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Abstract
Background: Clustering the ESTs from a large dataset representing a single species is a convenient
starting point for a number of investigations into gene discovery, genome evolution, expression
patterns, and alternatively spliced transcripts. Several methods have been developed to accomplish
this, the most widely available being UniGene, a public domain collection of gene-oriented clusters
for over 45 different species created and maintained by NCBI. The goal is for each cluster to
represent a unique gene, but currently it is not known how closely the overall results represent
that reality. UniGene's build procedure begins with initial mRNA clusters before joining ESTs.
UniGene's results for soybean indicate a significant amount of redundancy among some sequences
reported to be unique mRNAs. To establish a valid non-redundant known gene set for Glycine max
we applied our algorithm to the clustering of only mRNA sequences. The mRNA dataset was run
through the algorithm using two different matching stringencies. The resulting cluster compositions
were compared to each other and to UniGene. Clusters exhibiting differences among the three
methods were analyzed by 1) nucleotide and amino acid alignment and 2) submitting authors
conclusions to determine whether members of a single cluster represented the same gene or not.

Results: Of the 12 clusters that were examined closely most contained examples of sequences
that did not belong in the same cluster. However, neither the two stringencies of PECT nor
UniGene had a significantly greater record of accuracy in placing paralogs into separate clusters.

Conclusion: Our results reveal that, although each method produces some errors, using multiple
stringencies for matching or a sequential hierarchical method of increasing stringencies can provide
more reliable results and therefore allow greater confidence in the vast majority of clusters that
contain only ESTs and no mRNA sequences.

Background
ESTs are generated when large numbers of randomly
selected cDNA clones from various tissues, genotypes,
developmental stages, or treatments are partially
sequenced. The greater the number of ESTs generated
from independently constructed libraries the more infor-
mation can be derived from in silico analyses. These short
single-pass sequences can be accumulated rapidly from
the high-throughput sequencing methods developed for

genome sequencing. Therefore, generating ESTs from
many different tissues, genotypes, and conditions should
increase the probability of at least one EST from each gene
of an organism's genome. Subsequent grouping of those
ESTs into gene-oriented clusters should theoretically pro-
duce one cluster for each unique gene.

A significantly large EST dataset can provide qualitative
information regarding mRNA processing as well. Alter-
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nate forms of mature mRNA transcripts can originate
from the same gene by a variety of known mechanisms.
Alternate promoters, alternate polyadenylation sites [1,2],
and alternative splicing of exons [3] can produce mRNAs
that encode different but related protein functions. ESTs
representing such transcripts can be aligned and com-
pared to identify putative transcriptional and processing
alternatives.

We have previously reported on the development of a fast
and efficient algorithm, PECT (Parallel EST Clustering
Tool), to cluster ESTs based on sequence matching [4]. An
increasingly common use of EST datasets is the identifica-
tion of multigene families [5]. An inherent difficulty in
understanding the origin of gene families and their role in
genome evolution is distinguishing between paralogs
(family members originating by duplication events),
homologs (alleles), and in the case of plants, homeologs
(formerly orthologs separated by speciation events
restored to a common genome by hybridization events).
We are currently developing an algorithm to cluster ESTs
in a hierarchical manner using matching criteria of
increasing stringencies. By keeping track of each EST's
membership from larger clusters to increasingly smaller
clusters we hope to provide information on gene family
relationships.

Clustering protocols must take into consideration the lim-
itations inherent in the generation of ESTs. Since ESTs
originate from single sequence experiments (single-pass
sequences) errors that are normally eliminated by
repeated sequencing of both strands of a given length of
DNA remain in the EST. The nature of the sequencing
method also results in a higher frequency of errors at the
far end of the read. Truncating the sequence to eliminate
these regions can result in higher average quality but
shorter sequences. Highly expressed genes will be repre-
sented by many ESTs and often sequence ambiguities can
be resolved by overlap. Analysis of the validity of the clus-
ters produced has become an area of study in itself.

