld ranking. In the ranking system,
genelds are ranked by a certain notion of proximity in the graph (see text). The graph is simplified by not showing inverse links,

and by showing only a single NER-related link type.

describe below. Intuitively, this measure measures the
similarity of two nodes by the weighted sum of all paths
that connect the nodes. Shorter paths will be weighted
higher than longer paths. Also, paths that use more fre-
quent edge-labels (like hasPossibleProtein) are weighted
lower than paths with less frequent edge-labels (like has-
LikelyProtein). More specifically, an edge in a path from x
to y labeled € will have lower weight if there are many
other edges from from x labeled €.

As an example, consider the two shaded nodes in Figure 2,

and the shaded path from abstract115
hasLikelyProtein "HTA1" hasTerm "HT" inFile "5-HT1A
R — —

receptor" synonym MGI:46273. This path would probably
—
have greater weight than a corresponding path in which
the link labeled hasLikelyProtein was replaced with one
labeled hasPossibleProtein, because abstract115 will be
linked to more "possible" proteins than "likely" proteins.
Likewise, replacing the term "HT" with the term "A" in the
path would greatly reduce its weight, as there are many
more edges of the form "A" inFiley in the graph than

———

edges of the form "HT" inFiley.
—

Paths through the historical data also contribute to the
final ranking. For instance, the proximity of abstract115

Page 7 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

and MGI:46273 is reinforced by the fact that the term
"hippocampus" occurs in abstract115 and also in the his-
torical-data abstract abstract523, which in turn contains
the geneld MGI:46273. This evidence would be stronger if
"hippocampus" were a less frequent term, and weaker if it
were a more frequent term. Notice that the graph also
assigns some non-zero similarity to geneld nodes that are
not similar to any extracted string, but simply contain a
term in abstract115. It also assigns non-zero similarity to
genelds that co-occur in the historical-data abstracts with
genes extracted by the NER systems.

More formally, similarity between two nodes is defined by
a lazy walk process. To walk away from a node x, one first
picks an edge label €; then, given €, one picks a node y

such that x#y. We assume that the probability of

picking the label € is uniform over all label types L(x) that
label edges leaving x. For most node and edge types, after
€ is picked, y is chosen uniformly from the set of all y such

that xLy . (Two exceptions to this default scheme are

edges of type € = hasTerm and € = inFile. As detailed in the
Methods section, we use scores from an open-source full-
text retrieval engine to weight these edge types.) At each
step in a lazy graph walk, there is also some probability ¥
of simply stopping.

Conceptually, the edge weights above define the probabil-
ity of moving from a node x to some other node z, which
we will denote as Q(z|x). In our graph-based geneld-rank-
ing system, x is an abstract for which gene identifiers are
to be found. We approximate Q(z|x) for some set of nodes
z, and then filter out those nodes z' that have type geneld,
and order them by Q(z'|x).

The similarity metric Q(z|x) is a generalization of the heat
diffusion kernels on graphs of Kondor and Lafferty [23].
These have in turn been shown to generalize Gaussian
kernels, in the sense that the continuous limit of heat-dif-
fusion kernels on a two-dimensional grid is a Gaussian
kernel.

We note that this graph framework is general, and can be
used for various other types of queries. For example, start-
ing the random walk from a particular extracted protein
name x can be applied to retrieve a ranked list of related
genelds that is specific to that protein; alternatively, one
could start the random walk with a probability distribu-
tion which includes both an extracted protein x and the
abstract y in which it appears, thus modeling the context
of x. In another work [24] it has been shown that in the
latter scenario the graph walk can be effective in assigning

http://www.biomedcentral.com/1471-2105/7/440

identifiers to specific personal names appearing in docu-
ments.

Engineering the graph for better performance

As shown in Table 2, the graph-based approach has per-
formance intermediate between the two baseline systems.
However, the baseline approaches include some informa-
tion which is not available in the graph. For instance, the
baseline systems can compute the soft TFIDF similarity of
extracted protein names and gene synonyms. This infor-
mation can be made available in the graph by inserting
extra edges labeled proteinToSynonym between each
extracted protein string x and all synonyms y that would
be compared to x using the inverted-index based soft
TFIDF matching scheme described in the Methods sec-
tion. We used a non-uniform weighting scheme for these
links, weighting edges according to the similarity of y to x
under soft TFIDF.

Each baseline method also algorithmically incorporates
the knowledge that a group of paths through the graph are
important - namely, paths from an abstract to a NER-
extracted string to a synonym (via a proteinToSynonym
edge) to a geneld node. To make this sort of knowledge
available in the graph, one can insert "short-cut" edges in
the graph that directly link abstracts x to geneld nodes y
that are the endpoint of these paths. We inserted two vari-
eties of these "short-cut" edges. For the first variety, we
inserted edges to connect abstracts to a single y for each
extracted string (as is done by the baseline extractors). For
the second, we inserted edges to connect abstracts to all
nodes y that are reachable via a NER step followed by a
proteinToSynonym link and then a synonym link, and
weighted the nodes y reachable by these edges proportion-
ally to the weight of the associated proteinToSynonym link.

