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Abstract
Background: The protein structure prediction problem is one of the most challenging problems
in biological sciences. Many approaches have been proposed using database information and/or
simplified protein models. The protein structure prediction problem can be cast in the form of an
optimization problem. Notwithstanding its importance, the problem has very seldom been tackled
by Constraint Logic Programming, a declarative programming paradigm suitable for solving
combinatorial optimization problems.

Results: Constraint Logic Programming techniques have been applied to the protein structure
prediction problem on the face-centered cube lattice model. Molecular dynamics techniques,
endowed with the notion of constraint, have been also exploited. Even using a very simplified
model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain
acceptable results for a few small proteins. As a test implementation their (known) secondary
structure and the presence of disulfide bridges are used as constraints. Simplified structures
obtained in this way have been converted to all atom models with plausible structure. Results have
been compared with a similar approach using a well-established technique as molecular dynamics.

Conclusions: The results obtained on small proteins show that Constraint Logic Programming
techniques can be employed for studying protein simplified models, which can be converted into
realistic all atom models. The advantage of Constraint Logic Programming over other, much more
explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding
heuristics, and in exploiting all the advances made in this research area, e.g. in constraint
propagation and its use for pruning the huge search space.

Background
Notwithstanding the continuous improvement in predic-
tive methods, witnessed every two years by the world wide
CASP experiment [1,2], predicting the structure of a pro-
tein, given its sequence, is still in general beyond our capa-
bilities. Brute force approaches, like exhaustive
conformational searches or molecular dynamics simula-

tions of the folding process, are precluded by the comput-
ing power available at present. Alternative, faster methods
have been developed along two main lines:

1. assemblying the structure of a protein using structural
fragments of similar sequences, available in the protein
structure repository (the Protein Databank [3]), and later
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screening the feasibility of the resulting structures, using
energetic criteria;

2. representing the protein chain by a highly simplified
model which is, hopefully, treatable.

This second class of approaches is appealing in many
respects [4]: first, the linkage between kinetics and ther-
modynamics of protein folding process and the basic
intramolecular interactions is more easily addressable,
because of the lesser number of variables. Second, the use
of a simplified model agrees with the idea that details of
atomic interactions between aminoacids are less impor-
tant than the overall character of these interactions,
because protein structure is flexible and can accommodate
changes in the volume and shape of aminoacids much
better than changes in their character (e.g. polar vs. hydro-
phobic [5]). Besides aiming at catching essential features
of the protein folding process, simplified models have
important computational advantages: generating and
evaluating the energy of a conformation is efficiently done
due to the reduced number of variables. A less evident
benefit is that sampling (e.g. by molecular dynamics sim-
ulation or Monte Carlo methods) may be much more effi-
cient due to the smoothness of energy surface due, once
again, to the reduced number of degrees of freedom.
Many lattice models have been used for simplified repre-
sentation of proteins, up to date. Their capability of repro-
ducing the secondary structure of proteins, as well as their
relative arrangement has been reviewed by Godzik et al.
[6]. A reasonable tradeoff between accuracy and the need
to keep limited the number of base vectors is achieved by

the face centered cubic ( ) lattice studied by Toma
and Toma [7]. In particular both α-helices and β-strands
are modelled with a very low RMSD from standard regular
structures. Lattice models have been used mainly for
understanding general properties of proteins, rather than
for real predictive tasks, although their use, especially in
hierarchical protocols has been proposed and realized. In
particular, the (210) lattice has been used successfully by
Skolnick and Kolinski in prediction of a small beta pro-
tein [8] and many other useful applications have been
reported since these earlier works (see e.g. for recent suc-
cessful applications [9,10] and also the two recent reviews
[4,11]). A deep analysis of realistic lattice models of pro-
teins proposed so far is definitely out of the scope of the
present work, but there are few aspects of lattice models of
proteins which need to be mentioned. The successful
application of a lattice model depends obviously on the
efficiency in generating conformations and searching for
local minima. This aspect is dealt in the present work
using Constraint Logic Programming, and taking advan-
tage of all theoretical and implementative developments
that have been realized in this context. The approach (and
related languages) has been very seldom applied in the

