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Abstract
Background: Increasingly researchers are turning to the use of haplotype analysis as a tool in
population studies, the investigation of linkage disequilibrium, and candidate gene analysis. When
the phase of the data is unknown, computational methods, in particular those employing the
Expectation-Maximisation (EM) algorithm, are frequently used for estimating the phase and
frequency of the underlying haplotypes. These methods have proved very successful, predicting the
phase-known frequencies from data for which the phase is unknown with a high degree of accuracy.
Recently there has been much speculation as to the effect of unknown, or missing allelic data – a
common phenomenon even with modern automated DNA analysis techniques – on the
performance of EM-based methods. To this end an EM-based program, modified to accommodate
missing data, has been developed, incorporating non-parametric bootstrapping for the calculation
of accurate confidence intervals.

Results: Here we present the results of the analyses of various data sets in which randomly
selected known alleles have been relabelled as missing. Remarkably, we find that the absence of up
to 30% of the data in both biallelic and multiallelic data sets with moderate to strong levels of
linkage disequilibrium can be tolerated. Additionally, the frequencies of haplotypes which
predominate in the complete data analysis remain essentially the same after the addition of the
random noise caused by missing data.

Conclusions: These findings have important implications for the area of data gathering. It may be
concluded that small levels of drop out in the data do not affect the overall accuracy of haplotype
analysis perceptibly, and that, given recent findings on the effect of inaccurate data, ambiguous data
points are best treated as unknown.

Background
Haplotype analysis has become a valuable tool for
researchers in population genetics. In particular, the value
attached to the prediction of the constituent haplotypes of
a given sample and their frequency of occurrence is such
that a variety of methods have been developed for this

purpose. Many of these methods, however, depend on
knowledge of the phase of the data supplied. In general,
genotypic data from polymorphic loci are ascertained
phase-unknown. Various methods for determining the
gametic phase exist. With sufficient data from the geno-
typing of family members, definitive haplotypes may be
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inferred. However, in particular for late-onset disorders,
these data may be difficult or even impossible to obtain.
At the laboratory level, techniques such as chromosomal
isolation or long-range PCR [1] may be utilised in the pre-
diction of haplotypes, but they suffer the dual drawbacks
of being both technologically demanding and in many
cases prohibitively expensive in practice. Thus researchers
have moved towards computational solutions to this
problem. Prominent among the techniques employed for
the estimation of the true haplotype frequencies of a
phase-unknown sample are those based on the Expecta-
tion-Maximisation (EM) algorithm. Hill [2] originally
proposed the use of the EM algorithm in genetics, and
three years later the term was first coined by Dempster et
al. [3] and the method put on a more formal footing. A
number of EM-based methods for haplotype frequency
estimation (HFE) have been produced [4,5]. Excoffier and
Slatkin [6] provide a thorough outline of the implementa-
tion of the EM algorithm as applied to the problem of
HFE.

Reliable computational techniques for the estimation of
haplotype frequencies have been around for some time,
and extensive studies of the accuracy of the EM-based
methods have been carried out [7,8], but until recently
there has been little investigation of the effect of missing
data on these techniques. This is surprising considering
that, even with modern automated DNA analysis meth-
ods, the problem of missing data is not uncommon,
whether due to the failure of amplification or insufficient
DNA. Zhao et al. [9] have developed the GENECOUNT-
ING software specifically to take into account missing
data in a sample, but have not produced any validation of
the method. The HAPLO [5] program is also capable of
analysing multiallelic data with missing alleles, using
jackknife techniques for error analysis. The SNPHAP [10]
algorithm can handle large numbers of loci and unknown
alleles, but is restricted to the analysis of biallelic loci. In
order to carry out an investigation of the effect of missing
data on HFE, a program, based on the algorithm outlined
in [6], has been developed which can accommodate
multiallelic loci and a significant percentage of unknown
alleles. The necessary alterations to the existing imple-
mentation of the EM algorithm are outlined in the Meth-
ods section. Following this, biallelic and multiallelic data
sets were analysed with varying quantities of unknown
alleles randomly substituted. The analysis is similar to
previous work by Kirk and Cardon [11], which described
the effect of genotyping error on HFE. Here we investigate
the effect of missing data on the sizes of the confidence
intervals (CIs) about the haplotype frequency point esti-
mates (or simply "point estimates"). Surprisingly, the loss
of as much as 30% of the allelic data did not have a signif-
icantly detrimental effect on the quality of the results. The
frequencies of haplotypes which predominate in the com-

plete data analysis remain essentially the same after ran-
domly selected data have been relabelled as missing. The
error estimates associated with the predicted frequencies,
which are generated via a bootstrap method, are also quite
stable, but increase as the proportion of missing data
increases.