As Table 2 shows, graph search with the augmented graph
does indeed improve MAP performance on the mouse
development data: the MAP score of 0.73 is better than the
original graph, and also better than either of the baseline
methods described above. One reason for the improved
performance over the NER systems is that the graph also
includes additional information in the form of labeled
historical abstracts. An important advantage of the graph-
search framework is that it can integrate this and other
types of evidence.

Learning to rank

We next consider the topic of improving the results of
Table 2, by tuning the graph-based ranking using learning
techniques. There has been substantial previous research
in learning to rank objects - indeed, the learning method
used for NER is based on one such method. The immedi-
ate obstacle to applying such techniques to this problem
is determining how to describe a ranked item z with a fea-

Page 8 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

ture vector. In general, designing these features would
require a domain-specific human engineering effort. Here
we will describe a scheme for constructing feature vectors
automatically using the graph.

Intuitively, it would be desirable for this feature vector to
summarize the lazy walk process which led to the ranking.
We assume a vector f of primitive feature functions that
describe the individual edges in a graph. For instance, one
such feature function might be

1 if T(x) = string and ¢ — protToSyn

17 / _
f (x%n_{o else

In our experiments, we constructed one such feature func-
tion for each possible combination of a source node type
T(x)and edge label €.

We then recursively define another vector function F
which aggregates these primitive feature functions by
computing the expected value of the primitive features
appearing in any edge of the graph (see the Methods sec-
tion for details). This vector F(z|x) summarizes and aggre-
gates the features associated with every edge involved in
the walk from x to z. Thus, it is a useful description of an
element z obtained as the result of a query x (e.g., a geneld
node z obtained as the result of submitting a document x
to a geneld-ranking system).

Once feature vectors are constructed, any of several exist-
ing methods for learning-to-rank can be employed. The
learning algorithm that we use is based on voted percep-
trons [25,16]. We begin with weight vector W, = 0. We
then iterate through each abstract x in a training set, and
use the graph-based geneld-ranking system to produce
candidate geneld nodes z;,..., z,,. We look in this ranking

for a node z; that is incorrect (for x) but that is ranked

above some correct node zj, . For every such node pair, we

set
W, = W, + F(z; [x) - F(2 [x)

After learning, the weight vector W can be used to re-rank
the output of the graph-based ranker as follows. Given a
node x, the original graph-based geneld ranker is used to
produce candidate nodes z;, ..., z,,. These nodes are then
re-ordered by decreasing values of W- F(z;|x).

As Table 2 shows, the learning approach does improve
performance on the mouse development data. In combi-
nation, the techniques described have improved MAP per-

http://www.biomedcentral.com/1471-2105/7/440

formance to 0.807. This represents an improvement of
nearly 80% over the baseline method of using the "best"
NER method (according to F1 measure) with a soft dic-
tionary.

Results

As a final prospective test, we applied the two baseline
methods to the 250-abstract mouse test data. We com-
pared their performance to the graph-based search
method combined with a reranking postpass learned from
the 100-abstract mouse training data. The performance of
these methods is summarized in Table 4.

All of the methods perform somewhat less well than on
the 50-abstract mouse development set. This is probably
due to variation in the two samples - for instance, the test-
set abstracts contain somewhat more proteins on average
(2.2 proteins/abstract) than the development-set abstracts
(1.7 proteins/abstract).

Figure 3 gives another overview of performance, by show-
ing recall as a function of rank for the mouse development
data. For example, using the likely protein extractor with
soft TFIDF matching, about 50% of the correct proteins
will be found in the first two elements of the list; using the
possible protein extractor the same way, about 63% of cor-
rect proteins will be found in the top two elements. Using
a learned ranker to re-order the top 100 elements returned
by the graph walk, 68% of correct proteins will be found
in the top two elements of the list, 84% will be found in
the top five elements, and more than 90% will be found
in the top ten elements.

As shown in the graph, an ideal re-ranking would find
70% of the correct proteins by rank one, rather than rank
two, and could achieve almost 97% recall by rank five,
rather than only 84%. The graph walk results are encour-
aging, compared to this optimal curve. In particular, the
graph walk reaches nearly maximal recall within the top
15-20 ranks.