The accuracy of clustering methods is very hard to meas-
ure because the majority of the putative genes represented
by clusters are as yet undiscovered or at least uncharacter-
ized. UniGene, the most widely available clustered set
uses a build procedure that begins by clustering mRNA
sequences from the gene databank. The ESTs are then
joined to existing mRNA clusters. New clusters are created
for ESTs that do not join an mRNA cluster. This procedure
presents two problems. One is the accuracy of the initial
mRNA clusters. Do the mRNA sequences now found in
the same cluster really originate from the same gene? If the
original clusters are representative of more than one gene
then the ESTs that join those clusters will result in signifi-
cant overclustering, joining sequences that do not belong

in the same cluster. The second problem is that two sepa-
rate confidence levels exist for the clusters. Those clusters
with no mRNA members may not be as reliable at repre-
senting existing genes as those with mRNA members.
However, our approach is to cluster ESTs alone without
mRNA sequences. The resulting clusters can then be com-
pared to existing mRNA sequences to assess the accuracy
with which the process assembled sequences from a
known gene. This provides some measure of confidence
in the majority of clusters for which no mRNA has yet
been isolated. The first step in this process, however,
requires a valid non-redundant set of known genes from
the available mRNA sequences in the database. The fact
that UniGene generated less than 700 clusters from about
850 soybean mRNA sequences indicates that either there
exists a significant amount of redundancy in the dataset or
many genes are being clustered together incorrectly.

To provide an indication of the performance of our algo-
rithm, and to begin the process of generating a valid non-
redundant set of genes for soybean, we have used PECT to
cluster known soybean sequences (mRNAs), compared
the results to UniGene, and analyzed the results by align-
ment of clustered sequences as well as assessing the
authors' conclusions in the references cited for each sub-
mission, if available. Soybean provides a good beginning
dataset for experimentation because as a crop species it is
highly inbred and the number of ESTs is very large but not
too large (350,000 versus 6 million for human or 4 mil-
lion for mouse) for multiple runs of an algorithm such as
PECT at varying stringencies. Allelic differences should be
minimized because of the relatively few genotypes repre-
sented among the cDNA libraries used to generate ESTs
(100 libraries of 20 genotypes versus 8000 libraries for
human, virtually all from different genotypes). For the
human genome noise due to allelic differences could be
very high and make it very difficult to distinguish between
some allelic variants and paralogs. For soybean homozy-
gosity is high and noise due to allelic differences should
be at a minimum. Once completed for an inbred organ-
ism like soybean and automation of the analysis steps,
generating a valid non-redundant gene set from mRNA
sequences by this method can enhance verification of EST
clusters for any species represented in the NCBI EST data-
base (dbEST).

Results and Discussion
Profile of Cluster Results
Table 1 shows the cluster profile of PECT at WS100 and
WS200 (See Methods). As expected the total number of
clusters increases (632 to 688) with increasing stringency
of the match criterion. At the same time, the number of
non-singleton (NS) clusters decreased from 113 to 86
indicating a net release of singletons from larger clusters.
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This is also an expected result of the application of a
higher stringency.

The left column of Figure 1 lists all the non-singleton (NS)
clusters using at WS100 and arranged in descending clus-
ter size. The second column shows the result of applying
PECT at WS200 to the same dataset. Of the 113 NS clus-
ters created at WS100, 61 remained unchanged, 44 had
one sequence removed as a singleton (32 of which were
originally cluster size 2), 3 clusters had two sequences
removed as singletons (Clusters 9, 4e, and 4i), and 5 clus-
ters were split into two smaller NS clusters (Clusters 12,
6a, 6b, 4f and 4g).

