
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Scanning sequences after Gibbs sampling to find multiple 
occurrences of functional elements
Kannan Tharakaraman†, Leonardo Mariño-Ramírez†, Sergey L Sheetlin, 
David Landsman and John L Spouge*

Address: Computational Biology Branch, National Center for Biotechnology Information National Library of Medicine, National Institutes of 
Health, 8600 Rockville Pike, MSC 6075 Bethesda, MD 20894-6075, USA

Email: Kannan Tharakaraman - tharakar@ncbi.nlm.nih.gov; Leonardo Mariño-Ramírez - marino@ncbi.nlm.nih.gov; 
Sergey L Sheetlin - sheetlin@ncbi.nlm.nih.gov; David Landsman - landsman@ncbi.nlm.nih.gov; John L Spouge* - spouge@ncbi.nlm.nih.gov

* Corresponding author    †Equal contributors

Abstract
Background: Many DNA regulatory elements occur as multiple instances within a target
promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be
prohibitively slow in locating all instances of such an element in a sequence set.

Results: We describe an improvement to the A-GLAM computer program, which predicts
regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an
optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring
matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM.
First, it assigns an "individual score" to each subsequence of appropriate length within the input
sequences using the initial PSSM. Second, it computes an E-value from each individual score, to
assess the agreement between the corresponding subsequence and the PSSM. Third, it permits
subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which
is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at
which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports
predicted regulatory elements within each sequence in order of increasing E-values, so users have
a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the
Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the
scanning step can now rapidly locate further instances of the element in each sequence.

Conclusion: Datasets from experiments determining the binding sites of transcription factors
were used to evaluate the improvement to A-GLAM. Typically, the datasets included several
sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM
permitted it to predict the multiple instances.

Background
Regulation of gene transcription is complex and often
combinatorial in nature [1-3]. Combinatorial gene regula-

tion is a major factor in evolution, because it helps coor-
dinate diverse novel phenotypic features in a new species.
Because it often reflects chemical synergies between tran-
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scription factors (TFs), combinatorial gene regulation can
be broadly classified as either: (1) homotypic, where a sin-
gle TF binds to multiple sites in the regulatory region of a
gene; or (2) heterotypic, where multiple TFs target a single
gene. Accurate knowledge of potential synergies between
regulatory elements is therefore essential to understand-
ing evolution and phenotypic diversity.

Many computational tools are available for prediction of
regulatory elements. Most tools are based on one of two
methods: (1) an enumeration of over-represented words
[4-9]; or (2) probabilistic sequence models [10-15]. Our
previous work [16] produced the A-GLAM computer pro-
gram, which combines word enumeration with probabil-
istic sequence models to identify cis-regulatory sequences
in human promoters, as follows. Given any gapless subse-
quence alignment, probabilistic sequence models yield a
marginal Bayesian log-odds score. The Gibbs sampler in
A-GLAM uses simulated annealing to maximize the log-
odds score over all possible gapless alignments. A-GLAM
also can start from a set of "seeds", e.g., statistically signif-
icant positions from word enumeration, to maximize the
log-odds score over all possible gapless alignments con-
taining the seeds.

Gibbs sampling (or more descriptively, successive substi-
tution sampling) is a respected Markov-chain Monte
Carlo procedure for discovering sequence motifs. As a the-
oretical framework, however, it encounters several practi-
cal problems when searching for regulatory elements in
DNA. First, it tends to find DNA repeat elements, regard-
less of their biological interest. Second, it often requires
prohibitive computational time to find multiple instances
of a regulatory element in a single sequence.

Because A-GLAM was based on Gibbs sampling, we were
eager to overcome the practical problems above. Our pre-
vious work [16] used seeds to overcome the first problem,
repeats. The user can constrain the alignment output to
include the seeds, a so-called "anchored alignment". Our
implementation of Gibbs sampling therefore avoids
repeats, because the user can specify in advance which
motif is of biological interest.

To overcome the second problem, multiple instances of a
motif, A-GLAM now has an option for post-processing the
results of Gibbs sampling. Gibbs sampling produces a
position specific scoring matrix (PSSM). The new scan-
ning step resembles a PSI-BLAST search based on the
PSSM. The Methods section describes it under the sub-
heading "The new scanning step".

Implementation
A-GLAM was written in C++ and compiled by gcc (GCC
version 3.4.0) under the linux operating environment.

The binary files, documentation and the datasets are avail-
able for download from the project ftp site [see Additional
files 1 &2].