This performance might be further improved by better
learning methods or (more readily) by extending the
graph to include more information sources. (It should be
recalled that this result was obtained requiring as
resources only a synonym list and a collection of previ-
ously-curated documents.) In addition, it might be bene-
ficial to improve on the quality of the information sources
used - for example, to use NER components trained on a
more appropriate set of documents, to use domain-spe-
cific string similarity measures, or to use less noisy tagged
historical data. It is also quite possible that performance
would improve with larger collections of previously-
curated documents; in general, one would expect the per-

Page 9 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

http://www.biomedcentral.com/1471-2105/7/440

1
" X
A& B # n E K E X X
09 / A % e x 9 v
0.8 a3 "
v
/
0.6 4
_' 0o 0o o o o b o o o o o o o o o o
§ 05%)
o Y
- s}
04
o LikelyProtein
0.3 + PossibleProtein
v Graph
0.2 A Graph+Learning
0.1 » Optimal Ranking
0 Ll I 1 1 1] I I I 1]] I 1 1 1 L) L]
1 2 3 4 5 6 7 8 9 1011 1213 14 1516 17 18 19
Rank
Figure 3

Average recall vs rank for geneld-ranking. Average recall for lists truncated at rank r as a function of r. The lines labeled
LikelyProtein and PossibleProtein are for the baseline methods. The line labeled optimal ranking is for an ideal re-ranking of the
graph-based search's output — one that places all correct protein identifiers first in the ranking.

formance of this system to improve over time, as the cor-
pus of labeled history data grows.

Our performance measures are not directly comparable to
those used in the BioCreAtIVE workshop. In BioCreAtIvE,
systems were evaluated by pooling all predicted abstract-
protein matches across the test set, and computing the F-
measure of this pool against a gold standard for the test
set. All of the ranking systems proposed here can (and do)
assign quite different absolute scores for each query, so
there is no straightforward way to combine their predic-
tions into a single pool. Indeed, one of the claims of this
paper is that for an interactive, semi-automated curator's
assistant, aggregating F-measure over many abstracts is
not an appropriate performance measure: instead it is bet-
ter to average performance across many queries.

As a rough measure of relative performance, we computed
the maximal F-measure (over any threshold) of each
ranked list produced, and then averaged these measures
over all queries. This "Average Maximum F-measure"
computation supports the claim that the graph-based
method outperforms both of the NER systems on which it
is based. The average maximum Fl-measure of the graph-
based system with learning is 0.755.

Three of the eight BioCreAtIvE participants achieved
aggregate F1 scores above this. Two of these participants
[26,27] made use of ProMiner, a system that incorporates
several domain-specific engineered components, includ-
ing rule-based synonym processing and extra resources
like the BioMedical Abbreviation Server and a cellular
process vocabulary. The best F-measure performance of a
ProMiner-derived system was 0.791. The third BioCreA-

Page 10 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

tIVE system to achieve F-measure scores above 0.755 was
based on using a soft match against the synonym list, fol-
lowed by a filtering phase in which soft matches are tested
with a classifier learned from the training-data abstracts
[28]. This system obtained an aggregate F-measure per-
formance of 0.758, and like our system, requires no spe-
cial components that must be engineered for a new
domain. However, while the soft-match system achieved
recall of 0.90 or higher on the BioCreAtIVE yeast and fly
corpora, the recall was only 0.79 for the mouse corpora.
This bounds the recall of their system. Another result pub-
lished recently [29] achieved a comparable F-measure
score of 0.75 on the mouse dataset using soft-matching to
available dictionaries, and applying a disambiguation
heuristic. The recall of their system was 0.73.

Conclusion

We have proposed a method for solving the "geneld find-
ing" problem using easily-available resources, and no
problem-specific engineered components. Specifically,
the suggested method requires only a dictionary of pro-
tein synonyms; one or more inexact NER systems, trained
on rather different corpora; generic, problem-independ-
ent soft-matching methods for strings; and a set of previ-
ously-curated documents that have been associated with
protein identifiers mentioned in the documents.

In our proposed method, a graph is generated that com-
bines the historical data and the outputs of multiple NER
systems, and produces a ranked list of gene identifiers by
traversing this graph with a stochastic approximation to a
10-step lazy random walk. This ranked list can then be re-
ranked using a learned weight vector, if there is training
data available in the form of documents paired with gene
identifiers. This framework is general, as it can be readily
used for many related tasks, like producing gene identifi-
ers for a particular protein name, or finding abstracts
likely to contain a protein given a protein identifier.

We tested our method on the BioCreAtIvE datasets for
mouse proteins — mouse being one model organism that
was found to be difficult for previous researchers. The
graph-based approach outperformed any of its compo-
nent NER systems. On a 50-problem development set, the
graph-based approach with learning outperforms the
best-performing single NER-system by nearly 30%, as
measured by mean average precision; also, the graph-
based approach without learning outperforms the best-
performing single NER-system by more than 16%. Com-
pared to a plausible baseline method which uses the sin-
gle NER system with the highest F-measure, the graph-
based approach with learning improves performance on
the 50-problem development set by nearly 80%, and on a
larger, 250-abstract prospective test set, improves per-
formance over this baseline by more than 93%.

http://www.biomedcentral.com/1471-2105/7/440

Our system cannot be easily adapted to aggregate predic-
tions from multiple abstracts; however, if the aggregate
performance of previous systems across the 250-abstract
test set can be taken as representative of their average per-
formance on individual problems, then the performance
of our system is comparable to the best previous systems
applied to this dataset.