context of protein modeling and it has not been used for
realistic protein structural predictions, to the best of our
knowledge. A different, but equally important, aspect con-
cerns the reliability of the model itself and of the force-
field used to evaluate conformational free energy. This
aspect will not be dealt with by this work. An appropriate
forcefield must take into account both local propensities
to adopt a particular secondary structure (which ulti-
mately depend on aminoacids' covalent structure and
bulkiness) and their tendency to be in contact (which ulti-
mately depends on their physico-chemical character).
Contact potentials have been derived by many groups (see
e.g. [12,13]) based on the observed versus expected con-
tacts stored in the database. A similar approach could be
followed in order to derive a torsional potential in order
to describe local conformational propensities. However, it
is not obvious how these potentials should be derived for
lattice models and how the two potentials are to be con-
sidered together. These problems are not investigated
here. Rather we consider contact potentials previously
derived by our group from statistical analysis of the data-
base [13], which are expected not to be accurate for a lat-
tice model, but nevertheless should be able to reproduce
essential features of aminoacid interactions. The local pro-
pensity to adopt a particular secondary structure can be
computed by predictive methods [14]. However, for the
small peptides analyzed in this paper, the correct second-
ary structure is selected from the deposited structures for
testing purposes.

Constraint Logic Programming (briefly, ) [15,16] is a
declarative programming paradigm particularly well-
suited for encoding combinatorial minimization prob-
lems. It is the natural merger of the two declarative para-
digms known as Constraint Solving and Logic Programming.

One of the peculiar features of  is the independence
of the problem modeling and of the search's strategy.
Problem modeling is based on traditional declarative pro-
grams in which one can use the built-in notion of con-
straint. Constraints are first-order formulas concerning
variables that can assume values in some domains. The
scheme is general. Various possible constraints and
domains can be used. However, for combinatorial prob-
lems it is common to use finite domain constraints, namely
arithmetic constraints between arithmetic expressions,
where variables range over finite subsets of . Constraint
Logic Programming over Finite Domains is known as

( ). We briefly introduce this programming par-
adigm with a simple example. Let us consider three varia-
bles X, Y, Z that denote the number of possible items of
some kind.

domain([X, Y, Z], 1, 10)
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is a constraint that states that the three variables X, Y, Z
have (finite) domain {1, 2, ..., 10}. Suppose we wish to
state that the weight of each item of X is 3, of Y is 4, and of
Z is 5 and the total weight of selected items must be less
than or equal to 40. Moreover, we wish to state that the
number of items of X plus those of Y must be less than
those of Z. This can be simply stated as:

3 * X + 4 * Y + 5 * Z ≤ 40, X + Y <Z

We have modeled a sort of knapsack problem using

( ). In general, in the modeling stage we can use
constraints as well as declarative programs involving
them.

Solution's search is performed by a constraint solver that is
available in the language. The constraint solver uses con-
straints for sensibly pruning the search tree. One of the
main capabilities is called constraint propagation. Con-
straint propagation reduces the domains of the variables
eliminating those values that cannot lead to constraint
solutions. For instance, in the considered example, con-
straint propagation reduces the domains of the variables
X, Y, and Z to {1, ..., 4}, {1, ..., 4}, and {3, ..., 6}, respec-
tively. For finding a possible solution, a further built-in
capability – the labeling predicate – can be used. We can
look for a generic solution as well as for a solution mini-
mizing some function. In the example above, we could
ask for minimizing the function -2X2 + Y + 4Z. This can be
done by adding a constraint of the form:

F = -2 * X * X + Y + 4 * Z, labeling([minimize (F)], [X, Y,
Z]).

The constraint solver then exploits the solution's search
using constraint propagation and branch-and-bound
techniques returning the answer:

F = 3, X = 3, Y = 1, Z = 5

The library clpfd of SlCStus Prolog [17] allows to effec-
tively program in this framework. Let us observe that it is
not required that F be a linear function.

The above described approach to optimization combina-
torial problems is the so-called Constrain & Generate tech-
nique introduced as opposed to the Generate & Test
technique of the classical Logic Programming approach
(see, e.g. [18]). In the latter approach, a first phase gener-
ates non-deterministically a possible solution, and then
the deterministic test-phase checks whether the solution is
acceptable or not. If the search space is exponential, this
technique is not applicable. In the former approach, a first
deterministic phase introduces a number of constraints,
then a non-deterministic phase starts the generation of the
solutions' space. The constraints introduced allow to sen-
sibly prune the solutions' space in order to make the pro-
cedure effective. Moreover, in this phase one can take
advantage from language built-in strategies (such as con-
straint propagation, branch and bound) and it is possible
to further drive the solution search by means of problem-
dependent heuristics.