Results
Source of data
Two sources of data were used for the principal part of this
study. The first is real single nucleotide polymorphism
(SNP) data; the second is multiallelic data generated via
population generation software. Three additional sets of
data containing 10%, 20% and 30% missing alleles
respectively were generated from each of the two original
sets. The process of generation is described in the Methods
section. HFE was carried out on the eight data sets listed
above. In each case 1,000 bootstrap iterations were per-
formed for each HFE analysis and the 95% CIs about the
point results were selected. For the sake of clarity the
results from analyses of the 20% unknown alleles data
sets have been omitted from the displayed graphs. Further
tests were performed to investigate the effect of sample
size upon the quality of the results. To this end two sets of
progressively smaller data sets, with and without missing
alleles, were generated from the SNP and multiallelic data
sets, and HFE was carried out. The method of selecting
these data is outlined in the Methods section.

An additional data set, unrelated to those previously
described, consisting of data from five SNP loci was gen-
erated for the purposes of performing tests on data with
weak LD between the loci. A further data set with 10%
missing alleles was generated from these additional data.

Seven loci biallelic data sets
Figure 1 displays point estimate results from the analyses
of the seven loci SNP data sets with 536 sample points.
Figure 1 is a comparison of the frequencies of the 26 hap-
lotypes present in the phase-known data, and their pre-
dicted frequencies when the phase is assumed unknown
and data are missing. The percentage of missing alleles
varies from zero (labelled "complete data") to 30. The
haplotypes derived from the phase-known data were
labelled from 1 to 26 in non-increasing order of the mag-
nitude of their frequency, hence the "haplotype label" of
the x-axis. For a quantitative measure of the discrepancies
in the frequencies between the phase-known and phase-
unknown frequency predictions we use the measure D (h,

) [6,11] given byĥ
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where hi and  are the haplotype frequencies derived
from the phase-known and phase-unknown data respec-
tively, and N is the number of possible haplotypes in the
sample. As these data are from seven biallelic loci, N = 27

= 128 in this case. The results are displayed in Table 1.
Also recorded in Table 1 is the percentage increase in D (h,

) as the percentage of unknown alleles in the sample
increases. In each case it is the percentage increase relative
to the complete data value that is measured. Three haplo-
types absent from the phase-known data set appear in the

Point estimates for seven loci SNP dataFigure 1
Point estimates for seven loci SNP data. Point estimate haplotype frequencies for seven loci SNP data set for phase-
known and phase-unknown data with 0%, 10%, and 30% missing data.
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Table 1: D (h, ) for 7 loci SNP data. Measure of discrepancy 
between phase-known and phase-unknown frequency 
predictions for seven loci biallelic data, 536 individuals.

% missing alleles
D (h, )

% increase from 
complete data

0 0.043822 0
10 0.059222 35
20 0.069017 57
30 0.075998 73
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Table 2: RCI for 7 loci SNP data. Ratio of extent of 95% CI for 
missing data sets compared to complete data set for seven loci 
biallelic case, 536 individuals.

% missing alleles RCI

0 1.0
10 1.102024
20 1.243451
30 1.469974
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results of the HFE analysis of the complete data. Their fre-
quencies are 2.3 × 10-3, 1.4 × 10-3, and 1.1 × 10-3. Of the
haplotypes present in the phase-known data, only one
haplotype appears with a frequency less than these, the
given frequency being 9.3 × 10-4. Figure 1 and Table 1
offer complementary illustrations of the effect of missing
data. Table 1 provides a good overall picture of how the
accuracy of the HFE method deteriorates with inferior
data quality. The effect is most marked in the initial jump
from complete to 10% missing data, where a 35%

increase in D (h, ) is recorded. The subsequent percent-
age increases going from 10% to 20% and 20% to 30%
unknown alleles are 22% and 16%, respectively, of the

value of D (h, ) for the complete data. Figure 1 allows us
to view specifically where this deterioration is most evi-
dent, in the mid-range frequency haplotypes. Figures 2
and 3 display the effect of increasing quantities of missing

