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Abstract
Background: Microarray data must be normalized because they suffer from multiple biases. We
have identified a source of spatial experimental variability that significantly affects data obtained
with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio)
and intensity across the array.

Results: Using the variogram, a geostatistical tool, we characterized the observed variability, called
here the spotting effect because it most probably arises during steps in the array printing
procedure.

Conclusions: The spotting effect is not appropriately corrected by current normalization
methods, even by those addressing spatial variability. Importantly, the spotting effect may alter
differential and clustering analysis.

Background
Microarray technology is probably the most successful in
the area of functional genomics. Biologists use it to ana-
lyze gene expression at the genome scale by comparing
the levels of messenger RNAs present in matched biologi-
cal samples, for example grown under contrasted condi-
tions or with different genetic configurations. Microarray
data can be used for differential analysis, to identify genes
whose expression strongly depends on the nature of the
samples, as well as for clustering analysis, to identify coex-
pressed genes. Microarray data show a high level of varia-
bility. Some of this variability is relevant because it
corresponds to the differential expression of genes. But,
unfortunately, a large portion results from undesirable
biases introduced during the many technical steps of the

experimental procedure. Several sources of experimental
noise have already been addressed, such as dye or fluoro-
phore, fluorescence level or print-tips and statistical meth-
ods have been proposed to normalize data according to
the related effects ([1,2]).

In this paper, we describe an experimental bias and use
statistical methods to investigate the distribution of the
signal across the microarray area. We use the variogram to
analyze spatial dissimilarities between spots on the slide.
Although spatial signal distribution across the slide has
already been studied ([3,4]), the bias we report here has
never before been explicitly characterized. We also present
two experiments that give clues about the nature of the
spotting effect, and finally we investigate the possibility to
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correct the effect and the efficiency of usual normalization
procedures to do it.

Analyzed datasets are produced by using glass arrays and
the two-color labeling strategy by which two conditions
are compared directly. In these experiments, mRNA sam-
ples are collected from case and reference cells. The two
corresponding cDNA samples are synthesized and labeled
with either the Cy3 (green) or Cy5 (red) fluorophore and
are mixed and hybridized simultaneously to a single
array. For each DNA feature (representing a gene) printed
and bound on the array, the fluorescence emitted by the
hybridized labeled cDNA is measured in the Cy3 and Cy5
channels. Both fluorescence measurements are compared
to define the relative gene expression in case versus refer-
ence cells. We designate these two values G and R and
define the signal and intensity associated with a given
gene as follows:

• the signal associated with a gene is the logarithm of the
ratio R/G. This quantity is used to identify differentially
expressed genes;

• the intensity is defined as the logarithm of the product
R × G (or log(R × G)/2).

The goal of normalization is to correct the signal for exper-
imental bias. Most existing normalization procedures do
not specifically correct for potential spatial effects. The few
that do only consider sources of variation that are
restricted locally. For instance, the print-tip effect acts as a
block effect, where the blocks are defined by the cluster of
spots printed on the array with the same print-tip ([1]).
The goal of this study is to determine whether normaliza-
tion that corrects for additional spatial effects is necessary
or whether current normalization models are sufficient.

Results
Our first test case is a self-hybridized microarray printed
with Arabidopsis thaliana PCR-amplified cDNA sequences.
In a self-hybridization microarray experiment, no gene
should appear to be differentially expressed (R/G = 1) and
the observed variability results from experimental effects.
Also, no particular spatial pattern of intensity or signal is
expected unless the DNA features are arranged on the
array with respect to their type (for instance, transcribed
versus intergenic regions as in [5]), which is not the case
for this Arabidopsis microarray. Self-hybridization experi-
ments have already proved to be efficient in detecting sys-
tematic biases ([1]). The Arabidopsis slide self-
hybridization results show two spatial effects (Figure 1).
First, the overall signal decreases from left to right. Sec-
ond, the signal is arranged in a periodic pattern: sets of
high signal vertical lines alternate with sets of low signal
vertical lines. For practical reasons, rows in blocks are rep-

resented as vertical lines in Figures 1 and 5. Intensity val-
ues are structured according to a similar periodic pattern
(data not shown).