We have followed the Constrain & Generate program-
ming style for encoding the protein structure prediction
problem. As a matter of fact, the main predicate of our
solution is of the form reported in Figure 1.

In the definition of the predicate constrain the protein
structure prediction problem is modeled using

Main program predicateFigure 1
Main program predicate.

fcc_pf( ID, Time, Compact):-

   initialization,

   protein(ID, Primary, Secondary),

   constrain(Primary, Secondary, Indexes, Tertiary, Energy, Matrix, Freq, Compact),

   writetime,

   solution_search(Time, Primary, Secondary, Indexes, Tertiary, Energy, Matrix, Freq),

   print results(ID,Time,Primary, Secondary, Tertiary,Compact).
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constraints. In particular, the energy function is encoded
in the Energy parameter, The predicate solution_search is
aimed at looking for the solution minimizing the Energy
parameter. The other predicates are auxiliary predicates.
initialization resets some parameters, protein recovers the
relevant input (see also Methods Section), writetime and
print_results are output predicates. The constraint predi-
cate is defined using several predicates each of them mod-
eling one of the properties of the problem. For instance,
the predicate next_constraints sets the distance between
consecutive aminoacids (see Figure 2).

Briefly, next_constraints recursively calls the predicate
next for each pair of consecutive aminoacids. Assume that
<X1, Y1, Z1> and <X2, Y2, Z2> are the variables that will
store the positions of a consecutive pair of aminoacids,
then the predicate next states that |X1 - X2| + |Y1 - Y2| +
|Z1- Z2| = 2 and that |X1 - X2| ∈ {0, 1}, |Y1 - Y2| ∈ {0,
1}, |Z1 - Z2| ∈ {0, 1}. This is exactly the notion of adja-
cency in the face-centered cubic lattice of size 2 that we
have used (see also the Methods Section).

Results and discussion
Constrained optimization problem in ( )
In Table 1 we report the results of the experiments with

the ( ) code described in the Methods Section.
All tests are done using SICStus PROLOG 3.11.1 [17] and

a PC P4, 3.06 GHz. The structures of the protein model
systems analyzed are known and stored in the PDB [3]. In
the protein model systems 1LE3, 1PG1, and 1ZDD termi-
nal protecting groups have been neglected.

From left to right, the meaning of each column is as fol-
lows: the protein PDB identification code, the number N
of aminoacids, the execution time, the energy of the best
model found and its RMSD from the native structure for
all the residues and for the core residues only. When there
is not explicitly written "limit" it means that the program
successfully terminated in the time reported; otherwise
the program terminated due to time limit. We wish to
observe that the results with time limit 10 h/24 h are typ-
ically computed in few hours. The rest of the time is used
to further explore the solutions' space.

When a CF = η is reported a further constraint on the com-
pactness ratio η is added before the search. CF = η bounds
the linear distances |Xi - Xj|, |Yi - Yj|, and |Zi - Zj| between
all pair of residues i and j to ηN where N is the length of
the primary list. If η is low (e.g. 0.2), this constraint
imposes a compact form to the protein and strongly
reduces the running time.

One of the structural constraints considered is the pres-
ence of disulfide bonded residues (ssbonds). The rigid
structure of the lattice is such that a low value of Euclidean
distance (e.g., 2) between ssbonds often precludes all pos-
sible solutions. For this reason the default is chosen as 6.
However, in some cases we tried computations with lower
value. In these cases in the table the text ss = γ is reported.

The secondary structure, as computed from the deposited
structure in PDB, has been input as constraint. As a unique
exception, in the case of 1VII(*) we have instead predicted
it using the GOR IV secondary structure prediction
method [19].

The predicted structures have been also transformed into
all atoms models as described in the Detailed models
from lattice models Section. There is some improvement
in general on RMSD from native structure. This is espe-
cially significant when the starting structure is already
close to the native one, being not merely due to increasing
compactness of the structure. It is moreover reassuring
that the procedure we are discussing is able to recover
realistic models starting from the very simplified lattice
models. The RMSDs of the resulting detailed models from
the corresponding native structures are reported in Table
2. In order to assess the quality of the detailed model, the
trace of the native structure and the reconstructed and
optimized all-atom model are shown in Figure 3 for the
core residues (7 to 30) of the WW domain (PDB id.:
1E0M).

