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Abstract
Background: Post-translational modification by Small Ubiquitin-like Modifiers (SUMO) has been
implicated in protein targeting, in the maintenance of genomic integrity and in transcriptional
control. But the specific molecular effects of SUMO modification on many target proteins remain
to be elucidated. Recent findings point at the importance of SUMO-mediated histone NAD-
dependent deacetylase (HDAC) recruitment in transcriptional regulation.

Results: We describe the RENi family of SUMO-like domain proteins (SDP) with the unique
feature of typically containing two carboxy-terminal SUMO-like domains. Using sequence analytic
evidence, we collect family members from animals, fungi and plants, most prominent being yeast
Rad60, Esc2 and mouse NIP45 http://mendel.imp.univie.ac.at/SEQUENCES/reni/. Different
proteins of the novel family are known to interact directly with histone NAD-dependent
deacetylases (HDACs), structural maintenance of chromosomes (SMC) proteins, and transcription
factors. In particular, the highly non-trivial designation of the first of the two successive SUMO-
domains in non-plant RENi provides a rationale for previously published functionally impaired
mutant variants.

Conclusions: Till now, SUMO-like proteins have been studied exclusively in the context of their
covalent conjugation to target proteins. Here, we present the exciting possibility that SUMO
domain proteins, similarly to ubiquitin modifiers, have also evolved in a second line – namely as
multi-domain proteins that are non-covalently attached to their target proteins. We suggest that
the SUMO stable fusion proteins of the RENi family, which we introduce in this work, might mimic
SUMO and share its interaction motifs (in analogy to the way that ubiquitin-like domains mimic
ubiquitin). This presumption is supported by parallels in the spectrum of modified or bound
proteins e.g. transcription factors and chromatin-associated proteins and in the recruitment of
HDAC-activity.
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Background
Among ubiquitin-related proteins, containing at least one
domain with a ubiquitin-like fold, one can distinguish
ubiquitin-like modifiers (UBLs) and ubiquitin domain
proteins (UDPs) [1].

UBLs can be covalently attached to target proteins analo-
gously to ubiquitin. Unlike ubiquitin, UBLs mostly do not
directly target proteins for degradation [2], although func-
tional links can exist. One of the most heavily researched
single domain UBLs, the small ubiquitin-related modifier
(SUMO), is known to act on transcription factors, chro-
matin associated proteins, nuclear body proteins and
septins [2].

In contrast to UBLs, UDPs are not conjugated to other
proteins and lack the C-terminal double glycine motif
characteristic for ubiquitin and ubiquitin-like modifiers.
They are a heterogeneous class of usually multi-domain
proteins, which are unrelated outside of their ubiquitin-
like domain [1]. In several cases, it has been demonstrated
that the ubiquitin-domain within those proteins likely
fulfills its cellular role by functionally mimicking ubiqui-
tination [3,4].

The biological relevance of non-conjugatable multi-
domain proteins having a domain with clear relationship
to UBLs like SUMO, rather than ubiquitin, is yet
unknown. Here, we present a detailed sequence analysis
of a family of SUMO-like domain proteins (SDPs) con-
taining one or two SUMO-like domains. Members of the
proposed RENi family act as factors in transcriptional reg-
ulation, chromatin silencing and genomic stability.

Results
Sequence architecture of Drosophila melanogaster 
CG4449
During the study of the predicted nuclear subset of the
Drosophila proteome, we encountered the unknown 424
amino acids long protein CG4449 (NP_651134). Initial
analysis of its sequence complexity shows that the disor-
dered N-terminal half of the protein is followed by a likely
globular segment (predicted using Pdisorder by Softberry,
Inc). Indeed, a compositionally biased, polar low-com-
plexity region (LCR) spans almost the entire N-terminal
220 amino acids (AA) as reported by CAST (region 47–
165, lysine-rich) [5] and SEG (regions 46–77 and 133–
178, parameters 25/3.0/3.3) [6].