To gain further insight in the data structure, we plotted the
signal and intensity variograms for the Arabidopsis slide
(figures 2 and 3), respectively. In both, the abscissa is the
distance d between two points expressed as the number of
rows that separates them, and the ordinate is the value of
the variogram for a given distance calculated with formula
(2) given in section Methods. When the observed value
for each spot is independent from the value of all other
spots at any given distance d, the variogram is a straight
horizontal line. When a correlation exists only between
closely neighboring spots (for example, because of local
distortions of the slide), the curve will start at low V(d)
values for small distances, and reach a higher horizontal
plateau because the correlation disappears as d increases.
Figures 2 and 3 highlight a different pattern: a given spot
in a given row is similar to spots that are N = 10, 20, 30...
rows apart. Spots that are 10 rows apart are particularly
similar, which can be explained because spots in row
N+10 are the duplicates of spots in row N within each
block. Yet, this duplication does not explain the resem-
blance between spots distant by multiples of 10 rows
higher than 10. This is probably due to the fact that all
similar DNA features N × 10 rows apart from each other
are printed in the same step (see Methods). The same pat-
tern can also be observed in columns (data not shown).
For convenience only, the observed periodic bias will be
called the "spotting effect".

Detection of the spotting effect in multiple microarray 
datasets
To determine whether the spotting effect is particular to
the presented Arabidopsis slide or a common experimental
bias in spotted microarrays, we studied twelve slides pro-
vided by three European or Canadian Laboratories and
five slides available in the public Stanford MicroArray
Database http://genome-www5.stanford.edu/MicroAr
ray/SMD/. Results are described for one slide from the first
set (Tor270, see Table 1) and two from the second
(Lieb3727, [5] and Zhu473, [6]) as representative samples
of our analysis. All slides were used for transcription pro-
file comparisons or clustering analysis, except for the Ara-
bidopsis slide that was a self-hybridization experiment and
the Lieb3727 slide that was a chromatin immunoprecipi-
tation microarray experiment (ChIP-chip). All were
printed with PCR amplicons using two different robots
(Microgrid II and ChipWriters) and according to various
spotting designs: 16, 32 or 48 print-tip heads, duplicate
prints in rows or columns, side by side, or far apart. Table
1 provides a summarized description of the microarrays
for which results are presented below.
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The variograms in Figure 4 show that the raw signal is
periodically structured according to rows in the different
microarray datasets (25, 24 and 21 rows per block), stress-
ing the prevalence of spotting effect biases and the need
for correction through normalization procedures. We also
computed the Type III Mean Squares (MSq) values associ-
ated with the print-tips, spotting and intensity-per-block
effects, according to the following model:

where Ys is the signal measured at spot s, and , βbl and
Ints the mean spotting row, block and intensity effects,
respectively. Spotting row effect means that only one
parameter is estimated for all the rows spotted at the same
time. For example, in the self-hybridized Arabidopsis slide
dataset the row effect is the same for the rows 1,11, ...,
231.

Type III MSq values measure variability due to a factor
after adjustment for the other factors in the model and
point out which effects need specific correction (see [7]).
In summary, for the 18 slides analyzed, MSq values of the
spotting effect were 10-fold lower to 4-fold higher than
intensity-per-block MSq values and were equal to 10-fold
higher than the print-tips effect MSq values. This result
confirms that the spotting effect is present in many exper-
iments and at least as important as other documented
sources of variability.

Nature of the spotting effect
The spotting effect could be explained in different ways.
The amount of material deposited on or bound to the
slide and the shape of DNA spots can be affected by mul-
tiple factors, such as the time during which the print-tips
are soaked in the DNA source microtiter plates, the time
during which the print-tips touch the slides, the speed at
which the print-tips move, the concentration and the
salinity of the DNA solutions, the temperature and the rel-
ative humidity of the arrayer printing cabinet, and the
physicochemical characteristics of the print-tips and of the

Spatial distribution of the signal for the self-hybridized Arabidopsis slideFigure 1
Spatial distribution of the signal for the self-hybridized Arabidopsis slide Each pixel represents the uncorrected log-
ratio of the median Cy5 (635 nm) and Cy3 (532 nm) channel fluorescence measurements, associated to a printed DNA fea-
ture. Background is not represented. The picture is not a re-plot of the original image captured during the scanning process. 
Labels correspond to the 9-quantiles of the signal distribution.
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Variogram of the signal by row for the Arabidopsis slide, before normalizationFigure 2
Variogram of the signal by row for the Arabidopsis slide, before normalization

Variogram of the intensity (log(R × G)) by row for the Arabidopsis slideFigure 3
Variogram of the intensity (log(R × G)) by row for the Arabidopsis slide
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glass surface. With most spotting robots, the printing of
high density arrays containing thousands of features lasts
for hours and subtle changes in spotting conditions may,
therefore, alter all these factors. For example, DNA solu-
tions may evaporate over time. In that regard, the spotting
effect may be related to the "time-of-print" effect reported
in [8].