Code for stating that consecutive aminoacids must be in adja-cent lattice pointsFigure 2
Code for stating that consecutive aminoacids must be in adja-
cent lattice points.

next_constraints([X1,Y1,Z1,X2,Y2,Z2|C]) :-

   next(X1,Y1,Z1,X2,Y2,Z2),

   next_constraints([X2,Y2,Z2|C]).

next_constraints([_,_,_]).

next(X1,Y1,Z1,X2,Y2,Z2):-

    domain([Dx,Dy,Dz],0,1),

    Dx #= abs(X1-X2),

    Dy #= abs(Y1-Y2),

    Dz #= abs(Z1-Z2),

    Dx + Dy + Dz #= 2.
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Table 1: Experimental results

Name N Time Energy RMSD

1LE0 12 1.3 s -9040 2.8 / 2.6 (2–11)
1KVG 12 7.3 s -14409 2.7 / 2.4 (3–11)
1LE3 16 2.3 s -13653 3.0 / 2.7 (2–1 5)
1EDP 17 20.4 s -19389 4.3 / 1.1 (9–15)
1PG1 18 14.6 s -10126 6.0 / 5.2 (4–17)
1ZDD 34 300 s (limit) -20412 5.6 / 5.6 (5–34)

17 m25 s -22350 4.0 / 4.0 (5–34)
1VII 36 300 s (limit) -20860 10.4 / 6.7 (4–32)

1000 s (limit) -22377 9.1 /6.3 (4–32)
7 h42 m -26408 10.2 / 7.8 (4–32)

CF = 0.3 3 h58 m -28710 8.0 / 7.4 (4–32)
1VII(*) 36 300 s (limit) -17948 9.2 / 7.3 (4–32)

1000 s (limit) -17948 9.2 /7.3 (4–32)
3 h20 m -21211 10.3 / 6.9 (4–32)

1E0M 37 300 s (limit) -13830 6.5 / 5.8 (8–29)
1200 s (limit) -24613 8.4 / 3.6 (8–29)
10 h (limit) -26592 8.8 / 3.4(8–29)
24 h (limit) -30163 8.9 / 4.4 (8–29)

2GP8 40 300 s (limit) -10303 10.5 / 8.9 (6–38)
1000 s (limit) -24748 4.1 / 3.5 (6–38)
10 h (limit) -26196 4.9 / 3.5 (6–38)
10 h39 m -26196 4.9 / 3.5 (6–38)

1ED0 46 300 s (limit) -29970 7.3 / 4.1 (3–40)
1000 s (limit) -32369 8.6 / 7.1 (3–40)
9 h38 m -38218 8.0 / 7.2 (3–40)

1ENH 54 300 s (limit) -12480 10.4 / 8.9 (8–52)
1000 s (limit) -12480 10.4 / 8.9 (8–52)
10 h(limit) -23373 9.9 / 8.6 (8–52)
24 h (limit) -23373 9.9 / 8.6 (8–52)

6PTI 58 300 s (limit) no sol.
1000 s (limit) -29709 10.0 / 9.7 (3–55)
10 h (limit) -37837 10.0 / 9.7 (3–55)
24 h (limit) -37837 10.0 / 9.7 (3–55)

CF = 0.25 48 h (limit) -42096 9.7 / 9.4 (3–55)
CF= 0.18 24 h (limit) -47451 10.9 / 10.7 (3–55)

2IGD 60 300 s (limit) -24158 19.3 / 16.3 (6–59)
1000 s (limit) -29178 19.0 /16.2 (6–59)
10 h (limit) -37479 16.9 / 15.0(6–59)
24 h (limit) -37479 16.9 / 15.0 (6–59)

CF = 0.17 4 h 59 m -40588 12.6 / 11.5 (6–59)
2ERA 61 300 s (limit) -28993 11.6 / 10.6 (3–55)

9 m28 s, -30746 12. 3/ 12.1 (3–55)
ss = 5 15 m13 s -31692 12.7/11.6 (3–55)

CF = 0.25, ss = 5 15 m12 s -33693 10.9/9.3 (3–55)
CF = 0.25, ss = 4 1000 s (limit) -32985 12.3/12.4 (3–55)
CF = 0.19, ss = 5 1000 s (limit) -34275 10.6/8.9 (3–55)
CF = 0.19, ss = 4 1000 s (limit) -38138 11.6/10.6 (3–55)

1SN1 63 300 s (limit) no sol.
1000 s (limit) -53888 13.0 / 10.5 (2–51)
10 h (limit) -57615 11.9/ 9.6 (2–51)