A central claim we make in this paper is that a ranked list
of protein identifiers is more useful than a fixed set, as it
is more suitable for semi-automatic curation. In absolute
terms, the performance is probably satisfactory to aid in
curation: for instance, on average, more than 84% of the
protein identifiers that should be associated with an
abstract are ranked in the top five. In practical terms, the
usefulness of a real curator's assistant based on this sort of
ranking scheme might well be dominated not by minor
improvements in the ranking, but by user-interface issues
(e.g., how to explain to a curator why a protein was sug-
gested).

Methods

Datasets

The training data and development data are subsets of the
BioCreAtIvE "devtest" set (abstract numbers 0-99 and
100-149 respectively). The historical data was called
"training data" in the BioCreAtIvE publications, but we
use the term "historical data": we did not use them as
training data per se, because this data is clearly different in
character from the test data.

To evaluate NER systems, the development-data abstracts
were hand-annotated (by the first author) by marking up
all gene-protein entity names.

NER systems

We used two closely related NER systems in our experi-
ments. Both were trained using an off-the-shelf machine
learning system for NER called Minorthird [14] on the
YAPEX corpora [15].

The YAPEX corpus consists of a training corpus of 99
MEDLINE abstracts and a testing corpus of 101 MEDLINE
abstracts. These documents deal primarily with protein-
protein interactions, and are annotated for gene-protein
entities. They contain 1745 and 1966 entities, respec-
tively.

To train the first NER system, we used version 8.6.3.15 of
Minorthird. We used the default to-kenizer, the "Recom-
mended.TokenFE" feature extractor, and Minorthird's
implementation of a voted-perceptron based training
scheme for HMMs due to Collins [16]. As we configured
this learner, NER is reduced to the problem of classifying
each token as the beginning, end, or continuation of a multi-

Page 11 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

token protein name; as the unique token in a one-token-
long protein name; or as outside any protein name. Thus,
the learning task is to find a function that maps a sequence
of tokens x to a corresponding sequence of labels y, where
each y; is one of the five classes listed above. The anno-
tated text is tokenized and preprocessed to produce a set
of (x, y) pairs for the learner. The learner also uses a local
feature function f which maps a pair (x, y) and an index i to
a vector of features f(i, x, y). It is required that each com-
ponent f* of f is Markovian, i.e., that it can be defined as

fei, x, y) = ff(8+(i X), ¥ir ¥ia)

where gt is arbitrary. Most of the ff's that we used were
indicator functions that look for some combination of
properties that must hold for y;, x;, and/or x; , , for some
small d. For instance, one possible such feature function
would be

1 ify; =end and x;,; ="mRNA"

2 ixy) :{

0 else

Defining F(x, y) = Z‘f' f(i,x,y) and letting W be a weight

vector over the components of F, we can now succinctly
describe the learning method, the goal of which is to find
a W that leads to the globally best overall performance.
This "best" W is found by repeatedly updating W to
improve the quality of the Viterbi decoding on a particular
example (x, y,). Specifically, Collins' algorithm starts with

W, = 0, and looks at each example in turn. After the t-th
example x, y, the Viterbi sequence y, = argmax, W, - F(x,

y) is computed, and W, is replaced with

W1 =W, +F(x,y) - F(x, y) (1)

After training, one takes as the final learned weight vector
W the average value of W, over all time steps t.

We configured the algorithm to make 20 passes over the
training data.

Unlike the case for simple classifiers, it is non-trivial to
modify a sequential classifier to improve recall. We use
the following scheme to trade recall for precision [19]. In
the likely-protein extractor, there is one particular feature
feature f© which is defined as follows:

1 ify; = outside

fo(ifoY)={

0 else

As it turns out, voted-perceptron NER systems are quite
sensitive to the value of w?, the weight in W assigned to f0.

http://www.biomedcentral.com/1471-2105/7/440

Let P and R be precision and recall, and define the Fgmeas-
ure as

_ (B*+1)PR
B2P+R

It is common in information extraction research to use the
Fl-measure, a specialization of the more general Fymeas-
ure. The Fl1-measure assigns f§ = 1, thus assuming equal
importance to precision and recall. In general, § > 1
assigns higher importance to recall, and vice versa. We
adjusted wY to optimize F; on the YAPEX test set, using a
Gauss-Newton line search in which the objective function
is iteratively approximated by quadratics.