The C-terminal half of CG4449 turns out to contain an
internally repeated segment identifiable with RADAR [7]
(region 270–309 matching 368–407). In an attempt to
confirm this repeat, we queried the protein against the
conserved domain database using RPS-BLAST [8].
Thereby, we could define a similarity to SUMO-like

domains overlapping with the second repeat-element (see
Table 1 for details), while no significant hits emerged for
the first of the repeat-constituents. Using profile-profile
comparison, however, segment 220–325 is shown to pos-
sess a distant, yet significant similarity to SUMO
sequences and, therefore, to share the SUMO fold (Table
1).

In conclusion, we found that the Drosophila protein
CG4449 (NP_651134) has a tripartite architecture: with a
N-terminal LCR followed by two globular domains with a
SUMO-like fold (termed SD1 and SD2). Whereas SD2's
similarity to single domain SUMO-like sequences can be
easily detected with BLAST tools, the identification of SD1
is non-trivial (Table 1). For both SD1 and SD2, a carboxy-
terminal double-glycine motif, as it is known and neces-
sary for the covalent attachment of SUMO proteins, is
missing. This finding is remarkable as SUMO proteins are
discussed in the scientific community solely as polypep-
tides that become covalently bonded to various targets
[9]. Here, we present cases of non-conjugatable poly-
SUMO fusion protein.

Collecting animal NIP45-related proteins characterized by 
two SUMO-like domains
A PSI-BLAST search started with the globular C-terminal
half of CG4449 (220–424) including the two SUMO-like
domains, collects a family of animal proteins with the
same tripartite organization in C. briggsae (CAE71155.1, E
= 0.001 round 2), H. sapiens (NP_116204.2, E = 0.003
round 2), M. musculus (NP_035030, E = 1e-39 round 3)
and C. elegans (NP_497960, E = 2e-12 round 3). All these
proteins contain a LCR at the N-terminus followed by two
SUMO-like domains, the first of which has mostly
diverged away beyond recognition thresholds using tradi-
tional sequence-profile searches (Table 1). The human
and the mouse homologs correspond to the studied
nuclear factor NIP45 (NF-AT interacting protein) [10]. All
sequences and original database search results can be
found at the RENi homepage [11].

Distant NIP45 homologs in fungi, other lower eukaryotes 
and plants
Indications on the existence of NIP45 homologs in lower eukaryotes 
and plants
A multiple sequence alignment of the globular C-terminal
half of D. melanogaster CG4449 (220–424) and the corre-
sponding sequences derived from A. gambie, X. laevis, C.
elegans, C. briggsae, M. musculus and H. sapiens (Figure 1)
was used to generate a Hidden Markov Model (HMM; in
the global alignment mode). The protein family was
enlarged using the HMMER2 tool [12] in searches against
single model organism proteomes. These searches
retrieved as best hits in the respective proteomes the likely
homologs in D. discoideum (Sanger proteome identifier-
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JC3V1_0C0008_11033, 0.00059) A. thaliana
(At1g68185.1, NP_564924.1, E = 0.00076), O. sativa
(NP_917594.1, E = 0.0019), S. pombe (NP_595995.1, E =
0.00073), S. cerevisiae (NP_010650.1, E = 0.11), Y. lipolyt-
ica (CAG82446, E = 0.00087), C. glabrata (CAG57776, E
= 0.52) and in other recently published fungi proteomes
[13]. The S. cerevisiae and S. pombe homologs correspond
to the studied Rad60 and Esc2 proteins, respectively
[14,15]; the remaining proteins are uncharacterized.

These HMM-search results suggest the most likely plant
and lower eukaryote orthologues to the animal NIP45-
like proteins. For establishing the orthology relationship,
these initial results need to be confirmed by reciprocal
searches independently performed for fungal and plant
proteins. Further below, we present this evidence for the
homology between the C-terminal part of the proteins
found in the various taxonomic groups.