CF = 0.25, ss = 5 10 h (limit) -47121 8.6 / 8.1 (2–51)
1YPA 63 300 s (limit) -36626 16.1 / 9.4 (12–52)

1000 s (limit) -33886 17.1 / 10.9 (12–52)
10 h (limit) -33886 17.1 / 10.9 (12–52)

CF = 0.17 100 s (limit) -26297 12.5 / 10.5 (12–52)
CF = 0.17 10 h (limit) -60244 12.9 / 9.8 (12–52)
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We conclude the section comparing some results of our
prediction with those returned by the well-known
HMMSTR/Rosetta Prediction System [20]. This program
does not use a lattice as underlying model: aminoacids are
free to take any position in �3. For the sake of compari-
son, we have used it as an ab-initio predictor (precisely, we
have disabled the homology and psi-blast options). The
comparison is obviously not fair because in our case sec-
ondary structure is known and not predicted. Times are
obtained from the result files, but it is not clear to which
machine/CPU occupation they refer. Results are reported
in Table 3. HMMSTR/Rosetta prediction runs presumably
faster, but our predictions (which however include known
secondary structure) improve the RMSD (except for one
case).

Constrained molecular dynamics simulation
We have used secondary structure information in con-
junction with the well-established methodology of molec-
ular dynamics simulations in order to implement a

procedure similar to the one implemented using  on

the  lattice. Secondary structure elements have been
imposed through a constraining potential as described in
the Methods Section. In order to search the conforma-
tional space a simulated annealing procedure has been
adopted. Globularity of the simulated proteins is forced
by a harmonic constraint on the radius of gyration.

The simulation time, ranging approximately between one
and four CPU days, required for folding each protein on a
1.533 GHz AMD Athlon processor is reported in Table 2.
The columns (from left to right) in Table 2 report the PDB
identification code of the protein, the number of residues,
the RMSD from native structure computed on Cα atoms
on the whole protein and only on core residues and the
simulation time. The last column reports the RMSD from

native structure for models obtained by  after
addition of all atoms and energy minimization as
described in the Methods Section.

The simulation time needed for obtaining structures sim-
ilar to native structures increases with the size of the pro-
tein both for the increasing size of the system and for the
longer simulated annealing runs needed because of
increasing complexity of the free energy landscape. Unfor-
tunately a safer scheme would employ substantially
longer simulation times.

This fact prompts for searching alternative ways to employ
the same ideas.

The results in terms of RMSD from native structure sup-
port the idea that folding may be achieved, at least in sim-
ulation, by a hierarchical approach where local secondary
structure elements are formed first and later their

Table 2: Summary of molecular dynamics results

Name N RMSD (Å) Time RMSD (  + opt) (Å)

1VII 36 5.3 / 4.7 (4–32) 17.8 h (2 ns) 5.8 / 4.8 (4–32)
1E0M 37 5.5 / 4.0 (7–30) 26.3 h (4 ns) 8.7 / 3.6 (7–30)
2GP8 40 5.9 / 3.8 (6–38) 37.7 h (4 ns) 3.9 / 2.3 (6–38)
1ENH 54 5.9 / 5.0 (8–52) / 3.7 (8–36) 29.4 h (2 ns) 11.2 / 10.7 (8–52) / 4.7 (8–

36)
2IGD 61 5.7 / 4.1 (6–59) 48.6 h (4 ns) 12.9 / 11.5 (6–59)
1YPA 64 9.2 / 7.1 (12–52) 116.9 h (8 ns) 11.8 / 9.4 (12–52)

���

Native (yellow) and  model after all-atom reconstruction and optimization (red) for WW domain (PDB id. 1E0M)Figure 3

Native (yellow) and  model after all-atom reconstruc-
tion and optimization (red) for WW domain (PDB id. 1E0M). 
The trace of core residues (7–30) is shown.
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arrangement and contacts are optimized. A similar con-
clusion has been reached using a different model by Mar-
itan and coworkers [21]. The RMSD on core residues is, in
all but one case, less than 5.0 Å. In four out of six cases the
RMSD on core residues is close to 4.0 Å. In the worst case,
which is also the longest simulated chain, the RMSD on
core residues is 7.1 Å.