The Gibbs sampling step in the previous implementation of 
A-GLAM
Briefly, A-GLAM takes a set of sequences as input. The
Gibbs sampler step in A-GLAM uses simulated annealing
to maximize an "overall score", a figure of merit corre-
sponding to a Bayesian marginal log-odds score. The over-
all score is given by

In Equation (1), m! = m(m - 1)...1 denotes a factorial; aj,
the pseudo-counts for nucleic acid j in each position; a =
a1 + a2 + a3 + a4, the total pseudo-counts in each position;
cij, the count of nucleic acid j in position i; and c = ci1 + ci2
+ ci3 + ci4, the total number of aligned windows, which is
independent of the position i. The rationale behind the
overall score s in A-GLAM is explained in detail elsewhere
[17].

To initialize its annealing maximization, A-GLAM places
a single window of size 3 (the default permissible mini-
mum window size) within every sequence randomly
(according to a uniform distribution), implicitly placing
the windowed subsequences into a gapless multiple align-
ment. It then iterates the following procedure. In the pro-
cedure's first step, A-GLAM proposes a set of possible
changes to the alignment. The proposal step is either a
repositioning or resizing step. In a repositioning step, one
sequence is selected uniformly at random; the set of pro-
posed changes includes all possible positions for its win-
dow. In a resizing step, either the right or the left end of
the alignment windows is selected; and the set of pro-
posed changes includes expanding or contracting the cor-
responding end of all alignment windows by one position
at a time, expansion being permitted only up to the ends
of the sequences. (The resizing step has been slightly mod-
ified from its original implementation in A-GLAM, which
expanded or contracted each window by a single column.)
Each one of the proposed changes leads to different value
of the overall score s. In the procedure's second step, A-
GLAM then accepts one of the proposals randomly, with
probability proportional to exp(s/T), where T is a param-
eter representing an annealing temperature. The tempera-
ture T is gradually lowered to T = 0, with the intent of
finding the gapless multiple alignment of the windows
maximizing s. The maximization implicitly determines
the final window size. The randomness in the algorithm
helps it avoid local maxima and find the global maximum
of s. We ran the annealing algorithm within A-GLAM ten
times independently. The steps (below) corresponding to
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E-values and post-processing were then carried out with
the PSSM corresponding to the best of the ten scores s.

The individual score and its E-value in the previous 
implementation of A-GLAM
The Gibbs sampling step produces an alignment whose
overall score s is given by Equation (1). Consider a win-
dow of length w that is about to be added to A-GLAM's
alignment. Let δi(j) equal 1 if the window has nucleic acid
j in position i, and 0 otherwise. The addition of the new
window changes the overall score by

The score change corresponds to scoring the new window
according to a PSSM that assigns the "individual score"

to nucleic acid j in position i. Equation (3) represents a
log-odds score for nucleic acid j in position i under an
alternative hypothesis with probability (cij + aj)/(c + a) and
a null hypothesis with probability pij. PSI-BLAST uses
Equation (3) to calculate its E-values: the derivation
through Equation (2) confirms the PSSM in Equation (3)
as the natural choice for evaluating individual sequences.

To assign an E-value to a subsequence with a particular
individual score, consider the alignment sequence con-
taining the subsequence. Let n be the sequence length,
and recall that w is the window size. If ΔSi denotes the
quantity in Equation (2) if the final letter in the window
falls at position i of the alignment sequence, then ΔS* =
max{ΔSi : i = w,...,n} is the maximum individual score
over all sequence positions i. We assigned an E-value to
the actual value ΔS* = Δs*, as follows. Staden's method
[18] yields Ρ{ΔSi ≥ Δs*} (independent of i) under the null
hypothesis of bases chosen independently and randomly
from the frequency distribution {pj}. Our E-value E = (n -
w + 1) Ρ {ΔSi ≥ Δs*} is therefore the expected number of
sequence positions with an individual score exceeding
Δs*. The factor n - w + 1 in E is essentially a multiple test
correction.

The new scanning step
Our scanning method shares some similarities with the
algorithm previously developed by Neuwald et al [19].
Given a PSSM like Equation (3), the scanning step scans
all sequences, assigning an E-value E to every subsequence
of length w. Every subsequence with a small E-value E ≤
E0, where E0 is some pre-assigned small threshold, con-
tributes to the counts cij in a new PSSM. The new PSSM

replaces the old PSSM, and the step is repeated. The step
is repeated until either: (1) no new motifs contribute to
the PSSM (a condition called "convergence"); or (2) some
user-specified number of iterations is attained. Figure 1
describes the method graphically. Finally, the algorithm
reports the predicted motifs within each sequence, in
order of increasing E-values. Analogous to PSI-BLAST, the
iterative procedure usually converges, or else background
motifs come to dominate the PSSM (a condition called
"corruption"). Corruption indicates that a lower thresh-
old E0 is required.