data on the 95% CIs of the haplotype frequencies esti-
mated from the phase-unknown data. In an attempt to
quantify this effect, the spread of the CIs for each haplo-
type (the difference between the two bootstrap haplotype
frequencies which give the limits of the 95% CI) was
summed for each data set. The sum for each data set
containing missing data was compared with the sum for
the complete data set (no missing data). The ratio of the
two values (the ratio of the extent of the CIs or RCI) for
each comparison is displayed in Table 2. Here we see a
superlinear increase in the RCI with increasing propor-
tions of missing data. Despite this, we note from Figures 2
and 3 that, even for the 30% missing data case, the CIs for
the complete data are not entirely contained within the
CIs for the data with unknown alleles for many of the
haplotypes.

Seven loci SNP data with 10% missing allelesFigure 2
Seven loci SNP data with 10% missing alleles. 95% CIs for haplotype frequencies estimated from seven loci SNP phase-
unknown data with 0% and 10% missing data. Frequencies derived from phase-known data also shown.
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Multiallelic data sets
Similar computations to those carried out for the SNP
data sets were carried out for the four multiallelic data
sets. Figure 4 is a comparison of the frequencies of the
most prominent haplotypes in the phase-known data,
and their predicted frequencies when the phase is
assumed unknown and data are missing. As with the
seven loci SNP data sets, the percentage of missing data
varies from zero to 30. The haplotypes are labelled as
before. However, as 118 distinct haplotypes appear in the
phase-known data, only the frequencies for the 40 most
common are illustrated in Figures 4 to 6 for reasons of
clarity. No haplotype with a frequency greater than 0.005,
as given by the phase-known data, was excluded from the
graphs by this trimming. As with the biallelic data, the dis-
crepancy between the phase-known and phase-unknown

frequency predictions, D (h, ), was measured. As the
allele counts at each of the seven loci are 8, 2, 2, 9, 2, 5,

and 2 respectively, the sum in Equation 1 is over the N =
5760 possible haplotypes in the sample. The results are
displayed in Table 3. As in Table 1, the percentage increase

in D (h, ) as the percentage of unknown alleles in the
sample increases is also recorded.

129 distinct haplotypes were estimated to have a fre-
quency of greater than 10-6 as a result of the HFE analysis.
29 of these do not appear in the phase-known data, with
the most common of these having a frequency of 2.187 ×
10-3. 68 haplotypes in the phase-known data display a fre-
quency greater than this. As with the SNP case, Figure 4
and Table 3 together provide a good overall picture of the
effect of missing data on the accuracy of the HFE method.

Table 3 displays similar percentage increases in D (h, )
with the 10% and 20% missing data cases to those of
Table 1 (42% and 18% respectively), though there the

Seven loci SNP data with 30% missing allelesFigure 3
Seven loci SNP data with 30% missing alleles. 95% CIs for haplotype frequencies estimated from seven loci SNP phase-
unknown data with 0% and 30% missing data. Frequencies derived from phase-known data also shown.
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similarity ends, as the jump in D (h, ) going from 20%
to 30% unknown alleles comes to 40% of the value of D

(h, ) for the complete data. In Figure 4 we see how the
phase-unknown frequency predictions match well the
observed phase-known frequencies for the more promi-
nent haplotypes, but less well for the less common haplo-
types, particularly for the 30% missing data case.

Similarly to the SNP case, Figures 5 and 6 display the effect
of increasing quantities of missing data on the 95% CIs of
the haplotype frequencies estimated from the phase-
unknown data. As before, measurement of this effect was
made by observing the relative increase in the sizes of the
CIs. The results are displayed in Table 4. In contrast to the
SNP case, we see a linear increase in the RCI with
increasing proportions of missing data. This contrast is
further marked by Figures 5 and 6 where we note that the

CIs for the complete data are, in the case of most haplo-
types, entirely contained within the CIs for the data with
unknown alleles.