Alternatively, the spotting effect may reflect DNA source
plate variations because all DNA features printed simulta-
neously originate from the same plate. To test this hypo-
thesis, we analyzed results from two microarray
experiments for which the plate effect was controlled. In
the first experiment, slides were printed with a unique
384-well-plate containing human cDNA amplicons and
hybridized to targets prepared from RNA isolated from
primary CD4+ T cell. In the second experiment, slides were
printed with oligonucleotides of 70 bases, synthesized
according to a different chemistry, and hybridized to
cDNA from various developmental stages of Plasmodium
falciparum. The oligonucleotides have the same length and
are resuspended in solutions showing a narrow concentra-
tion range. In both cases, the spotting effect was greatly
reduced (data not shown). This observation suggests that
the plate effect is a major component of the spotting
effect.

Spotting effect and normalization
Many authors have already pointed out the dangers of sys-
tematic normalization procedures. It is important to
determine the conditions in which the correction of the
spotting effect is appropriate and to verify that no biolog-
ical effect can be confounded with the experimental biases
corrected by the normalization. Taking into consideration
the association between spotting and plate effects
described above, three cases can be considered.

1. Probes are arranged according to their biological char-
acteristics, for instance intergenic regions separated from
transcription units, or genes expected to be differentially
expressed grouped together in particular plates. In this
case, it is impossible to distinguish between a significant
plate effect due to coexpression of genes belonging to the
same class, or due to technical artifacts.

2. Probes are arranged according to their chromosomal
order. Such structure may lead to significant differences
between plates if genes with similar expression profiles are
spatially clustered in the genome (silent neighboring
genes in heterochromatic regions, for example). Such spa-
tial clustering has been recently observed in several organ-
isms ([9,10]) and may affect many others.

3. Probes are randomly distributed among plates. Most
human array experiments verify this hypothesis. The
results presented in Section 4 prove that this configuration
does not cause the spotting effect to disappear.

A normalization procedure to correct the effect is advisa-
ble only in the last case because, in the first two, regardless
of the importance of the spotting bias, the correction
would unavoidably alter the biological information
contained in the data. Thus, the effect can considerably
affect the conclusions of experiments corresponding to
the first two cases. In particular, results of experiments
studying gene similarity or the relationship between rela-
tive chromosomal position and coexpression could be
essentially twisted, as also pointed out by Balazsi et al. in
[11].

Assuming that the experiment of interest corresponds to
the third case, one has to investigate whether a specific
normalization for the spotting effect is needed or if stand-
ard normalization is sufficient. We present here the conse-
quences of the normalization procedure proposed by
Yang et al. in [1], one of the most widely used methods in
the microarray community, on the self-hybridized Arabi-
dopsis cDNA array data. Only results obtained with back-
ground-corrected signals and the global loess
normalization procedure are presented. The analysis per-
formed on background-uncorrected data, or with the
print-tip loess normalization procedure gave similar
results.

The Arabidopsis slide signal normalized with the reference
procedure (residual) still shows a periodic pattern as illus-
trated in Figure 5 and calculated with the variogram (Fig-
ure 6). This observation indicates that the bias introduced
by the spotting effect is not fully corrected. According to

Table 1: Characteristics of the datasets studied

Lab. or Database Robot Print-tips Heads Cols × Rows/Block Nber of Rep.

Arabidopsis (URGV) (Microgrid II) 48 21 × 20 row N and N + 10
UHN Toronto (Tor270) ChipWriters 32 24 × 25 col N and N + 1

SMD Zhu473 ? 16 24 × 24 ?
SMD Lieb3727 ? 32 24 × 21 None
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our experience, other usual normalization procedures do
not perform an efficient correction of the spotting effect.

Because of the strong pattern observed in rows, the spot-
ting effect may be treated as row effect per block or as a

global row effect across the slide. Preliminary results sug-
gest that such models adequately correct the periodic spa-
tial bias described in various microarray datasets. Row
models are advantageous because they rely exclusively on
the geometrical information that is embedded in the data
and that is mandatory according to the "Minimum Infor-
mation About a Microarray Experiment" (MIAME)
guidelines. In contrast, plate origin information is very
rarely available and is difficult to integrate into statistical
analysis considering that successive technical steps usually
take place in multi-titer plates of different formats (e.g.
96-, 384- and 1536-well plates) during spotted microarray
DNA production.