Confirming fungal family members in reciprocal searches
The set of fungal RENi proteins can be autonomously col-
lected using a BLASTP search started with the C. glabrata
representative (CAG57776) and retrieving the best and
significant hits in the proteomes of S. cerevisiae, S. pombe,
K. lactis, C. albicans, Y. lipolytica, D. hansenii, A. nidulans
[11]. The domain architecture of these fungal homologs is
likely also tripartite (Figure 1, Table 1). It differs from the
animal representatives by a longer sequence separating
the two SUMO-like domains (many dozens of residues
compared with ~10 in the case of animal proteins), which
is typically of highly helical content (determined using
NPL consensus secondary structure prediction [16]). A
HMM was generated from a multiple sequence alignment
of the SUMO-domain containing C-terminal half of the
listed fungal homologs, where gap only columns replaced
the compositional biased helical region between the two
SUMO domains. A search with this HMM retrieved as best

Table 1: Representative search hits supporting the SUMO relationship of globular segments in RENi family members. RENi family 
members (column 1) have been initially split into likely globular segments (column 2). These sequences have been submitted to 
sequence-based domain and fold-recognition methods (RPS-BLAST [8], FFAS03 [37], column 3) as well as a structure-based similarity 
method (INBGU [41]) (column 4). For FFAS03 scores below -9.5 are considered significant, for the Fischer fold prediction method 
(INBGU) it is a score of 12 and above. The following database identifiers correspond to the tabulated domains: COG5227 for the 
SMT3 domain in COG, smart00213 for UBQ (ubiquitin and ubiquitin-like) in SMART. The mentioned PDB identifiers represent 
structures of the following molecules: 1A5R Sumo-1 in human, 1L2NA Smt3, the SUMO homolog in budding yeast, 1EUVB Smt3 in 
budding yeast. The sequence-only similarity methods can be ordered with increasing sensitivity as: (i) RPS-BLAST, (ii) FFAS03 against 
a sequence database (COG), and (iii) FFAS03 against a structure database (SCOP). Only the significant hit with the lowest sensitivity 
method is reported for each sequence.

Species/Accession Segment Method/DB/Hit/E-value Hit/Score

D. melanogaster/ NP_651134 220–325 FFAS03/COG/SMT3/-10.400 1A5R/27.1
1L2NA/13.6

325–424 RPS-BLAST/COG/SMT3/9e-04 1L2NA/42.4
1A5R/24.4

S. pombe/ NP_595995 200–315 FFAS03/scop165/1euvb/-11.4 1L2NA/26.4
1A5R/19.7

315–406 FFAS03/COG/SMT3/-16.3 1A5R/16.1
1L2NA/15.2

S. cerevisiae/ NP_010650 330–456 FFAS03/COG/SMT3/-36.6 1A5R/89.7
1L2NA/35.0

C. elegans/ NP_497960 115–225 FFAS03/COG/SMT3/-11.8 1A5R/27.2
225–328 FFAS03/COG/SMT3/-15.3 1A5R/38.5

1L2NA/17.6
M. musculus/ NP_035030 220–320 RPS-BLAST/SMART/UBQ/3e-05

FFAS03/COG/SMT3/-11
1L2NA/24.3
1A5R/19.9

320–412 RPS-BLAST/COG/SMT3/1e-04 1L2NA/89.4
1A5R/71.6

A. nidulans/ EAA62889 160–300 FFAS03/COG/SMT3/-8.3 1A5R/22.5
300–404 RPS-BLAST/SMART/UBQ/3e-04

FFAS03/COG/SMT3/-39.100
1A5R/87.4
1L2NA/30.6

A thaliana/ NP_564924 130–213 RPS-BLAST/COG/SMT3/4e-06 1L2NA/119.1
1A5R/51.4

D discoideus/ 
JC3V1_0C0008_11033

230–340 RPS-BLAST/COG/SMT3/0.001 1A5R/141.9
1L2NA/57.0

340–449 FFAS03/COG/SMT3/-33.600 1A5R/51.3
1L2NA/39.4
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hits in the respective proteomes the RENi proteins in M.
musculus (NP_035030, E = 0.005), A. thaliana
(NP_564924, E = 0.016), C. elegans (NP_497960, E =
0.0012).