Sample sizes
Investigations were made into the effect of the sample size
on the performance of the HFE method when 10% of the
data was missing. Three further data sets of sizes 300, 100
and 50 individuals were generated by random selection
from the original seven loci SNP and multiallelic sets.
From these data, six additional sets with 10% missing alle-
les were created. HFE was performed upon these addi-

tional data, and the D (h, ) results for each were
displayed in Table 5. In each case the phase-known hap-

lotype frequencies used in the computation of D (h, )
were those derived from the respective smaller samples
(e.g. the accuracy of the HFE method as applied to the

Point estimates for multiallelic dataFigure 4
Point estimates for multiallelic data. Point estimate haplotype frequencies for multiallelic data set for phase-known and 
phase-unknown data with 0%, 10%, and 30% missing data.
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SNP sample with 300 individuals was calculated relative
to the haplotype frequencies observed in the phase-
known sample with 300 individuals, and not those
observed in the original data). As may be expected, in all

cases we see an increase in D (h, ) as we move from the
complete data to the data sets with missing alleles. D (h,

) also is seen to increase as the sample size decreases.
However, what is of note is the pattern involved. For the

seven loci SNP case, the percentage increase in D (h, )
from complete to missing data itself increases
monotonically as the sample size is reduced. A similar
pattern is not observed in the multiallelic data.

Performance at low LD levels
Fallin and Schork [7] illustrate how the performance of
the EM-based HFE method diminishes with falling LD
strength. Here we investigated how the accuracy of our
implementation behaves on a data set exhibiting weak LD
when 10% of the alleles are missing. A population of 500
individuals with data at five SNP loci was generated spe-
cifically for this part of the study. Lewontin's D' [12] was

Multiallelic data with 30% missing allelesFigure 6
Multiallelic data with 30% missing alleles. 95% CIs for haplotype frequencies estimated from multiallelic phase-unknown 
data with 0% and 30% missing data. Frequencies derived from phase-known data also shown.
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Table 3: D (h, ) for multiallelic data. Measure of discrepancy 
between phase-known and phase-unknown frequency 
predictions for multiallelic data.

% missing alleles
D (h, )

% increase from 
complete data

0 0.106954 0
10 0.151494 42
20 0.170971 60
30 0.213888 100
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found to range between 0.117 and 0.014 for all adjacent

loci. Table 6 displays D (h, ) readings for this particular
case. Here we see a large percentage increase of 60% in D

(h, ) as we move from the complete data to 10% missing
data.

Discussion
The results displayed here show the impact of the addition
of increasing quantities of missing alleles on the quality of
haplotype frequency estimates. Studying Figure 1 in
tandem with Table 1, and Figure 4 in tandem with Table
3, we see a loss of accuracy of the HFE method as the
quality of the data degrades. This is particularly true for
the multiallelic data set with 30% missing alleles. Here the
loss of accuracy is most apparent with the rarer haplotypes
as may be seen in Figure 4, whereas for the seven loci SNP
case, Figure 1 illustrates that the low frequency haplotypes
are dealt with remarkably well, even at high missing data
proportions. For both sets of data the ability of the
method to predict the frequencies of the most prominent
haplotypes in the samples holds up well as the percentage
of unknown alleles increases. Figures 2 and 3 and Figures
5 and 6 display a similar behaviour in the bootstrap gen-
erated CIs. To summarise, there are two significant aspects

Multiallelic data with 10% missing allelesFigure 5
Multiallelic data with 10% missing alleles. 95% CIs for haplotype frequencies estimated from multiallelic phase-unknown 
data with 0% and 10% missing data. Frequencies derived from phase-known data also shown.
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Table 4: RCI for multiallelic data. Ratio of extent of 95% CI for 
missing data sets compared to complete data set for multiallelic 
case.

% missing alleles RCI
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of the analysis of genotypic data containing incompletely
typed individuals evident here. Firstly, that the HFE algo-
rithm, given phase-unknown data with moderate to high
levels of LD, predicts the frequencies of the underlying
haplotypes with a high degree of accuracy, as is evident
from the point estimate graphs, Figures 1 and 4. Tables 1
and 3 quantify how the quality of the frequency predic-
tions behave with increasing percentages of missing data.
For the multiallelic case where 30% of the alleles are
unknown, Table 3 shows that the discrepancy between the
phase-known and phase-unknown predicted frequencies
has doubled when compared with the complete data case,
though from the study of Figure 4 the bulk of this discrep-
ancy would appear to originate from the lower frequency
haplotypes. The second aspect is the extent of the 95%
CIs. We see a steady increase in the spread of the CIs with
the addition of missing alleles, reflecting the growing
uncertainty in the data. However, the most prominent
haplotypes in both the SNP and multiallelic data sets
maintain their distinctiveness, even at the 30% unknown
alleles level. These data show that, in particular for the
SNP data set, the effect of relabelling significant propor-

tions of the data as unknown on the performance of the
HFE algorithm is minor.