Discussion
We have observed that transcription profiling datasets
obtained with spotted glass microarrays and the two-color
labeling strategy show a bias that leads to periodic pat-
terns according to rows and columns of the array grid.
These patterns affect the entire area and alter both signal
and intensity. We propose that such patterns result from
artifacts introduced during the DNA feature preparation
into microtiter plates or the slide printing procedure
because features spotted together yield the most similar
signals.

Color swaps are now routinely included in microarray
experimental designs to correct for labeling biases. They
consist in repeated hybridizations in which the case and
reference samples are labeled at least once with each of the
Cy3 and Cy5 fluorophores. Preliminary analyses indicate
that the spotting effect is reduced when raw data from
opposite color swap hybridizations are combined
(unpublished results). This observation is consistent with
the fact that the spotting effect depends on the position of
the spots on the slide and that the relative spot position
remains the same from slide to slide in most setups. We
suggest that the reduction of the spotting effect resulting
from the combination of raw opposite color datasets may
constitute additional justification for the inclusion of
color swaps in microarray experiments.

We have shown that the variogram is an efficient tool to
display spatial correlations between spots. Furthermore, it
is possible to test the null hypothesis that no spatial cor-
relation exists (for instance the Moran test described in
[12]). Such tests could be performed together with the var-
iogram analysis as part of the data normalization proce-
dure to investigate the significance of observed spatial
biases and to evaluate the need and efficiency of different
correction methods.

Conclusions
We have proved that the spotting effect is statistically sig-
nificant, is as important as other effects that are

Variogram for the raw signal by rowFigure 4
Variogram for the raw signal by row (A) Tor270 slide; 
(B) Zhu473 slide; (C) Lieb3727 slide. No normalization is 
performed.
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commonly corrected, and should be taken into account in
normalization procedures. This effect is expected to
increase the number of false positives and negatives in
classical microarray studies. In differential analysis, some
rows or columns may contain artificially high or low
numbers of "differentially expressed genes". In clustering
analysis, genes may be associated because of a similarity
caused by the spotting effect.

Methods
Description of the first test slide
The Arabidopsis glass slide (Corniong GAP II) studied in
section Results was hybridized with Cy3 and Cy5 labeled
cDNA samples, both prepared from the same mRNA
extracted from Arabidopsis flower buds (self-hybridiza-
tion). The microarray structure consists of 4 × 12 blocks,
each with 20 rows and 21 columns. cDNA sequences were
spotted in duplicate, i.e. rows N and N+10 (for N = 1 to
10) in the same block were printed with the same series of
amplicons. The robot printing head consisted of 48 (4 ×
12) print-tips, each defining a block. During a single
printing step, the robot printed 48 spots on a slide (each

corresponding to a different DNA feature) distant by 20
rows in one direction and 21 columns in the other (the
distance between print-tips); then, within a fraction of a
second, the robot arm moved laterally and printed the
duplicate spots 10 rows away before moving to the next
slide. Once all slides were spotted with a given set of 48
duplicated amplicons, the robot washed all print-tips
simultaneously, loaded them with the next set of 48
amplicons, and resumed printing. Each set was printed on
all slides in approximatively 2 min and the entire proce-
dure lasted 16 h for the 10000 duplicated cDNAs.

Variogram
The structure of the spatial distribution of the signal on a
slide can be studied with a geostatistical tool called a
variogram ([13,14]). In geostatistics, the variogram has
been used to detect departure of stationarity in the data. In
the microarray data analysis context, it represents a useful
exploratory tool to study spatial correlations due to sys-
tematic biases. A variogram (also called semi-variogram)
is defined (2), and estimated (3), for a distance d and a
variable Y, as follows:

Distribution of the residuals (i.e. corrected signal) after reference normalization, for the Arabidopsis slideFigure 5
Distribution of the residuals (i.e. corrected signal) after reference normalization, for the Arabidopsis slide 
Labels correspond to the 9-quantiles of the residuals distribution.
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where N(d) is the set of all possible pairs of spots (si, sj)
with a distance d between one another, and with |N(d)|
the cardinal of N(d). As implied by expression (2), V(d)
decreases when the number of similar points separated by
the distance d increases.
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