Conclusions
The purpose of the present work was to demonstrate that
the protein folding problem can be approached by a well-

established programming paradigm like . With
respect to the few applications reported in the literature so
far using the same methodology [22], mainly on the HP
protein model [23,24], the present work takes a step fur-
ther towards more realistic modeling. Notwithstanding
the use of a protein simplified lattice model with a simple
contact potential realistic models for a few small proteins

have been generated by using . In the present appli-
cation the known secondary structure of the protein has

been imposed as a constraint.  has been applied on
face centered cubic lattice models of proteins where every
aminoacid is represented by a single point on the lattice
that can take one out of six possible positions with respect
to the previous three aminoacids. It is immediately seen
that the time needed for a systematic space search for such
model grows exponentially with the number of free ami-

noacids.  is a programming paradigm that is suited
for the solution of optimization combinatorial problems.

In  the problem and the related heuristics are
extremely natural to be programmed. Moreover, the con-
straint propagation allows to control the search in the
huge solution's space.

The results obtained using this approach and reported in
Tables 1 to 3 show that for small proteins a solution for
the optimization problem is obtained in less than few
hours. For the larger proteins studied here the inaccuracies
of both the lattice model and contact potential prevent
finding a compact solution. These problems are more
likely to appear with increasing size of the protein and
when the length of non-constrained chain connecting two

secondary structure elements is short, because the lattice
allows a limited set of conformations.

Further work is being devoted towards a more realistic
modeling representation of the protein, with at least two
centers of interaction per residue, and towards refinement
of the potential function by including a term for rotamer
preferences. This term should map on the lattice the direc-
tional preferences of each unit with respect to the previous
three units. Each of the six possible next positions for each
unit should be weighted by an energy term derived from
database analysis.

Also the optimal size of non constrained parts of the chain
will be determined in order to allow more possible rela-
tive orientations among constrained secondary structure
elements, possibly without increasing significantly the
computation time. At present, however, when the posi-
tions of all atoms are reconstructed from the lattice Cα
trace, the RMSD on core residues of the resulting models,
after energy minimization, compared to native structures,
is as low as 4.8 Å for the thermostable domain of villin
headpiece (PDB id.: 1VII), 3.6 Å for the WW domain (PDB
id.: 1E0M), 2.3 Å for the coat protein-binding domain of
bacteriophage P22 (PDB id.: 2GP8).

It should be also noted that both the thermostable
domain of villin headpiece and the WW contain three sec-
ondary structure elements that can be arranged in
different ways in order to produce a compact structure.
The low RMSD is therefore significant.

A comparable protocol employing a molecular dynamics
simulated annealing procedure still leads to superior
results for larger proteins, as expected because the protein
representation is more accurate, but it takes longer execu-
tion times between one and four days on a 1.5 GHz P3
machine.

Recent results have shown that simplified models and
more refined models can be employed successfully in
hierarchical modeling procedures [9,10]. The results

obtained in the present work suggest that  could be

Table 3: Comparison with Rosetta predictions

Name N  Time  RMSD Rosetta Time Rosetta RMSD

1ZDD 34 17 m.25 s. 4.0 5 m.35 s. 3.5
1VII 36 3 h.58 m. 7.4 (4–32) 5 m.35 s. 4.2

1E0M 37 10 h. 3.4 (8–29) 6 m.35 s. 7.7
2GP8 40 10 h. 3.5 (6–38) 6 m.35 s. 6.4
1ED0 46 10 h. 7.2 (3–40) 7 m.23 s. 8.9
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useful for finding starting conformations for further
refinement.

Methods
The protein structure prediction problem as a 
minimization problem
The sequence of aminoacids defining a protein is called
primary structure. This structure uniquely determines the
(3D) native conformation, also known as tertiary structure.
The protein structure prediction problem is the problem of
predicting the tertiary structure of a protein given its pri-
mary structure. The native tertiary structure minimizes the
global free energy of the protein.

Abstraction level
We consider each aminoacid as a single sphere centered in
its Cα atom; the distance between two consecutive Cα
atoms is assumed to be 3.8 Å Recent results (see, e.g., [13])
show that a contact between two residues, when repre-
sented only by their Cα atoms, is optimally defined for Cα
- Cα distances shorter than 6.4 Å The number is obtained
as the sum of the radius of the two Cα carbon atoms we are
dealing with (2 x 1.9 Å) and the value of 2.6 Å empirically
determined in [13] for van der Waals surface contact. A
table that points out the energy associated to pairs of
aminoacids in contact has been developed [12,13]. Let us
denote by Pot(x, y) the energy value associated to a con-
tact between aminoacids x and y (the order is immaterial);
this value can either be positive or negative, according to
the pair x, y.