Although study of the illustrated graphs suggests that the
impact of missing data is more pronounced with the more
complex multiallelic data sets, Tables 2 and 4 demonstrate
that the relative increase in the size of the CIs is similar
across the biallelic and multiallelic data sets, and is almost
identical for the 30% missing data sets. There appears to
be a discrepancy between the two measures, namely D (h,

) and the RCI, used here to quantify the degradation in
the quality of the results with increasing percentages of
unknown alleles. Tables 1 and 3 imply that the HFE
method works significantly better for biallelic data than
for multiallelic data, whereas this phenomenon is much
less evident in Tables 2 and 4. This may be explained by

the fact that D (h, ) is an absolute measure of the per-
formance of the algorithm, as the phase-known data are
available for each data set and thus the exact sample
haplotype frequencies are known. This discrepancy is to

be expected; D (h, ) is a sum over all possible haplotypes
and there exist only 128 (27) possible haplotypes for the
seven loci SNP data, whereas the multiallelic data, as
noted in the Results section, have 5760 possible haplo-
types. Also, it is not surprising that haplotype frequencies
estimated from the multiallelic data set are found to be
less accurate than those estimated from SNPs, given the
more complex nature of the data. The RCI is a relative
measure, and illustrates not so much the accuracy of the
algorithm, rather the effect of additional missing data. The
results displayed in Tables 2 and 4 show that the algo-
rithm handles the increase in the proportion of unknown
alleles equally well for both SNPs and multiallelic data,
although it should be pointed out that the RCI measure

Table 5: D (h, ) for smaller samples. Measure of discrepancy between phase-known and phase-unknown frequency predictions for 
smaller samples randomly selected from larger data sets.

Data set # individuals % missing alleles
D (h, )

% increase from complete 
data

7 loci SNP 300 0 0.049354 0
7 loci SNP 300 10 0.067410 37
7 loci SNP 100 0 0.104105 0
7 loci SNP 100 10 0.147034 41
7 loci SNP 50 0 0.155912 0
7 loci SNP 50 10 0.229097 47
multiallelic 300 0 0.153865 0
multiallelic 300 10 0.202678 32
multiallelic 100 0 0.227170 0
multiallelic 100 10 0.238658 5
multiallelic 50 0 0.320917 0
multiallelic 50 10 0.372827 16

ĥ

ĥ

Table 6: D (h, ) for low LD data. Measure of discrepancy 
between phase-known and phase-unknown frequency 
predictions for low LD data.

% missing alleles
D (h, )

% increase from 
complete data

0 0.090178 0
10 0.144290 60
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ĥ

Page 9 of 13
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:188 http://www.biomedcentral.com/1471-2105/5/188
gives no indication of the accuracy of the point estimates,
and should generally be considered in tandem with a

measure such as D (h, ). Interestingly, the results for the
multiallelic data set were achieved despite departure from
Hardy-Weinberg equilibrium (HWE) at two of the seven
loci (see Methods section). Although this technique relies
on the assumption of HWE, Niu et al. [13] have demon-
strated it to be reliable and robust even when the HWE
assumption has been violated. Fallin and Schork [7] have
shown that HWE violation which results in an excess of
heterozygosity leads to an increase in HFE error, though
their results are based on a five-locus system, and the
observed error increase when two of the five loci were
found to be in disequilibrium was minimal. As we are
dealing here with a seven-locus system, the effect on the
error was likely to have been even less apparent.

The investigation into the effect of smaller sample sizes
has produced some surprising results. Comparing Table 1

with Table 5, we see that the relative increase in D (h, )
observed when 10% of the seven loci SNP data is rela-
belled as missing does not change substantially as the size
of the sample reduces. For the full sample of 536 individ-

uals, the percentage jump in D (h, ) moving from the
complete data to 10% missing data is approximately 35%.
For the sample of size 300, this increase is 37%. Likewise
for the samples of size 100 and 50, the increases are 41%
and 47% respectively. However, for the multiallelic data,
we see a contrasting trend. The percentage jump in D (h,

) decreases rather than increases with increasing missing
data proportions. Inspection of Tables 3 and 5 shows us

that the percentage increase in D (h, ) when moving
from the complete data to 10% missing data for the full
sample of 500 individuals is approximately 42%, whereas
for the sample of size 300 this drops to 32%. The recorded
increase for the sample of size 100, 5%, is even more
striking. (The sample of size 50 is not considered here, as
the matching observed between the phase-known and
phase-unknown frequencies was of poor quality (figure
not shown), and any conclusions drawn from analysis of
this case would be highly suspect). Thus no definitive con-
clusions may be made as to the effect of missing data as
the sample size is reduced, other that to say that the
matching between the phase-known and phase-unknown
frequencies deteriorates with falling sample size, as would
be expected.