Building the graph

Minorthird's NER system store their output in a particular
data structure, and in incorporating the NER system's out-
put, we found it easiest to construct an analog of that data
structure in the graph. Rather than linking a document
directly to entities found by the NER system, we con-
structed a labels node (which corresponds to Minorthird's
"TextLabels" data structure). A document is linked to a
labels node, and the labels node is then linked to the
extracted entity strings. For each NER component ¢, the
labels node is also linked to a special NER-component node,
which is in turn linked to the entities extracted by that par-
ticular component. This particular choice of representa-
tion was largely a matter of programming convenience.

Approximate name matching

The soft TFIDF [21] method was implemented using the
SecondString open-source software package [30]. SoftT-
FIDF is based on TFIDF similarity; to compute this dis-
tance metric, a string s is first broken into a set T of
"tokens" (i.e., words). Each token w in T, is given a
numeric weight weight' (w, s), based on the formula
weight' (w, s) = log(TF,,+ 1) -log(IDF,), where TF,, is the
frequency of word w in s, and IDF, is the inverse of the
number of gene synonyms that contain w. Let

weight'(w, s)
. v 2
\/ Zu;’eT, weight (w’, 1)

weight(w, s) =

(2)

We now define the distance between the two words sets T,
and T, as

TFIDF(T,,T;) = Z weight(w,) - weight(w, s)

we T, NT;

Two advantages of TFIDF over edit-distance based similar-
ity metrics are: first, token order is not important, so "B-
chain of lactate dehydrogenase", "lactate dehydrogenase-

B" are considered similar; and second, common but unin-

Page 12 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

formative words like "chain" do not greatly affect similar-
ity.

SoftTFIDF [21,31] is a "softer" version of TFIDF, in which
similar tokens are considered as well as tokens in T,NT..
Letting sim' be a secondary similarity function that is
suited to comparing single tokens, we define

SoftTFIDF(T,, Ty) = Y, > weight(w,r) - weight(w’, s) - sim’(w, w’)
w w
The secondary similarity metric we used was the Jaro-Win-
kler metric [21]. Given strings s = a;...agand ¢ = b;...b;,
define a character 4;in s to be common with ¢ there is a b; =
min(]s|,[t])
2

Lets'= aj ... dk’, be the characters in s which are common

a;intsuch thati-H<j<i+ H, where H=

with ¢, in the same order they appear in s, and let ¢' =
by ... by be analogous, and define a transposition for s', t' to

be a position i such that a; # b;. Let H, be half the

number of transpositions for s' and t'. The Jaro metric for
sand tis

1 I 1] s |-Hy
Jaro(s,t) = —- u+u+||—/s,t
3\ Tsl el 1Y

and finally, letting P' = max(P, 4),

’

Jaro — Winkler(s,t) = Jaro(s,t) + f—o -(1—Jaro(s,t))

Combining NER and soft matching

To reduce the cost of repeatedly applying the softTFIDF
algorithm in matching all possible entity pairs, we con-
structed an inverted index for each token that occured in
the gene synonym list, and only computed similarities
between a string s and those strings ¢ that contain at least
one token in s. (For the purpose of this particular compu-
tation, a token is any maximal subsequence of alphanu-
meric characters: thus "Int-3" would be two tokens, not
one.)

Graph search for ranking
Formal details

Formally, a graph G consists of a set of nodes, and a set of
labeled directed edges. Nodes will be denoted by letters
like x, y, or z, and we will denote an edge from x to y with

label € as xiw. Every node x has a type. Each node

. . 4
represents some unique entity, and each edge x——y

asserts that some binary relation €(x, y) holds. We will
assume, for convenience, that there are no edges from a

http://www.biomedcentral.com/1471-2105/7/440

node to itself. Multiple relations can hold between any
particular pair of nodes types: for instance, it could be that

’

x—t y or x y , where € # €'. Also, edges need not
denote functional relations: i.e., for a given x and ¢, there

may be many distinct nodes y such that x—€>y .

Similarity between two nodes is defined by a lazy walk
process. To walk away from a node x, one first picks an edge
label €; then, given €, one picks a node y such that

x#y . We assume that the probability of picking the

label € is uniform over all label types L(x) that label edges

leaving x - i.e., that Pr(/ | x) = 1 where

| L(x) |

L(x)={¢: 3y.x¢> v}
For most node and edge types, after € is picked, y is chosen

uniformly from the set of all y such that xLy . If we

likewise define

4
Y(x,0)={y: x——y}
then we can also easily define this default weighting

scheme as Pr(y|x, €) = Pr(y | x,¢) = . Two excep-

[Y(x,0)]
tions to this default scheme are edges of type € = hasTerm
and € = inFile. As detailed below, we use an open-source
full-text retrieval engine to implement these edge types.
When given a term x as a search query, this engine
retrieves files y that contain x, and also provides a similar-
ity score for these files y, which is a slight variant of the
TFIDF similarity of y to a one-term document containing
x. We weight files y proportionally to this similarity score,
and thus Pr(y|x, inFile) is non-uniform. For the edge type
€ = hasTerm, we also weight terms w in a string (or file)
proportionally to their TFIDF weight, as computed by
Equation 2; in this context IDF,, represents the inverse of

the total number of file and string nodes that contain w.
Conceptually, the edge weights above define the probabil-
ity of moving from a node x to some other node y. One

can recursively define Q(x;dz), the probability of

moving from x to z in exactly d steps, as follows:

Page 13 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

Table 3: Geneld-Ranking With a Graph

http://www.biomedcentral.com/1471-2105/7/440

(1) let Qq be the probability distribution such that Qy(x) = |
(2)ford=1, ..., d,,,do
* let Q4(x) = 0 for all x
efori=1,.., mdo
- sample x;according to Q
- Q4lx) = Q41 (x)
- for each edge label € € L (x)
* for each node y € Y(x, €)
“letq,, = Pr(y|€, x)-Pr(€|x)
“increment Qy(y) by (1 - NQq., (x)q,,

(3) return Qdmx (z) as an approximation to Q(z|x)

An efficient approximation algorithm for computing Q(z|x), given transition probabilities Pr(y|x, €) and Pr(€|x).

Q(x:—0>z) =1

Qu—52)= Y (T Pr(¢ | %) Pr(y | x.0))- Qy—2)
y /£

Given probability y of stopping the walk, the probability
Q(z|x) of stopping at z in an infinitely-long "lazy walk"
from x is defined as

Q) =73 (- Qr—"sz)
d=1

This can be approximated by limiting the summation to
some maximal value d,,,,.

The graph created from the mouse data is moderately
large — over a million nodes - so we store it in secondary
memory. We use the open-source search engine Lucene
[32] to implement the inFile and hasTerm edges, and the
open-source database package Sleepycat [33] to store the
user-defined nodes and edges. For efficiency, we also limit
to 50 the number of terms y accessible from a file x via has-
Term, and also limit to 50 the number of files x accessible
from a term y via inFile.

Table 4: Geneld-Ranking Methods on Blind Test data

MAP Avg Max Fl
mouse test data
likely-prot + softTFIDF 0.368 0.421
possible-prot + softTFIDF 0611 0.672
graph-based ranking 0.640 0.695
+ extra links & learning 0.711 0.755

Mean average precision and average maximal Fl, for several geneld-
ranking methods, on the 250 abstracts from the mouse test dataset.

1 . . .
We use y= 3 ;and d,,,, = 10 in our experiments. It is com-

putationally infeasible to perform a full matrix multiplica-
tion for 10 iterations, so instead we use the sampling
scheme shown in Table 3. If each node x in the graph has
b or fewer neighbors - i.e., if Vx 2€|Y (x, €)| <b - then the
computation is reduced from time O(Nbk), where N is the
number of nodes in the graph, to time O(mbk). We used
m = 500 in our experiments. In practice computation time
is completely dominated by disk access, so the most
important optimization is to cache in memory informa-
tion about P(y|x) for recently accessed nodes. On a com-
modity PC, the current implementation averages a little
more than minute per search on the mouse development
data. We believe that this can be sped up by a factor of 10
or more with more careful use of main memory.

Learning to rank

Recall the definition of Q(z|x). We will use the same sort
of recursive definition to build up a feature vector that
describes a ranked item z. We will begin with a vector f of
primitive feature functions that describe the individual
edges in a graph. In our experiments, we constructed one
such feature function for each possible combination of a
source node type T(x)and destination node type T(y). The
list of features used is given in Table 5.

We then recursively define another vector function F
which aggregates these feature primitive functions over a
walk that starts at node x and walks to node z in exactly d
steps, as follows:

Fx—252)=0
B2 = % (X, Pr(t) Pr(y |)£y

Finally, we can define

4 =d-1

2))-Qly z)

Page 14 of 16

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:440

Table 5: Features Used for Ranking

http://www.biomedcentral.com/1471-2105/7/440

TestFile hasTerm
—

Entity Type hasSpan
—

GeneSyn synonym_l
—

—_—

TestFile possibleProtNER Geneld hasGene ™!

TrainFile hasGene Labels annotates
— —

TrainFile annotates "

_ﬁ —>
TestFile annotates_l String]1kelyPl‘0t2syn
— —

GeneSyn hasTerm TrainFile hasTerm

— e
String hasSpan ™! Labels hasSpanType
—_—

—

Labels hasPossibleProtein

string hasLikelyProtein ™!