Lattice model
According to [25] we use the Face-Centered Cubic Lattice

( ) that allows realistic angles between consecutive
residues. The lattice is composed by cubes of size 2, where
the central point of each face and the vertices are admit-

ted. Thus, the domain  consists in a set of triples <x,
y, z> where <x, y, z ∈ >. We recall that given a point <x, y,

z>, its 2-norm is: ||<x, y, z>|| = . Given

two points p1 and p2, ||p1 - p2|| is known as their Euclidean
distance.

Going back to the  lattice, two points at Euclidean

distance  are linked together, forming a lattice unit,
corresponding to the distance of 3.8 Å. In this lattice, each
point is adjacent to 12 neighboring points. A contact is
defined between two non adjacent residues placed on two
vertices of a side of a cube (i.e. they have Euclidean dis-
tance equal to 2, corresponding to 5.4 Å). This number
can be considered a good approximation of the limit of
6.4 Å described above.

Mathematical formalization
In this setting, it is possible to formalize the protein fold-
ing problem as an optimization problem. Given a
sequence S = s1 ... sn, with si aminoacids, a fold of S is a

function ω : {1, ..., n} →  such that: ||ω(i) - ω(i + 1)||

=  and ||ω(i) - ω(j)|| ≥ 2 for i ≠ j. The first constraint
states that consecutive aminoacids have a fixed distance,
corresponding to one lattice unit; the second that each
aminoacid occupies a unitary sphere and that two spheres
cannot overlap.

The protein folding problem can be reduced to the opti-
mization problem of finding the fold ω of S such that the
following energy is minimized [26,27]:

where contact(ω(i), ω(j)) is 1 if ||ω(i) - ω(j)|| = 2, 0 other-
wise. To avoid solutions equivalent modulo simple sym-
metries, other constraints can be added on the first
positions.

Complexity issues
The decision version of this problem (and even of its HP-
abstraction) is proven to be NP-complete on various lat-
tices [28,29]. However, we do not want to solve the prob-
lem for proteins of arbitrary length. Solving it for length N
= 200–300 could be considered as an important contribu-
tion to biological sciences and there are yet such results
using the HP-abstraction [30]. Thus, in spite of its NP-
completeness, it is important to understand the size of the
solution's space. The size of the solution's space is the

number of self-avoiding walks on the  lattice that can
be approximated by the formula (cf., e.g., [31])

SAWfcc = 1.26N0.162(10.0364)N  (2)

This formula should modify in the presence of additional
constraints as mentioned later.
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:- fcc_pf(’Protein_Name’).

:- fcc_pf(’Protein_Name’,Time).

:- fcc pf(’Protein Name’,Time,CompactFactor).
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Main implementation issues
Our implementation of the protein folding minimization
problem described in the above sections is based on the
code briefly introduced in the Background Section. The
complete program and related material can be found in
[32]. The program consists of ~2000 lines and, once
loaded in SICStus Prolog, one may call goals of the kind
reported in Figure 4, where Protein_Name is a standard
PDB identification code, such as 1ENH. Time is the maxi-
mum amount of time in seconds that we let to the runt-
ime; the default is 10 hours. CompactFactor allows to
impose an additional constraint on the maximal distance
between every pair of aminoacids. The rationale behind
this additional constraint stems from the observation that
protein structures are more compact than expected based
on a freely rotating chain model [33]. In particular, the
average end-to-end distance for a freely rotating chain

model is approximated by  where � is the

length of each unit and α is the cosine of the angle made
by each unit with the direction of the preceding unit. The
average end-to-end distance is clearly related to the aver-
age maximal dimension of the chain. Based on a survey of
protein structures Huang and Powers derived the follow-
ing approximated formula for the radius of gyration (in
Å): 2.2N0.38 [34]. Note that the exponent is less than 0.5
which is an underestimate of the exponent for a self avoid-
ing walk. For a uniform density sphere the diameter is

 the radius of gyration. The default value for Com-

pactFactor was therefore assumed to be approximately

equal to  times the radius of gyration which in turn

was computed by the empirical formula 2.2N0.38 [34].

The auxiliary file data.pl stores the Primary and Secondary
structures of the proteins that one wishes to test, as, for
instance in the example reported in Figure 5. The output
in standard PDB format [3] is printed either on the screen
or in a file named output-Protein_name.pdb.