Comparison to UniGene
The gray-shaded clusters in Figure 1 indicate where Uni-
Gene clusters match those generated by PECT. The 9 Uni-
Gene clusters that match neither the WS100 or WS200
stringencies and exhibit a more complex distribution of
sequences among clusters are shown in Figures 2, 3, 4 and
5. Of particular interest is the fact that 83 of UniGene's 92
NS clusters (Table 1) agree with one or the other of the
two stringencies applied by PECT. This broad agreement
indicates a sequence matching algorithm can quickly gen-
erate a similar grouping of genes. A much closer analysis
of the largest clusters (size 4 or greater), detailed below
was necessary to reveal the relative accuracy of the cluster-
ing methods.

Cluster 12
Cluster 12 contains mRNA sequences encoding congly-
cinin storage protein subunits. Sequence similarities are
shared between the three subunit classes, α, α', and β, that
themselves are composed of multigene families. There-
fore, the type of sequence comparison performed here
does not provide additional information as to the likely

distribution of mRNA sequences to specific subunits.
However, it is clear from a review of the literature cited for
these sequences [6-9] that this single cluster contains rep-
resentatives of both the α and α' subunit multigene fami-
lies.

Cluster 12 of WS100 probably contains either two sepa-
rate genes or perhaps even two separate multigene fami-
lies. The conglycinin seed storage protein subunits exhibit
enough sequence similarity to make absolute differentia-
tion at this level of analysis difficult. WS200 put 6 of 7
sequences identified as α' by the authors into the same
cluster and 5 of 7 identified as α into one cluster plus a
singleton and therefore appeared to separate the two gene
classes more closely than either WS100 or UniGene. See
Figure 2.

Cluster 9
Cluster 9 contains mRNA sequences encoding uricase.
Sequence comparisons indicate that six (AB002810,
D86929, D86930, M63743, M87019, M95400) could
represent the same gene. Differences were very few and
could be sequence errors. The literature cited for these
sequences [10-12] support the identity of four of the six.
The other two are unpublished direct submissions.

AB002809 likely represents a unique uricase gene. Among
the 30 differences to D86929 in the coding region 7 are
1st position, 2 are 2nd position, and 21 are 3rd position
(p < 0.005). Position difference analysis also suggests that
L00353 represents a unique uricase gene. Comparison to
D86929 reveals six differences in the coding region, 1 is
1st position, 0 are 2nd position, and 5 are 3rd position (p
< 0.05). This is consistent with the reference citation [10].
X54365 is distinct from the others because it originates
from the antisense strand, also consistent with the origi-
nal report [12].

Cluster 9, the same for WS100 and UniGene, probably
represents three distinct uricase genes and a sequence that
is encoded from the antisense strand of a uricase gene.
WS200 was closest to being correct because it clustered the
six mRNA sequences that represent one gene while keep-
ing as singletons a second gene and antisense RNA. How-
ever, WS200 did include the third uricase gene as part of
the first genes cluster. See Figure 1.

Cluster 6a
Cluster 6a contains mRNA sequences encoding ascorbate
peroxidase. Pairwise sequence comparisons suggest two
distinct genes represented by three mRNA sequences each,
AB082930, AB082931, L10292 and AB082932,
AF127804, U56634. Among the first group, AB082930
and AB082931 exhibit 1 base difference and 1 base gap in
the coding region, but are identical in both the 5' and 3'

Table 1: Cluster Size Profiles. The number of clusters of each size 
are given for all three methods.

Cluster size WS100 WS200 UniGene

1 519 602 581
2 76 60 61
3 20 15 18
4 7 3 5
5 4 4 4
6 2 0 1
7 0 2 0
8 1 1 1
9 1 0 1
12 1 0 0
16 0 1 0
17 1 0 1