Confirming plant family members in reciprocal searches
Potential plant RENi homologs, derived in a full-length
TBLASTN search with A. thaliana (At1g68185.1,
NP_564924.1) against the TIGR Gene indices of barley,
maize, rice, potato and soybean [17], show a length of
210–240 AA and are thus around 100 AA shorter than the

shortest animal homolog from worm. The domain organ-
ization seems also to be distinct. A 100 AA N-terminal,
very polar region (with two conserved motifs E [ED]LEP-
LFDY [SR]RVQP and DWLPPPP found with MEME [18])
is followed by ~40 AA with predicted strong helical pref-
erence (using NPL [16]) and a clear C-terminal SUMO-
like domain (Table 1). There are no indications for
another SUMO-like domain at the N-terminal side of the
~40 AA helical region. Further confirmation of the rela-
tionship between the listed RENi proteins of the
Viridiplantae and Fungi/Metazoan group comes from the

Multiple Sequence Alignment of Rad60-Esc2-NIP45 (RENi) membersFigure 1
Multiple Sequence Alignment of Rad60-Esc2-NIP45 (RENi) members. The alignment is CLUSTAL colored [44]. The 
organism from which a sequence has been derived is indicated by a 2 letter code preceding the database accession numbers: 
An Aspergillus nidulans, Ag Anopheles gambiae, At Arabidopsis thaliana, Ce Caenorhabditis elegans, Dd Dictyostelium discoideum, Dm 
Drosophila melanogaster, Gz Gibberella zeae, Hs Homo sapiens, Mm Mus musculus, Os Oryza sativa, Sc Saccharomyces cerevisiae, Sp 
Schizosaccharomyces pombe, Xl Xenopus laevis, Zm Zea mays. All accession numbers can be found in the NCBI non-redundant 
database, except 1) the ones of Xl, Zm and Os, which correspond to the TIGR Contig identifiers from which a presumptive 
translation was derived 2) the Dd protein which is included in the Sanger protein set with the accession JC3V1_0C0008_11033 
3) the Ag protein was derived using FGENESH on a segment from Anopheles gambiae str. PEST chromosome 2L (accession 
AAAB01008810) 4) IL2N, 1A5R are entries from the PDB. The two alignment blocks correspond to the two distinct SUMO-
like domains in RENi proteins. Only the second block includes plant representatives, which seem to miss the first SUMO-like 
domain. The SUMO sequences IL2N, 1A5R have been aligned to both blocks and the secondary structure elements below the 
alignment are derived from the PDBsum entries for both of these. Triangles mark positions reported to be involved in main-
taining the ubiquitin-fold of human SUMO-1 [21]. These are also highlighted in the structural representation in Figure 2. Black 
encycled red-colored residues in NP_595995 point at the mutations in the rad60-1 (K263E) [15] and rad60-3 (F272V) [20] 
variants.

PAPELTMKVR---RGGKLFRINLGMWD------PLEKVAQSMASQLNVD--------PSQILLLLGDEELNPSHTPHSMNLTVADIIDCVVV-
TPRLFPLKIR---CRADLVRLPLRMSE------PLQSVVDHMATHLGVS--------PSRILLLFGETELSPTATPRTLKLGVADIIDCVVL-
SSRLFTLKIR---CRADLVRLPVRMSE------PLQNVVDHMANHLGVS--------PNRILLLFGESELSPTATPSTLKLGVADIIDCVVL-
NFPVTVVILD---CESHGNDMKSRHDIF--LESTFSEIRRIYATKWGCP--------VSCVVFSHNGKTIDTYTTPQSLGWRPMTLPHPLIE-
ENYEMRIKIK---WGRGIETFVHRRYQ------KFEDIFNQLAAKESAD--------RACIFLNLDDRIVYASDTPDSIDYKPHQFIAGRIL-
DNPTIEVALS---WLGEIQIYKLRQHQ------KFKHLFKELASRNGID--------ENDITVDMYYNFVGPEDTPHSIGLKSFHTLTGHPT-
PNSNISLPRD----WEAPLFFKVKSNQ------QFRRVRIAYSERKKVD----------NVVLVFQNQRLWDYGTPKGAGMLKVDTRLVVHA-
DDTVVHILITSEIANTKPLVIQRKMSQ------SLKEVRLAWFARQDLP-----KDLQPTVFLTWKGRRLFDVTTCKSLNISAYTNETSPFD-
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KKEVISVMITSTIPGSGILMAKFLFDK------QLRIARDAWVKHQQKK---GLDIKPDDIILTWRRNKLYNTSTLTGLGIRPSGNGKVEAD-
DPVPIFIKCT---GEETQKFIFYYDT-------PIQKLVDLYCSQKNLD--------VNTAQFKLYGLMLDSSKTPRELQLLDDDTLEVGIK-
PETHINLKVS---DGSSEIFFKIKKTT------PLRRLMEAFAKRQGKE--------MDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHRE

Xl Tc190086
Hs NP_116204
Mm NP_035030
Ce NP_497960
Ag FGENESH
Dm NP_651134
Sp NP_595995
An EAA62889
Sc NP_010650
Gz EAA68472
Dd Sanger
1L2N
1A5R EGEYIKLKVIG--QDSSEIHFKVKMTT------HLKKLKESYCQRQGVP--------MNSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQE
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TSQQLQLRVQGKEKHQTLEVSLSRDSPLKTLMSHYEEAMGLSG-------RKLSFFFDGTKLSGR-ELPADLGMESGDLIEVWG
TSQELRLRVQGKEKHQMLEISLSPDSPLKVLMSHYEEAMGLSG-------HKLSFFFDGTKLSGK-ELPADLGLESGDLIEVWG
SPDSFTIKVLLASRRKPVQVEAAKDTTIQEILQKVIDAFVEDKEENIPSIESMKVVFDNERIKDVNITCEQLDLEDDDCIEVYF
NSNMITLKVQMEKRKQPLRLQIDKNQTMSVLVIKCAEELKCEP-------KDIRLYFDGELVGNN-DKPEDLDLEGDEILDIRFVK
KPKKFQVKVQADKWKHPLVIPMKKTDNFKIIFIKCAEELNCDP-------RTIKLFFDGDLLDPN-DTPNNQDMEGNEVIDLKIKA
TCKLITLLLRS-SKSEDLRLSIPVDFTVKDLIKRYCTEVKISF------HERIRLEFEGEWLDPN-DQVQSTELEDEDQVSVVLD
AKNEIILKCPG---HDDFKIQIPLTTTISQVIGAFREARSISP------GLVVYLAFDGDRLDPQ-SSLEDNEITDGDLVDVLIRQEF
MEEVMRIALMG-QDNKKIYVHVRRSTPFSKIAEYYRIQKQLPQ------KTRVKLLFDHDELDMN-ECIADQDMEDEDMVDVIID
EREKFIIMLKG-RDIEALECKVMPETTVDTLIAVFRKQRQVGS------DKEVSLWWDGDRLEEH-VEMEQAEIEEHDTIEVHVQ
GTPKVFLQVRY--ENNVHKFRIGMADPFSKLVTALTKKINTPI----PDGKKIVLKFDGVILNPN-TTPEDEDMEDEFLIDAFLK
PETHINLKVS--DGSSEIFFKIKKTTPLRRLMEAFAKRQGKEM-------DSLRFLYDGIRIQAD-QTPEDLDMEDNDIIEAHREQIGGATY
EGEYIKLKVIG-QDSSEIHFKVKMTTHLKKLKESYCQRQGVPM-------NSLRFLFEGQRIADN-HTPKELGMEEEDVIEVYQEQTGGHSTV
DRAKIVITIQ--DKDGQKTLRVFADEKFERVIKLYTDKAKLDP-------QNLVFIFDGDKIDPS-TTPSELGMEDHDMIEVHTKKT
AREKIVISIQ--DKDGQQQMRVYKDEKFDKLLKVYAKKAKLNP-------SDLSFVFDGEKINPS-STPQDLDLEDEDMIEVRRKQS
AREKVVVTVQ--DKAGHHQFRLYKDEKFGKLFRAYAKKVNLSV-------ADLTFAFDGDKVDAE-STPEDLGLEDEDMVEVLHKTR
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analysis of the reciprocal genomic best hits of A. thaliana
in Y. lipolytica (At vs Yl 1e-07, Yl vs At 6e-04) and H. sapiens
proteomes (At vs Hs 3e-05, Hs vs At 8e-05) [11].