Thus, although the Gibbs sampling step in A-GLAM finds
at most one regulatory element per sequence, the scan-
ning step can rapidly locate several instances of the ele-
ment in each sequence.

Results
Prediction performance of A-GLAM
A-GLAM's predictions of transcription factor binding sites
were evaluated with reference sets containing known
functional sites. Sequence logos [20] of the motifs pre-
dicted by A-GLAM were generated using WebLogo [21].
The height of a stack of letters in the logo represents the
total amount of information at that position, in bits.
Within each stack, the height of each letter is proportional
to the nucleotide frequency at that position.

UAS elements in histone promoters
Others have identified the SPT10 gene as a global regula-
tor of core histone promoter activity in yeast. A recent
study [22] concluded that the Spt10p transcription factor
is involved in sequence-specific activation of histone
genes. The protein promotes histone gene expression by
binding in highly cooperative manner to paired instances
of a DNA regulatory motif, UAS (upstream activating
sequence). Accordingly, we tested A-GLAM with four his-
tone promoter sequences known to contain multiple
instances of the binding site for the Spt10p transcription
factor. All binding sites had been experimentally verified
with gel-shift assays.

Of the nineteen motifs in the dataset, A-GLAM correctly
identified fifteen sites without any false positives (Figure
2). A-GLAM's consensus motif of GTTCN2ANTTTTTCNC
corresponds closely to previous results [23,24]. Previous
knowledge about the consensus permits some further
evaluation of A-GLAM's predictions. In the HHT2-HHF2
and HTA2-HTB2 promoters, Spt10p is known to bind to
six sites. In the HHT2-HHF2 sequence, the two sites A-
GLAM missed lacked the complete TTC motif, however,
suggesting that Spt10p might only bind weakly there.
Similarly, in the HTA2-HTB2 promoter, alignment sites
contain the consensus TT/GC and TTCT/GC sites. How-
ever, the two sites A-GLAM missed lack important consen-
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Description of the scanning step in A-GLAMFigure 1
Description of the scanning step in A-GLAM. The figures indicate the regulatory elements with rectangular boxes. The 
box colors indicate the strength of the corresponding match to A-GLAM's PSSM: strong (black), moderate (striped), or weak 
(white). A downward arrow-tip above a box indicates that the corresponding regulatory element contributes to A-GLAM's 
PSSM. The top figure shows that after the Gibbs sampling step, A-GLAM predicts at most one instance of a regulatory motif 
per sequence. The middle figure shows that after the Gibbs sampling step, the corresponding PSSM can sweep through the 
sequences to predict additional instances of the regulatory motif, i.e., the instances receiving an E-value less than a (user-
defined) threshold E0 now receive arrow-tips. The bottom figure shows that the previous step can be iterated, by permitting 
the additional motif instances to contribute to A-GLAM's PSSM, which then can sweep through the sequences once again to 
predict additional motif instances, indicated by new arrow-tips. The process is iterated to convergence (i.e., no new motif 
instances are found) or up to a (user-specified) number of iterations, whichever comes first.

…  PSSM

.. updated PSSM

…iterate to convergence…
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sus nucleotides, again suggesting weak binding. These
results suggested A-GLAM's potential to rank motifs based
on binding strengths. Accordingly, we sought datasets
where binding affinities had been measured experimen-
tally.

Operator sites in lambda phage
Many previous studies have examined the kinetics of
operator binding in the promoter region of phage lambda
[25,26]. Gene regulation in phage lambda is complex, and
its description can be found elsewhere [27].

We extracted two sequences corresponding to adjacent
promoter regions of the lambda chromosome from the
RefSeq database [28]. The first promoter sequence con-
tains the three right operator sites (OR); the second, the

three left operator sites (OL). In each case, the binding
sites correspond to the palindromic consensus TATCAC-
CGCCGGTGATA [29]. Previous studies have deduced that
the lambda repressor and cro compete for the operator
sites, with the outcome often deciding the fate of the
infected bacteria. Molecules of the repressor bound to
adjacent operator sites interact and display positive coop-
erativity [30,31].