Table 6 underlines the relationship between strong LD
and superior performance of the EM method [7]. For the

weak LD data set, we see that D (h, ) for the complete
data is comparable to that of the seven loci SNP data with
30% missing alleles. It should also be borne in mind that,

as the weak LD data set features only five SNP loci, the

sum for D (h, ) is over a mere 32 possible haplotypes, as
compared to 128 for the seven loci SNP data, emphasising
the fall-off in accuracy. Also of note is the similarity in the
sample sizes -500 in the weak LD case, and 536 in the
moderate to strong LD case. Moving to the 10% missing
allele case, we witness a further 60% drop in accuracy, a
considerably greater percentage that was observed for the
medium to high LD data sets, a result which again calls
into question the reliability of the method in the presence
of weak LD.

Conclusions
Here we show that the EM method, with the modifica-
tions to the implementation for complete data detailed
here, can generate accurate estimates of haplotype fre-
quencies even when large amounts of data are missing, in
this case up to 30%. Moreover, using this method, the
degree of accuracy can easily be estimated using
conventional bootstrapping approaches. This is of consid-
erable importance in the design of experiments, as it is
therefore obvious that small levels of drop out in the data
for whatever reason do not affect the overall accuracy of
the approach perceptibly. Furthermore, considering the
strongly deleterious effects of even small amounts of inac-
curate data [11], this analysis shows that large amounts of
missing data are much less detrimental to the overall qual-
ity of the results than incorrectly typed sites. Thus from a
practical standpoint it is clearly preferable that if any
doubt exists as to a genotype's identity, it should be
excluded rather than included using a "best guess".

Methods
Seven loci biallelic data
The data used in this part of the study are derived from a
genetic investigation of cystic fibrosis sufferers [14]. The
haplotypes used here are actual haplotypes composed of
a subset of the markers typed in the vicinity of the CFTR
gene locus. The haplotypes comprise seven biallelic loci.
From these haplotypes 536 phase-known genotypes were
constructed via random resampling. Thus the data set
comprised of 536 individuals each with seven SNP loci. In
common with Kirk and Cardon [11] a linkage disequilib-
rium (LD) analysis was carried out on the data. For adja-
cent loci, D' was found to be ≥ 0.9 for all intervals but the
third and fifth, where D' ≤ 0.25. As HWE is assumed for
HFE, each locus was tested and found to be in HWE.

Multiallelic data
An initial population of fifty individuals with data from
seven loci spaced 1 cM apart was generated in silico. The
number of distinct alleles at each locus ranged from two
to nine. A trait marker was introduced between the 3rd and
4th loci for 10 of the 50 founders. The population was
evolved for thirty generations as an isolated group with
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ĥ

ĥ
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random mating. The birth rate per couple was binomially
distributed, with a range of zero to ten offspring and a
mean of 2.5. 500 individuals bearing the trait were ran-
domly selected from the final generation for analysis. As
with the SNP data, the level of LD across the interval was
measured. D' was found to lie between 0.5 and 0.8 for all
adjacent loci except between the second and third loci
where D' = 1.0 and the fifth and sixth where D' = 0.24. A
test for HWE [15] was performed, and it was found that
the fourth and fifth loci were not in HWE (P-values <
0.001 and 0.003 respectively). In both cases an excess of
heterozygosity was evident (observed heterozygosities of
0.848 and 0.232, respectively compared with expected
heterozygosities of 0.729 and 0.205, respectively).

Smaller sample sizes
The data sets of reduced size used in this analysis were
generated from the original seven loci SNP and multial-
lelic data sets via a random sampling process. The process
was identical for both. Initially 300 individuals were cho-
sen from the original data. Following this, 100 individuals
were chosen from the newly created set of size 300. Finally
50 individuals were chosen from the set of size 100. In
each case the selection process was random and done
without replacement. From each of these six smaller data
sets, six additional sets of data with 10% missing alleles
were generated by the process outlined below.