String hasPossibleProtein ™!
—

String hasTerm
—

TERM inFile
—

Labels hasLikelyProtein
—

TestFile likelyProtNER
—_—

String possibleProt2syn
—

Geneld synonym
—

Entity Type hasSpanType_1
E—

The final set of features used by learning system, in the format "tL' , where t is a node type, and € is an edge label. The edge labels
likelyProtNER and possibleProtNER are shortcut representing the baseline NER methods. The edge labels likelyProt2syn and possibleProt2syn are links

between extracted protein names and soft TFIDF-similar protein synonyms.

dmax
Fz|x)=7 Y, (1-7)Fx—"52)

d=1
The algorithm of Table 3 was modified to compute (an
approximation to) F(z|x) in the process of approximating
Q(z|x). In our implementation, this approximately dou-
bles the cost of the computation. We modify this approx-
imated feature vector F in two ways. First, we add a final
feature function which records the final score Q(z|x) for z.
Second, we convert all feature values to their logarithms.

In our learning experiments, we iterated over all of the
examples 200 times.

Availability and requirements

The source code for the software discussed in this paper is
available as an additional file with the manuscript (see
Additional File 1). The code is written in Java, and has
been tested on Windows and Linux. The code requires
installation of Minorthird, an open-source package which
is available from mi-northird.sourceforge.net.

Authors' contributions

EM implemented some of the graph-search and learning
framework, contributed to the recall-precision adjustment
of the NER methods. WC performed the remainder of the

implementation and experimentation. All authors read
and approved the final manuscript.

Additional material

Additional File 1

The code used for graph-search and learning-to-rank in this paper has
been submitted as an additional file: a gzip-compressed tar file, with all
code under an open source license. The code requires installation of
Minorthird, another open-source package. The README.xt file in the
top-level directory details how to compile and use the code. The code for
combining NER and soft matching is implemented a special case of the
graph search that uses a restricted set of paths through the graph, realized
using the class SoftDictEntitySearcher. Code availability and require-
ments All code is implemented in Java, and has been verified to run on
both Windows XP (with cygwin) and Red Hat Linux environments. The
most recent version of the code is available via anonymous CVS from the
authors, using the following commands:export CVS_RSH=sshexport cvs-
root=:pserver:anonymous @raff.ml.cmu.edu:/usr1/cvsroot% cvs
login(anything as a password)% cvs checkout ghirl

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-440-S1.g7]

Acknowledgements

The authors wish to thank the organizers of BioCreAtIvE for assembling
and sharing their data, Bob Murphy and Tom Mitchell for many helpful dis-
cussions, and the anonymous reviewers for numerous helpful comments.

Page 15 of 16

(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-7-440-S1.gz

BMC Bioinformatics 2006, 7:440

The work described here is supported by NIH K25 grant DA017357-01,
for Cohen, and grants from the Information Processing Technology Office
(IPTO) of the Defense Advanced Research Projects Agency (DARPA), for
Minkov.

References

2.

3.

20.

21.

22.

MGI: Mouse Genome Informatics
ics.jax.org/]

FlyBase: A Database of the Drosophila Genome
base.bio.indiana.edu/]

Cohen AM, Hersh WR: The TREC 2004 genomics track catego-
rization task: classifying full text biomedical documents. Jour-
nal of Biomedical Discovery and Collaboration 2006, 1(4):1-15.
Consortium TGO: Gene Ontology: tool for the unification of
biology. Nature Genetics 2000, 25:25-29.

Hirschman L, Yeh A, Blaschke C, Valencia A: Overview of BioCre-
AtIVE: critical assessment of information extraction for biol-
ogy. BMC Bioinformatics 2005, 6 Suppl 1:SI.

Hirschman L, Colosimo M, Morgan A, Yeh A: Overview of BioCre-
AtIVE task I1B: normalized gene lists. BMC Bioinformatics 2005,
6 Suppl 1:S11.

Yeh A, Morgan A, Colosimo M, Hirschman L: BioCreAtIvE Task
IA: gene mention finding evaluation. BMC Bioinformatics 2005,
6 Suppl 1:52.

Leser U, Hakenberg J: What makes a gene name? Named entity
recognition in the biomedical literature. Briefings in Bioinformat-
ics 2005, 6:357-369.

Cohen AM, Hersh WR: A survey of current work in biomedical
text mining. Briefings in Bioinformatics 2005, 6:57-71.

Bunescu R, Ge R, Kate R|, Marcotte EM, Mooney RJ, Ramani AK,
Wong YW: Comparative Experiments on Learning Informa-
tion Extractors for Proteins and their Interactions. Artificial
Intelligence in Medicine (Special Issue on Summarization and Information
Extraction from Medical Documents) 2004, 33(2):139-155.

Humphreys K, Demetriou G, Gaizauskas R: Two Applications of
Information Extraction to Biological Science Journal Arti-
cles: Enzyme Interactions and Protein Structures. Proceedings
of the Pacific Symposium on Biocomputing (PSB) 2000:502-513.
Rindflesch T, Tanabe L, Weinstein JN, Hunter L: EDGAR: Extrac-
tion of Drugs, Genes and Relations from the Biomedical Lit-
erature. Proceedings of the Pacific Symposium on Biocomputing (PSB)
2000:514-525.