A-GLAM identified five out of the six experimentally veri-
fied operator sites, missing only OR2. When the five oper-
ator sites A-GLAM identified were placed in increasing
order by their experimentally determined constants for
dissociation with cro repressor, the E-values were also in
increasing order, with the exception of OR3 (Table 1).

Gal4p regulatory elements
Gal4p, encoded by the GAL4 gene, is one of the best
known regulatory transcription factors in yeast. Gal4p and
a complex of other proteins activate yeast galactose cata-
bolic genes (GAL) [32]. They regulate GAL genes having
multiple binding sites (GAL1, GAL2, GAL7, and GAL10) in
a highly cooperative manner [33,34]. Gal4p itself binds to
correctly spaced pairs of low affinity binding sites in the
upstream activating sequence for GAL (UASG) [35].
Cooperativity in DNA binding causes a synergistic
enhancement of Gal4p activation of transcription. Gal4p
also binds to pairs of high-affinity binding sites, but bind-
ing studies involving isolated sites have shown that the
corresponding UASG is only twice that of a single high
affinity binding site.

We extracted sequences from the Saccharomyces cerevisiae
Promoter Database for the upstream promoter regions of
the six genes GAL1, GAL2, GAL7, GAL10, GAL80 and GCY1
[36]. The sequences contained fourteen experimentally
verified Gal4p binding sites. Among the 14 binding sites,
A-GLAM correctly identified 13 sites excluding one false
positive. A-GLAM was run using the ZOOPS (zero or one
position per sequence) mode, setting maximum motif
width to 23. The consensus motif identified by A-GLAM
closely matched the known consensus CGG(N11)CCG of
the Gal4p binding site [37,38] (see Figure 3A).

Table 1: Of six operator sites, the five identified by A-GLAM, 
placed in increasing order of their experimentally determined 
constants for dissociation with cro repressor, along with the E-
values A-GLAM calculated for the individual sites.

Operator KD E-value

OR3 2.0 × 10-12 2.79 × 10-3

OR1 8.4 × 10-12 6.37 × 10-10

OL1 1.5 × 10-11 1.84 × 10-10

OL2 2.7 × 10-11 8.96 × 10-4

OL3 5.3 × 10-11 8.63 × 10-3

Alignment of histone promoter sequences by A-GLAMFigure 2
Alignment of histone promoter sequences by A-
GLAM. Figure 2A indicates the ranking of individual ele-
ments from each sequence, based on their E-values. The six 
columns in each line of the alignment represent: (1) start 
position (2) the sequence of the predicted motif instance (3) 
end position (4) strand (5) individual score and (6) the corre-
sponding E-value. The nucleotides matching the consensus 
are represented in bold letters. Figure 2B shows the 
sequence logo for the predicted motifs within the histone 
promoters. (The Methods section gives a brief explanation of 
sequence logos.) The letters at the top of the logo closely 
match the consensus of the histone UAS.

A

>HHT2_HHF2_IR_S_cerevisiae
314 ccgttccgagcacttcgcattaagcgcgt 286 - (25.64520) (5.586871e-10) 
381 acgttctgggagcttcgcgtctcaagctt 409 +  (9.891990) (1.132719e-02) 
349 ctagaccgagagtttcgcatttgtatggc 377 +  (8.797430) (2.536818e-02) 
>HTA2_HTB2_IR_S_cerevisiae
347 ctgtgcccaccgcttcgcctaataaagcg 375 +  (27.34320) (3.455151e-11) 
334 gtgttcccattatttctcaaagtgatgcg 306 - (13.35890) (7.270649e-04) 
376 gtgttctcaaaatttctccccgttttcag 404 +  (10.77820) (5.300732e-03) 
291 gtgttctctgaaattcgcatcactttgag 319 +  (10.14830) (8.379708e-03) 
>HTB1_HTA1_IR_S_cerevisiae
443 ccattccaatagcttcgcacagtgaggcg 415 - (25.60310) (7.318539e-10) 
400 ctgttccaaaattttcgcctcactgtgcg 428 +  (12.09860) (2.459747e-03) 
298 ctgttctcactttttcgcgcgttgcaccc 270 - (11.52740) (3.554757e-03) 
244 tcgttctcattttttcgcggaagaaaggg 272 +  (10.85850) (5.873168e-03) 
>HHF1_HHT1_IR_S_cerevisiae
278 ctgttccgagcgcttctccccataatggt 250 - (27.53840) (2.261761e-11) 
391 tcgttctcacaatttctcacatttccttg 419 +  (12.23800) (1.720110e-03) 
357 tcgttctcacattttcgcattgtcccata 385 +  (11.22860) (3.671231e-03) 
313 gcgttctgaaaacttcgcatcttcacata  285 - (8.294790) (2.770252e-02)