Low LD data
A population of 500 individuals with data from five SNP
loci was generated in silico specifically for the testing of the
performance of the HFE algorithm in low LD circum-
stances. D' was found to range between 0.117 and 0.014
for all adjacent loci. The data were also tested for HWE.
The first locus was found to be marginally not in HWE (P
= 0.0465), with excess homozygosity in evidence. All
other loci were found to be in HWE.

Phase-unknown data
The HFE algorithm assumes that the input data are phase-
unknown, and thus no alteration was necessary to the
sample data sets which were phase-known before input.
Comparison tests on the phase-known data, and phase-
unknown data generated from the phase-known data via
a process of phase-randomisation have confirmed that no
bias is introduced by the use of phase-known data (results
not shown).

Generation of missing data
Data sets containing unknown alleles were generated
from the original data via the following procedure:

1. Each individual is selected in turn.

2. For each locus a random number between 0 and 100 is
generated.

3. If this random number falls below the desired percent-
age of unknowns, both of the individual's alleles at the
locus in question are redefined as unknown. This ensures
that all unknowns appear in homologous pairs.

4. The process is repeated until all loci for all individuals
are exhausted.

Thus the desired percentage of unknown alleles is
achieved globally, and the percentage of missing data at
each locus may vary. Three additional sets of data were
generated from each of the two original sets in this way,
with 10%, 20% and 30% missing data respectively, giving
eight data sets in all for the principal component of the
study.

Expectation-Maximisation algorithm
For known gametic phase, HFE is a straightforward proc-
ess of counting the constituent haplotypes in the sample.
For the case where the gametic phase is unknown,
maximum-likelihood haplotype frequencies are com-
puted using the EM algorithm. The particular implemen-
tation used here for the finding of the haplotype
frequencies is similar to that outlined by Excoffier and
Slatkin [6]. The operation of the algorithm is based on the
assumption of HWE, though as mentioned above, the
method has been found to be quite robust in the presence
of deviations from HWE [13].

Implementation of the EM algorithm
Missing data in a sample necessitate alterations to the
implementation for complete data of the EM-based algo-
rithm. When all alleles in an individual are known, there
exist cj possible genotypes consistent with this phenotype
where

and sj is the number of heterozygous loci in phenotype j.
However, when unknown alleles appear at a locus, the sit-
uation is considerably more complex. In this case each
unknown allele may take on the identity of any of the alle-
les observed at that locus. We require that unknown alle-
les always appear in pairs – the amplification of one allele
only would result in the appearance of a homozygote
which may bias results. Thus if there are Ni distinct alleles
(forms) observed at locus i in the entire sample, the
number of possible complete phenotypes consistent with
the observed phenotype is increased by a factor of Ni(Ni +
1)/2 by the presence of an unknown site. This factor is the
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number of ways of selecting two alleles from a pool of Ni
distinct alleles when repetition is allowed. Thus the
number of possible complete phenotypes given by pheno-
type j is given by

where M is the number of loci in the sample and

where Ni is the number of distinct alleles observed in the
sample at locus i. For each possible complete phenotype i
of the κj complete phenotypes possible for individual j,
there exist ci possible genotypes, as given by Equation 2.
Thus the number possible complete genotypes for pheno-
type j is given by

Then, following [6], the probability Pj of the jth phenotype,
assuming random mating, is given by:

where Pi(hkhl)is the probability of the ith genotype made
up of haplotypes k and l, and

where pk and pl are the population frequencies of the kth

and lth haplotypes.

Expectation step
At the tth step of the EM iterative process, the probability
of resolving each phenotype into the different possible
genotypes is given by:

where nj is the number of individuals with phenotype j,
and n is the total number of individuals in the sample.
Thus nj/n is the proportion of the total sample that has
phenotype j, and Pj(hkhl)/Pj is the conditional probability
of the particular genotype given the phenotype.

Maximisation step
The haplotype frequencies are then computed using a
form of gene-counting [16,17] :

where N is the number of globally distinct haplotypes (the
number of different possible haplotypes in the sample),

 is the frequency of haplotype v, m is the number of
distinct phenotypes in the sample, and εiv is equal to the
number of times haplotype v appears in genotype i.

Generation of confidence intervals
The technique of bootstrapping [18] was used to generate
CIs about the point haplotype frequencies estimated from
the phase-unknown data. Specifically, the percentile boot-
strap approach was used.
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