Definition of the Rad60-Esc2-NIP45 (RENi) protein family
We propose to name the collected group of protein
sequences the RENi-family after its most studied members
Rad60, Esc2 and NIP45. All representatives have a similar
sequence architecture involving a N-terminal low
complexity region with many polar and (positively)
charged residues and a C-terminal globular part with one
(plant proteins) or two (all others) SUMO-like domains.

The use of a model representing the complete globular
region of RENi proteins was essential for the successful
collection of the family. A global HMM spanning the SD1
and SD2 domains tests for homology in the whole globu-
lar part and, correspondingly, directly collects the RENi
family. In contrast, when using the C-terminal half of var-
ious RENi family members as query sequence in PSI-
BLAST [19], the searches are invaded by SUMO proteins
(hitting only the segment of SD2) before the RENi family
can be collected. This means that the SD2 domain

sequence segments of the RENi group and the family of
single-domain SUMO proteins are not well separated in
sequence space (Figure 3). For this reason, the similarity
of NIP45, Esc2 and Rad60 could previously only been
defined transitively via the similarity of their SD2 segment
to SUMO proteins and their similar length [20].

Discussion
The SUMO-like domains in proteins of the Rad60-Esc2-
NIP45 (RENi) family
While RENi proteins of the fungal, metazoan and myceto-
zoan taxa contain two C-terminal SUMO-like domains
(SD1 and SD2), only the second one can be clearly
defined in plant representatives (Table 1, Figure 4). This
very C-terminal SD2 domain, shares several features dis-
criminating SUMO proteins from other ubiquitin-like
modifiers, as for example the large negative charged clus-
ter, seen in the alignment 5–15 residues from the very C-
terminus (Figure 1). The negative surface patch formed by
these residues has been suggested to shape a SUMO-typi-
cal interaction surface [21]. RENi proteins lack conserva-
tion of the carboxy-terminal double-glycine motif
required for covalent attachment of SUMO to its sub-

Graph representation of pair-wise sequence similarities for known ubiquitin-like domains plus SD1 and SD2 domainsFigure 3
Graph representation of pair-wise sequence similarities for known ubiquitin-like domains plus SD1 and SD2 
domains. SD1 and SD2 domains cluster with SUMO proteins. The graph was generated using CLANS [22] and shows all pair-
wise interactions based on HSP P-values calculated using all-against-all BLASTP. The sequence file used as an input is available 
on the homepage [11]. Analysis of a more extensive assembly of ubiquitin-fold proteins [45] leads to the same conclusion, but 
a less well readable graph (not shown). AGP8 – autophagy 8 like proteins, AGP12 – autophagy 12 like proteins, URM1 – ubiq-
uitin related modifier 1, UBP6 - Ubiquitin-specific processing protease 6, RUB1 – Related to ubiquitin 1.
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UBP6

ParkinRAD23
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strates. Thus, they are likely linear non-cleavable SUMO
fusions, which cannot be conjugated to target proteins,
and have to be classified as UDPs.

The SD1 SUMO-like domain contained in fungi, metazoa
and mycetozoa, has sequentially diverged away from
SUMO proteins, but structural prediction suggest its
resemblance to SUMO (Table 1). The low sequence con-
servation of this domain does not understate a possible
functional conservation in that region, as it has been
shown that the structure rather than sequence is impor-
tant for the function of ubiquitin-like domains (UD). For
example, replacing the UD of the UDP Rad23 with ubiq-
uitin renders a functional protein variant [1].