B 
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Kruppel binding targets in Drosophila melanogaster
Kruppel (Kr) encodes a zinc finger transcription factor
expressed in spatially and temporally restricted patterns
during Drosophila embryogenesis. We extracted genomic
sequences surrounding 27 Kruppel-binding sites from 8
different genes; Hunchback, tailless, eve, knirps, ubx, en, spalt
and abd-b.

A-GLAM correctly identified 12 binding sites without any
false positives. The consensus produced by A-GLAM
agreed well with the known consensus (see Figure 3B).

Comparison of A-GLAM, GLAM and AlignACE
We compared A-GLAM's accuracy in identifying the bind-
ing sites with GLAM [39] and AlignACE [11], another de
novo Gibbs sampler based algorithm. The Gibbs sampling
procedure in AlignACE permits multiple occurrences of a
motif in a sequence, unlike the ZOOPS model in GLAM
and A-GLAM. For comparison purposes, we obtained test
datasets that were used to assess various motif discovery
tools in a recent contest [40]. The datasets were comprised
of sequences from four different species: (1) fly; (2)
human; (3) mouse; (4) yeast. Each data set contained

known binding sites in the original promoter sequence
(not in a random sequence). Approximately 85% of the
datasets contained multiple occurrences of a binding site
in at least one sequence. Hence, these datasets provided a
convenient benchmark for assessment purposes. Detailed
description of the datasets appear elsewhere [40]. For each
tool, the accuracy of the top motif predicted on each data
set was compared using the correlation coefficient

In equation 4, TP (true positives) is the number of nucle-
otide positions common to known and predicted sites, FN
(false negatives) is the number of nucleotide positions in
known sites but outside predicted sites, FP (false posi-
tives) is the number of nucleotide positions in predicted
sites but outside known sites and TN (true negatives) is
the number of nucleotide positions outside both known
and predicted sites.

The comparison yielded some valuable insights into A-
GLAM's performance. In general, the scanning step
improved A-GLAM's ability to identify known sites on
mouse and yeast datasets (see Figure 4). A-GLAM and
GLAM performed poorly on fly data sets, however, worse
than AlignACE. The fly datasets where AlignACE per-
formed better contained only single sequences, however.
A-GLAM and GLAM probably failed on such datasets
because of their ZOOPS mode, in which the Gibbs sam-
pler permits at most one motif occurrence per sequence.
On human datasets, surprisingly, GLAM outperformed
both A-GLAM and AlignACE. Moreover, the three pro-
grams often produced alignments corresponding to com-
pletely different motifs. In all such cases, A-GLAM and
AlignACE identified motifs corresponding to a repeat
sequence. A partial explanation follows. In the ZOOPS
mode, Gibbs sampling searches for at most one motif
instance in any single sequence, so the multiplicity of a
repeat does not affect the Gibbs sampling step much. The
best alignment after Gibbs sampling therefore might cor-
respond to a known biological signal. Unfortunately, the
large number of repeat elements in the human genome
then can decoy A-GLAM in the scanning step. The multi-
plicity of a repeat does affect the scanning step, so after
iterating sufficiently, the scanning step incorporates the
repeat into the PSSM to overwhelm the original biological
signal. The multiplicity of a repeat also affects the Gibbs
sampling step in AlignACE, so AlignACE converges on
repeats for similar reasons.

Discussion
This paper introduces some important options into the A-
GLAM computer program. Previously, after its Gibbs sam-
pling step A-GLAM returned a gapless multiple alignment.
A-GLAM assigned PSSM scores and E-values to the aligned
subsequences. To avoid excessive run times, the sampling

CC TP TN FP FN TP FP TN FN TP FN TN FP= × − ×( ) +( ) +( ) +( ) +( ) ( )/ . 4

Alignments of transcription factor binding sitesFigure 3
Alignments of transcription factor binding sites. The 
sequence logo generated using the motifs predicted by A-
GLAM in data sets containing experimentally verified binding 
sites for Gal4p (Figure 3A) and Kruppel (Figure 3B).
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step predicted at most one regulatory element per input
sequence. Now, A-GLAM uses an iterative strategy like
PSI-BLAST, so the PSSM from the sampling step finds
multiple instances of the regulatory motif in individual
sequences. Instances with an E-value below a user-defined
threshold E0 are then permitted to contribute to the PSSM,
which is then updated. The PSSM-updating step is then
iterated. Finally, the predicted instances of the regulatory
motif are reported, by sequence in the order of increasing
E-value.