Total 632 688 673
Total >1 (NS) 113 86 92
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Relative Distribution of All Non-Singleton ClustersFigure 1
Relative Distribution of All Non-Singleton Clusters. Clusters are arranged in descending size according to WS100. Cor-
responding WS200 clusters are shown in the second column. Gray shaded clusters indicate UniGene agreement. Clusters des-
ignations correspond to cluster size with letters distinquishing between clusters of the same size, e.g., 6a and 6b refer to 
separate clusters of size 6. An s indicates a singleton (cluster of size one).
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UTR, while AB082931 and L10292 are identical. Similarly
among the second group, AF127804 and AB082932
exhibit 99% identity where 1 difference is 1st position, 1
is 2nd, 4 are 3rd (p > 0.05, 0.299) and AB082932,
U56634 are 99% identical with the only difference being
a GC in one is CG in the other. Both 5' and 3' UTR
sequences are identical. Conversely, upon comparison
between the two groups, AF127804 and L10292 for exam-
ple, the differences distribute as 7 in the 1st position, 6 in
the 2nd, and 28 in the 3rd (p < 0.005). The literature cited
for these sequences [13,14] confirm the above analysis
except that the annotation for AF127804 denotes the gene
name for the other group.

The six sequences in the WS100 Cluster 6a likely represent
two separate ascorbate peroxidase genes. Both WS200 and
UniGene had the sequences separated consistent with this
conclusion. See Figure 1.

Cluster 6b
Cluster 6b contains mRNA sequences encoding glycinin
storage protein subunits. As is the case with conglycinin
above, sequence similarities are shared between the subu-
nit classes. However, pairwise comparisons did separate
the mRNA sequences into two groups of three, AB113350,
D00216, X02806, and AB113349, M36686, X02985.
Within the first group, AB113350 and X02806 exhibit 1
difference in the 1st position, 1 in the 2nd, and 3 in the
3rd (p > 0.05, 0.473), while AB113350 and D00216 have
only 1 difference in the 1639 base coding region and iden-
tical 3'UTR. Similarly within the second group, X02985
and AB113349 show differences distributed as 1 in the 1st
position, 3 in the 2nd, and 3 in the 3rd (p > 0.05, 0.585),
none in 3' UTR, while M36686 and AB113349 are identi-
cal. Conversely, between group comparison, AB113350
and AB113349 for example, exhibits 3 gaps in the coding
region that maintain the reading frame. A review of the lit-
erature cited for these sequences [15-18] also indicates
that these mRNA sequences represent two separate classes
of glycinin subunit genes.

Cluster 12Figure 2
Cluster 12. Distribution of the 13 mRNA sequences of 
which 12 are WS100 Cluster 12. See Figure 1 legend for 
explanation of cluster designations. The right column corre-
sponds to sequence accession numbers.
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The six sequences in the WS100 Cluster 6b probably rep-
resent two separate glycinin seed storage protein subunit
genes or two separate multigene families. Both WS200
and UniGene had the sequences separated consistent with
this conclusion. See Figure 1.

Cluster 5e
Cluster 5e contains mRNA sequences encoding lipoxyge-
nase. Sequence comparisons suggest three distinct genes,
the first represented by three, S76064, U36192, U50075,
the second by two, S76065, U04785, and the third by one
mRNA, U36191. Among the first group, S76064 and
U36192 only overlap by 113 bases of the 340 and exhibit
4 base differences, 3 of which are TTT vs AAA, while
U50075 and U36192 are 100% identical over 43 amino
acids of the coding region and 200 bases of the 3' UTR.
The second group, S76065 and U04785, are 100% identi-
cal. The third gene, U36191 when compared to a member
of the first group, S76064, exhibits differences distributed
as 11 in the 1st position, 4 in the 2nd, and 17 in the 3rd
(p < 0.05). Likewise, when U36191 is aligned with a
member of the second group, U04785, the differences dis-
tribute as 44 in the 1st position, 15 in the 2nd, and 70 in
the 3rd (p < 0.005). Lastly, the comparison between mem-
bers of group one and two, S76064 and S76065, respec-
tively, the differences are distributed as 3 in the 1st, 1 in
the 2nd, and 10 in the 3rd (p < 0.01). The literature cited
for these sequences [19-21] also indicates a similar group-
ing of distinct lipoxygenase genes.