Indications on the functional importance of the first
SUMO-like domain in RENi proteins come from the two
fungal representatives of the family. The fission yeast
rad60-1 (K263E) [15] and rad60-3 (F272V) [20] mutants,
which are defective in the rad60 function of double strand
break repair, contain a point-mutation within this first
SUMO-like domain (SD1). The sequence alignment to

human SUMO-1 (structure 1A5R, see Figure 1) indicates
that both mutations most likely affect structurally impor-
tant positions. They align to residues within human
SUMO-1 (1A5R) (Gln55 and Phe66) that have been listed
by Bayer et al. [21] among the contacts contributing with
parts of their side chain to the formation of the hydropho-
bic core of the fold (Figure 1 and Figure 2). In the budding
yeast Esc2p, the region containing the first SUMO-domain
SD1 together with a 80 AA low-complex N-terminal seg-
ment can be defined as a sufficient fragment supplying its
function in targeted silencing (residues 115–389 in
Esc2p) [14].

A graph representation of the pair-wise similarity relation-
ship for SD1 and SD2 sequences to other known ubiqui-
tin-like domains (Figure 3, created with the program
Clans [22]) illustrates that both are most closely related to
SUMO domains. From our analysis of sequence similar-
ity, we suggest that, at least, the very C-terminal SUMO-
like domain (SD2) in RENi proteins is able to mimic
SUMO and potentially shares its interaction partners. On

Domain architecture of RENi proteinsFigure 4
Domain architecture of RENi proteins. Red boxes: 
SUMO-related domains (labeled SD1 and SD2 respectively), 
black thick lines: low complexity regions. Species code and 
accession numbers as in Figure 1. Black waves indicate long 
helical regions (>20 AA), conserved among close relatives.
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Ribbon diagram of the human SUMO-1 protein structureFigure 2
Ribbon diagram of the human SUMO-1 protein 
structure [21]. The displayed region corresponds to the 
segment shown in the alignment in Figure 1. The core resi-
dues L24, I34, F36, F64, F66, I88 located in the beta-strands 
and L44, L47, K48, Y51, Q55 in the helix form critical con-
tacts in the helix-sheet interface of the SUMO core. These 
residues are shown in the stick mode (in purple). The high-
lighted Q55 and F66 residues align with residues mutated in 
the rad60-1 (K263E) [15] and rad60-3 (F272V) [20] variants 
(see also Figure 1).
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the other hand, the available experimental data confirms
the functional importance of the SUMO-like domain SD1
preceding it.

The N-terminal polar low complexity region in proteins of 
the Rad60-Esc2-NIP45 (RENi) family
The occurrence of a N-terminal low complexity region
with an excess of polar/charged residues is a characteristic
element of the RENi protein architecture. Most likely, this
is a conformationally flexible segment without inherent
structural preference [23,24]. The molecular function of
this region remains unknown. It should also be noted that
homology considerations are not applicable to such com-
positionally biased regions for functional prediction.

Boddy et al. [20] discussed the possible existence of coiled
coils in the domain architecture of Rad60, Esc2 and
NIP45. We found that the COILS [25] tool generates hits
only in few representatives of the RENi family. They are
positionally not conserved relative to the two SUMO-like
domains. It is known that the COILS tool produces a con-
siderable number of false-positive hits, especially in
regions with many polar/charged residues, for example, as
is likely the case for a glutamic-acid-rich part in Rad60.

Experimentally verified functions of RENi proteins
Functional information about RENi family members is
restricted to the fungal Esc2, Rad60 and the metazoan
NIP45 proteins. Here, unfortunately most of the existing
data relates to the full-length sequences. Nevertheless, the
quite divergent set of functions known for RENi proteins
shows considerable overlap with the established cellular
roles of SUMO proteins in genome replication and regu-
lation of gene expression.

The fission yeast Rad60 protein was shown to be essential
in DNA double-strand break repair, and to be critical also
for normal growth [15]. It physically and genetically inter-
acts with the Smc5/6 complex, a complex with a house-
keeping role in the genome [20]. Interestingly, the Smc5/
6 complex [26] also includes Nse2, a protein containing a
zf-MIZ domain commonly found in E3-like SUMO ligases
(Pfam-search E = 0.0074). In addition, Rad60 is known to
bind the replication checkpoint kinase Cds1 [20].