Validation with regulatory elements from well character-
ized systems confirmed that the scanning step can identify
regulatory elements rapidly and dependably, even in the
presence of homotypic regulatory clusters (multiple
instances of the motif in a single sequence). In compari-
son to Gibbs sampling for homotypic regulatory clusters,

the scanning step is faster, with little loss (if any) in pre-
dictive accuracy, particularly in yeast datasets. Moreover,
the E-values for predicted elements sometimes corre-
sponded well with their experimental binding affinities
(see Table 1). Further investigation of the correspondence
would therefore be desirable.

The scanning step uses a threshold E0 for inclusion into A-
GLAM's PSSM. The threshold E0 is critical, because it is
subject to the same conflicting constraints as in PSI-
BLAST. On one hand, stringent thresholds (low values of
E0) can eliminate interesting instances of a motif; on the
other hand, loose thresholds (high values of E0) can cause
the PSSM to include too many false positives, possibly
diluting the true positives to oblivion, causing "corrup-
tion". In particular, corruption can occur for subtle motifs
that do not deviate much from the background nucleotide

Comparison of A-GLAM, GLAM and AlignACEFigure 4
Comparison of A-GLAM, GLAM and AlignACE. Figure 4 shows the prediction performance of A-GLAM, GLAM, and 
AlignACE on 52 test data sets. (The Methods section gives a brief explanation of the data sets.) The data sets are arranged on 
the x-axis in the following order (1) 1–6, fly;(2) 7–18, mouse;(3) 19–26, yeast; and (4) 27–52, human. The y-axis (correlation 
coefficient) indicates how closely the alignments found by the 3 programs resemble the transcription factor binding site.
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distribution. Most of our analysis used a default threshold
E0 = 0.05, which is practical under most circumstances.

Our studies of A-GLAM's performance on particular data-
sets indicated some general conclusions about Gibbs sam-
pling and the identification of binding sites. In a fly
dataset consisting of a single sequence, GLAM's Gibbs
sampling step performed poorly because the step identi-
fies only a single binding site per sequence. The scanning
step added in this article therefore identifies multiple
instances of a binding site per sequence only when the
dataset contains multiple sequences. The scanning step
noticeably degraded predictions on human datasets, pri-
marily because of repeats (e.g., Alu or poly-A). The degra-
dation is likely to be a pitfall for any program able to
detect homotypic regulatory clusters (e.g., either A-GLAM
or AlignACE), because through sheer multiplicity, repeat
elements can overwhelm a signal from homotypic bind-
ing elements. Notably, the scanning step improved A-
GLAM's performance on yeast datasets, a behaviour likely
to generalize to any genome containing homotypic regu-
latory clusters and lacking repeats. We do not specifically
address the issue of interaction among binding elements
for different transcription factors, a phenomenon largely
confined to complex organisms. Hence, our methods are
most effective in lower organisms such as yeast, fly and
microbes.

Several remedies to the problem of repeats are available.
First, a user can focus the A-GLAM program on a motif of
interest by providing either: (1) a "seed word" contained
in the motif of interest or (2) a list of "seed windows", at
most one per input sequence and all of equal size. In its
seed-oriented mode, A-GLAM then constrains its gapless
multiple alignment to contain the user-provided seeds.
Second, the repeats can be masked with standard pro-
grams, such as RepeatMasker [41]. Third, many recent
studies have also suggested that a high-order background
Markov model can avoid repeats and aid the detection of
regulatory elements [42]. We are currently incorporating
an option for a Markov background into A-GLAM.

Conclusion
In summary, our scanning step identifies multiple ele-
ments in a single sequence with E-values. It speeds up reg-
ulatory motif discovery, by avoiding unnecessary use of
the computationally expensive Gibbs sampling step, with
little loss (if any) in predictive accuracy. The availability of
completely sequenced genomes presents an increased
demand for rapid and accurate prediction of regulatory
elements. Our methods seem well adapted for this chal-
lenge.

Availability and requirements
Project name: A-GLAM

Project home page: ftp://ftp.ncbi.nih.gov/pub/spouge/
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Operating system(s): linux

Programming language: C++
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