The five mRNA sequences in Cluster 5e of UniGene likely
represent two distinct lipoxygenase genes. WS100 cor-
rectly separated the two groups but incorrectly included a
third lipoxygenase gene in one of the clusters. UniGene
had correctly kept that gene sequence separate as a single-
ton. WS200 was less accurate in keeping as a singleton an
mRNA that should cluster with two others. See Figure 3.

Cluster 5f
Cluster 5f contains mRNA sequences encoding a ribulose-
1, 5-bisphosphate carboxylase small subunit. Pairwise
comparisons among the five, AF303939, AF303940,
AF303941, U39567, X54216, indicate that all represent
the same gene. The literature is limited [22] as three of the
sequences are unpublished direct submissions, but one
paper suggests that two of the sequences represent homol-
ogous members of the SSU gene family.

All members of WS100 Cluster 5f represent small subunit
genes of ribulose-1, 5-bisphosphate carboxylase, but
whether or not they originate from the same gene or very
similar paralogs is not clear. The authors [22] note that
similarity in expression patterns illustrates coordinate
evolution and supports the suggestion that gene conver-
sion may homogenize the coding regions of these genes.

The SSU genes may represent a good example of the need
for clustering at multiple stringencies. See Figure 1.

Cluster 4c
Cluster 4c contains mRNA sequences encoding the ferritin
iron storage protein. Sequence comparisons suggest two
genes, one represented by three, M58336, M64337,
M72894, and the other by one mRNA, AY049920. Among
the first group, M72894 and M64337 show a single 3rd
position difference among 830 bases of coding region and
only 1 difference in 210 bases of the 3' UTR, while
M58336 and M64337 show a single 2nd position differ-
ence among 566 bases that occurs at a 5 consecutive same-
base segment, a common sequencing error. Conversely,
alignment of the sequence representing the second gene,
AY049920 with a member of the first group, M64337
exhibits the characteristic difference distribution indicat-
ing distinct genes, 6 in the 1st, 6 in the 2nd, and 19 in the
3rd position (p < 0.005). A review of the literature cited
for these sequences [23,24] does not suggest any conclu-
sions regarding the relationship of these genes, therefore
the alignments stand as the only criterion to judge the
accuracy of the clustering.

Cluster 4c of WS100 and WS200 represent two distinct
genes of the ferritin iron storage protein. UniGene cor-
rectly clustered three of the sequences together while
keeping separate a singleton that represents the second
gene. See Figure 1.

Cluster 4e
Cluster 4e contains mRNA sequences encoding phos-
phoenolpyruvate carboxylase. Sequence analysis indicates
two distinct genes, one represented by three, D13998,
AB008541, AB008542, and the other by one mRNA,
AB008540. Pairwise comparisons among the members of
the first group indicate very few differences, whereas the
alignment of the unique mRNA, AB008540 with one
member of the first group, D13998, exhibited 9 differ-
ences in the 1st, 6 in the 2nd, and 42 in the 3rd position
over 2900 bases of coding region (p < 0.005). The litera-
ture cited for these sequences concurs with this relation-
ship among these genes [25,26].

Cluster 4e of WS100 and UniGene represents two distinct
genes of phosphoenolpyruvate carboxylase. Neither of the
three methods correctly separated the unique sequence
and WS200, likely as a result of short sequences, kept two
as singletons that should belong to the cluster. See Figure
1.

Cluster 4f
Cluster 4f contains mRNA sequences encoding omega-3-
fatty acid desaturase. Alignments indicate two distinct
genes each represented by two mRNA sequences. The first,
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AB105887, AY204710 show 0 differences in the 1st posi-
tion, 2 in the 2nd, and 4 in the 3rd (p > 0.05, 0.21). The
second, AB105886, AY204711 show 1 difference in the
1st, 0 in the 2nd, and 2 in the 3rd position (p > 0.05,
0.57). Conversely, the comparison between groups,
AY204711 and AY204710 for example, exhibited differ-
ences as 8 in the 1st position, 6 in the 2nd, and 32 in the
3rd (p < 0.005). All of these sequences are unpublished
direct submissions.