S. cerevisiae Esc2 (establishment of silent chromatin 2) is
involved in chromatin silencing via the recruitment or sta-
bilization of the Sir (silent information regulators) com-
plex [27,28]. It is known to interact with Sir2, a histone
NAD-dependent deacetylase (HDAC-class III) of the Sir
complex, which is well conserved from bacteria to human
[29] and, thus, might be an interaction partner of other
RENi proteins as well. Similarly to other HDACs, Sir2 pro-
teins are recruited to chromatin by DNA-bound factors
[30] and act by deacetylating histones [31] as well as tran-

scription factors such as p53 and forkhead transcription
factor (shown for hSIR2) [29,32]. With respect to a possi-
ble intersection with known Rad60 functions, it is inter-
esting that Sir2 is not only involved in heterochromatic
gene silencing and euchromatic repression [30] but also
in DNA double-strand break repair mediated by end-join-
ing [33].

NIP45, the one studied RENi in metazoa, has been
implied in gene regulation, where it needs its DNA-bind-
ing partner NFATp for this activity [34]. Strikingly, the
NFAT family member NFAT1 that interacts with NIP45
[10] was independently shown to be sumoylated [35].
NFAT1 sumoylation acts in nuclear retention, regulation
of transcriptional activity and recruitment to nuclear
SUMO-1 bodies [35]. This analysis might suggest a poten-
tial role for SUMO-like NIP45 in its complex with NFAT
proteins.

Possible functional role of the SUMO-like domains in RENi 
proteins
There is little experimental data on the importance of the
predicted SUMO-like domains in RENi proteins. Never-
theless, all listed functions of RENi proteins conform with
the known role of SUMO in transcriptional regulation
and the control of genome integrity [36]. In the context of
transcriptional repression, SUMO-modification has been
suggested to recruit class I and II HDACs to promoter sites.
Regarding genome stability, SUMOylation in DNA-repair
proteins is thought to target these to DNA damage foci.
The following parallels in RENi proteins become obvious:
1) HDAC recruitment has also been suggested for the fis-
sion yeast Esc2p [27,28]. 2) Mammalian NIP45 binds to
transcription factors that can also be modified by SUMO
[35]. 3) RENi and SUMO share a functional context in
double-strand break repair and transcriptional regulation.
On the basis of functional overlaps of SUMO and RENi
proteins, we can speculate that RENi proteins act as
SUMO stable fusion proteins "mimicking" SUMO and
that they might have common interaction partners.

Conclusions
In this report, we use sequence-analytical methods to infer
the homology relationships between RENi family mem-
bers and determine their tripartite (bipartite for plant
homologs) domain architecture. A N-terminal polar low-
complexity segment and two consecutive SUMO-like
domains in the C-terminal half characterize the function-
ally described fungal and metazoan RENi proteins. While
the more C-terminal SD2 is easily detectable, it is the par-
ticularly divergent SD1 that was shown in fungi to be
essential for the assayed molecular functions. Due to the
likely limited sequential- (as opposed to structural-)
requirements, this SUMO-like domain is difficult to detect
and has been missed in previous analyses of individual
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family members. The identification of the more N-termi-
nal SUMO-like domain SD1 helps rationalizing experi-
mental findings for mutant fungal RENi family members.

Methods
RPS-BLAST [8] and FFAS [37] algorithms were used to
search the COG [38], SCOP [39] and SMART databases
[40]. SEG [6] and CAST [5] were applied in identifying
low-complexity regions. Structural similarity was deter-
mined using the fold prediction methods FFAS [37] and
BIOINBGU [41]. T-coffee was used for initial multiple
sequence alignment [42]. CLANS [22] generated the pair-
wise similarity graph. VMD [43] was used for molecular
visualization and POV-ray for the follow-up image
rendering.
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