Craven M, Kumlien J: Constructing Biological Knowledge Bases
by Extracting Information from Text Sources. In Proceedings
of the 7th International Conference on Intelligent Systems for Molecular
Biology (ISMB-99) AAAI Press; 1999:77-86.

Minorthird: Methods for Identifying Names and Ontological
Relations in Text using Heuristics for Inducing Regularities
from Data 2004 [Http://minorthird.sourceforge.net].

Franzén K, Eriksson G, Olsson F, Lidén LAP, Coster |: Protein
names and how to find them. International Journal of Medical Infor-
matics 2002, 67(1-3):49-61.

Collins M: Discriminative Training Methods for Hidden
Markov Models: Theory and Experiments with Perceptron
Algorithms. Empirical Methods in Natural Language Processing
(EMNLP) 2002.

Altun Y, Tsochantaridis |, Hofmann T: Hidden Markov Support
Vector Machines. Proceedings of the 20th International Conference on
Machine Learning (ICML) 2003.

Sha F, Pereira F: Shallow parsing with conditional random
fields. Proceedings of HLT-NAACL 2003.

Minkov E, Wang RC, Tomasic A, Cohen W: NER Systems that
Suit User's Preferences: Adjusting the Recall-Precision
Trade-off for Entity Extraction. HLT/NAACL 2006. [To appear]
Kou Z, Cohen WW, Murphy RF: High-recall protein entity rec-
ognition using a dictionary. Bioinformatics 2005, 21 Suppl
1:266-73.

Cohen WW, Ravikumar P, Fienberg SE: A Comparison of String
Distance Metrics for Name-Matching Tasks. Proceedings of the
IJCAI-2003 Workshop on Information Integration on the Web (IIWeb-03)
2003.

Zhai C, Cohen WV, Lafferty |D: Beyond independent relevance:
methods and evaluation metrics for subtopic retrieval. SIGIR
2003: Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ACM 2003:10-17.

[http://www.informat

[http://fly

23.
24.

25.

26.

27.

28.

29.

30.

31

32.
33.

http://www.biomedcentral.com/1471-2105/7/440

Kondor RI, Lafferty J: Diffusion Kernels on Graphs and Other
Discrete Structures. Proceedings of the ICML 2002.

Minkov E, Cohen WV, Ng AY: Contextual Search and Name
Disambiguation in Email Using Graphs. ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR) 2006.
Freund Y, Schapire RE: Large Margin Classification Using the
Perceptron Algorithm. Computational ~ Learning Theory
1998:209-217.

Hanisch D, Fundel K, Mevissen HT, Zimmer R, Fluck J: ProMiner:
rule-based protein and gene entity recognition. BMC Bioinfor-
matics 2005, 6 Suppl 1:S14.

Fundel K, Guttner D, Zimmer R, Apostolakis J: A simple approach
for protein name identification: prospects and limits. BMC
Bioinformatics 2005, 6 Suppl 1:S15.

Crim J, McDonald R, Pereira F: Automatically An- noting Docu-
ments with h. BMC Bioinformatics 2005, 6 Suppl 1:S13.

Cohen AM: Unsupervised gene/protein entity normalization
using automatically extracted dictionaries. Proceedings of the
ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Data-
bases: Mining Biological Semantics (BioLink-2005) 2005:17-24.

Cohen WW, Ravikumar P: SecondString: An Open-source Java
Toolkit of Approximate String-Matching Techniques. 2003
[http://secondstring.sourceforge.net].

Cohen WW, Wang R, Murphy RF: Understanding Captions in
Biomedical Publications. Proceedings of The Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-
2003), Washington, DC 2003.

Hatcher E, Gospodneti¢ O: Lucene in Action. Manning 2005.
Sleepycat Software [Http://www.sleepycat.com]

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 16 of 16

(page number not for citation purposes)

http://www.informatics.jax.org/
http://www.informatics.jax.org/
http://flybase.bio.indiana.edu/
http://flybase.bio.indiana.edu/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16420734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16420734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15826357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15826357
Http://minorthird.sourceforge.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960825
http://secondstring.sourceforge.net
Http://www.sleepycat.com
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	The GeneId curation task
	Automatic GeneId finding
	GeneId ranking

	Results and discussion
	Datasets
	NER systems
	GeneId ranking by soft matching
	Graph search for GeneId ranking
	Motivation
	Engineering the graph for better performance

	Learning to rank

	Results
	Conclusion
	Methods
	Datasets
	NER systems
	Building the graph
	Approximate name matching
	Combining NER and soft matching
	Graph search for ranking
	Formal details

	Learning to rank

	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