Cluster 4f of WS100 and UniGene represents two distinct
genes of omega-3-fatty acid desaturase. Only WS200 cor-
rectly distinguished between the sequences representing
separate genes. See Figure 1.

Cluster 4g
Cluster 4g contains mRNA sequences encoding phos-
phoenolpyruvate carboxylase kinase. Sequence compari-
sons suggest two distinct genes each represented by two
mRNA sequences. The first, AY144182, AY143660 show
only 1 difference over 825 bases of coding region. The sec-
ond, AY144184, AY373033 are 100% identical over 825
bases of coding region. However, the comparison
between groups, AY144182 and AY373033 for example,
show differences characteristic of divergent genes, 12 in
the 1st position, 5 in the 2nd, and 36 in the 3rd (p <
0.005). This conclusion is supported in the cited literature
[27,28].

Cluster 4g of WS100 represents two distinct genes of
phosphoenolpyruvate carboxylase kinase. Both WS200
and UniGene correctly distinguished between the
sequences representing separate genes. See Figure 1.

Cluster 4h
Cluster 4h contains mRNA sequences encoding urease.
Alignments suggest two distinct genes each represented by
two mRNA sequences. The first, AY230156, AJ276866
show only 1 difference over 2514 bases of coding region.
The second, AY230157, S69179 are show only 2 differ-
ences over 379 bases of coding region. However, the com-
parison between groups, AY230157 and AJ276866 for
example, show differences characteristic of divergent
genes, 46 in the 1st position, 31 in the 2nd, and 100 in the
3rd over 1740 bases of coding region (p < 0.005). This
conclusion is supported in the cited literature [29,30].

Cluster 4h of WS100 represents two distinct genes encod-
ing urease, one the ubiquitous urease and the other
embryo-specific. Only UniGene correctly distinguished
between the sequences representing these separate genes.
WS200 was further off the mark by including one of the
embryo-specific sequences in the ubiquitous cluster and
the other as a singleton. See Figure 4.

Cluster 4i
Cluster 4i contains mRNA sequences encoding glycinin
and conglycinin storage protein subunits. As previously
stated, sequence similarities that are shared between the
subunit classes make the type of sequence comparison
performed here inconclusive. However, it is clear from a
review of the literature cited for these sequences [6,31]
that two, X05652 and X02626 represent glycinin subunit
and the other two, J01296 and J01295 represent congly-
cinin subunits.

Cluster 4i of WS100 represents two separate types of seed
storage proteins glycinin and conglycinin. This is not sur-
prising since these proteins share some domain similari-
ties. It has been suggested that this reflects requirements
for construction, stability, or utilization of these proteins
[6]. WS200 comes closest to being correct by separating as
singletons the two sequences representing conglycinin
genes from a cluster containing the two glycinin mRNA
sequences. See Figure 5.

Type I and Type II Errors
UniGene was correct in 6 of 12 clusters, WS100 was cor-
rect in 2 of 12, and WS200 in 4 of 12. (Table 2). Among
the 12 clusters that exhibited differences (where a reason-
able estimate could be made regarding the validity of the
cluster either from sequence analysis or the literature) 6
were determined to be correct clusters by either WS100 or
WS200. Four of those were also correctly clustered by Uni-
Gene. Only 2 of the 12 was determined to be correctly
assigned by UniGene that was not correctly assigned by
either WS100 or WS200 and 4 others were determined to
be incorrectly clustered by all three methods. This suggests
that, although PECT may not be significantly more accu-
rate than UniGene, combining results from different strin-
gencies of clustering can provide the individual researcher
making use of clusters the option of determining which
stringency provides the best result for the gene or gene
family of interest.

Conclusion
Neither of the clustering methods described here can be
shown to provide results that clearly indicate that it is per-
forming the desired task of separating gene sequences into
clusters representing unique genes more accurately the
other. However, our results on clustering known
sequences (mRNAs) provide evidence that using different
stringencies or a hierarchical method of clustering should
produce results that are reliable for more genes. UniGene
clustered 6 of 12 correctly and PECT clustered 6 of 12 cor-
rectly when results for both stringencies are combined. In
addition, such a hierarchical method will provide individ-
ual researchers more information about sequence rela-
tionships within gene families, superfamilies or even
between functionally distinct genes. Patterns revealed by
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such analysis should provide significant insight into
genome evolution. In addition, the advantage of a fast
clustering algorithm such as PECT is the ability to repeat
the clustering runs with different criteria, or to cluster only
related libraries grouped together in different ways. Uni-
Gene takes months, is unchangeable except for updates,
and as shown in this study, is no more reliable than a fast
clustering algorithm. The next step is to apply PECT to the
entire EST database for soybean and assign these mRNA
clusters to the appropriate EST cluster to determine the
validity of clustering sequences that are shorter on average
and have greater error frequency. Additionally, automa-
tion of the analysis of clusters, specifically pairwise align-
ments and mismatch coding location, will allow the

generation of valid non-redundant gene sets for any spe-
cies represented in the database.

Methods
Generating Clusters
Accession numbers of the 837 soybean mRNA sequences
from a previous UniGene Glycine max build were extracted
and used as the starting dataset. The dataset was used
twice to generate gene-specific clusters at two different
sequence matching stringencies, 100% match over win-
dow size 100 (WS100) and 100% match over window size
200 (WS200). WS100 represents the lower stringency cri-
terion and WS200 the higher.

Analysis of Clusters
All non-singleton clusters generated from both stringen-
cies were compared to one another as well as to UniGene.
The largest clusters (greater than 3 members) that exhibit
differences between the three methods were analyzed by
pairwise alignment of sequences with accompanying
amino acid sequence using bl2seq [32]. Each mismatch
between mRNA sequences that occurred in the coding
region was scored for its codon position. The assumption
was made that differences as a result of error should be
distributed evenly among the first second and third posi-
tions, whereas differences as a result of divergence (indi-
cating a paralogous relationship) should be more
frequent in the third degenerate position of the codon. X2

was used to provide a probability that the differences rep-
resented a uniform distribution among the codon posi-
tions. The references cited for the mRNA sequences were
reviewed to determine the conclusions of the submitting
authors, when available. Together these two analyses were
used to make a judgement as to the correctness of each
mRNA sequence in its cluster.

Assignment of Type I and Type II Error
For each cluster examined the type of error made by each
stringency and UniGene was recorded. Type I and Type II
errors are revised from the convention of Burke et al.[33]
to be consistent with statistical hypothesis testing. Briefly,
the null hypothesis is that any two mRNA sequences rep-
resent distinct genes and belong in separate clusters. A
type I error (rejecting a true null) would put two mRNA
sequences in the same cluster when they actually represent
different genes (overrclustering). A type II error (failing to
reject a false null) would keep two mRNA sequences in
separate clusters when they actually represent the same
gene (underclustering).
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drafted the manuscript. FE participated in the conception,

Table 2: Type I and Type II Errors. Type I and Type II errors are 
tallied for each of clusters size 4 or greater that exhibited 
differences among the three methods.

Clusters Error Type

WS100 WS200 WS100 WS200 UniGene

12 7a
5d

Figure 2 type I
type II

type I
type II

4 type I
type II

9 7b
s
s

3 type I type II 3 type I

6b 3a
3b

type I none none

6a 3i
3j

type I none none

5f 4a
s

none type II type II

3o
3aa

3o
2ggg+s

Figure 3 type I type I
type II

type I

4i 2hhh
s
s

Figure 4 type I type I type I
type II

4h 3m
s

Figure 5 type I type I
type II

none

4g 2v
2w

type I none none

4f 2yy
2zz

type I none type I

4e 2xx
s
s

none type I
2 type II

none

4c 4c 3s+s type I type I none
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