Constraints
The intrinsic complexity of the problem forces us to intro-
duce several other constraints. For instance, we constrain

the sum of the coordinates of each aminoacid in the 

lattice to be even (a property of the  lattice) and we
add some constraints for avoiding equivalent symmetric
solutions. In what follows, we refer to predicate names as
used in the code. avoid_symmetries removes redundant
admissible conformations equivalent to others modulo
some symmetries and/or rotations. The predicate assigns
immediately three consecutive aminoacids positions (in
the Tertiary list).

With distance_constraints, we also impose that two non
consecutive residues must be separated by more than one
lattice unit, to reflect the steric interaction between the Cαs
modelling aminoacids.

As described above, compact_constraints imposes that,
for every pair of aminoacids, the norm of the projection of
their distance on each x, y, z coordinate, is smaller than
CompactFactor × N.

Further constraints are related to angles. In the  lat-
tice, the angle between three consecutive residues can
assume values in {60°, 90°, 120°, 180°}. In real pro-
teins, steric occupancy and energetic potential show a
clear distribution of bend angles in the range 90°–150°

[7,35]. When transferring on  lattice, it is a good
approximation to exclude 60° and 180° angles, as unfea-
sible. This constraint allows us to restrict the search space

Protein sequence and secondary structure representationFigure 5
Protein sequence and secondary structure representation

protein(’1YPA’, Primary, Secondary):-

 Primary = [m,k,t,e,w,p,e,l,v,g, k,a,v,a,a,a,k,k,v,i,

            l,q,d,k,p,e,a,q,i,i, v,l,p,v,g,t,i,v,t,m,

            e,y,r,i,d,r,v,r,l,f, v,d,k,l,d,n,i,a,q,v, p,r,v],

 Secondary = [ helix(13,23), strand(28,33), strand(45,51), strand(61,63)].

N
1
1

+
−

α
α

2

0 6.

2

0 6.







Page 9 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:186 http://www.biomedcentral.com/1471-2105/5/186
from a number close to 10N (cf. formula (2)) to a number
close to 5N.

As said in the Lattice model Section, a contact is generated
by two non consecutive aminoacids with Euclidean dis-
tance less than or equal to 2. As a consequence of the con-
straints applied, it suffices to check for a contact when the
lattice distance equals 2, since distance_constraints
excludes from the domain the possibility to place two non
consecutive aminoacids at one lattice unit.

We also impose constraints coming from secondary struc-
ture information. Secondary structure can be predicted
with good approximation (e.g., [36]). In our set of data we
have collected such information from the Protein Data
Bank. We represent secondary structure information as
helix(i, j): elements i, i + 1, ..., j of the input sequence form
an α-helix; strand(i, j): elements i, i + 1, ..., j are in a β-
strand; ssbond(i, j): there is a disulfide bridge between ele-
ment number i and j.

We use an auxiliary list called Indexes that stores torsional
angles defined by four consecutive aminoacid positions.

Due to  lattice structure and our constraints, every
four consecutive aminoacids can form only 6 discrete
angles. Thus, each variable in Indexes can assume a value
i from {0, ..., 5}, representing torsional angles of 0°, 60°,
120°, 180°, 240°, 300°, respectively. With these conven-
tions, helices are approximated by sequences of indexes of
the form 5, 5, 5, ... while β-strands are associated to
sequences of the form 3, 3, 3, .... Note that specifying the
coordinates of three points (i.e. to place and orient the
protein) and the indexes, uniquely determines the confor-
mation, ssbond(i, j), introduces a maximum distance con-
straint between the aminoacids i and j. The predicate
energy_constrain is developed using an auxiliary
symmetric matrix M. The optimal fold is reached when
the sum of M elements is minimal. During the labeling
phase, the information stored in M is used to control the
minimization process and to cut the search tree.

Labeling stage
To reduce the size of the solution's space visited during
execution, we have replaced the built-in labeling predicate
with an ad-hoc constraint-based solution search predi-
cate, called solutions_search. We describe here briefly the
main features of this predicate and of its auxiliary
predicates.

solutions_search • If the Tertiary list or the Indexes list is
ground (already computed), then it terminates the folding
process (possibly, after a call to the built-in labeling).

• Otherwise, it calls choose_labeling. When this proce-
dure terminates, it calls recursively solutions_search.

Termination is guaranteed by the fact that each call to
choose_labeling reduces the number of non-ground
variables.

choose_labeling • If the number of variables to be instan-
tiated is low (in our code less than 4), it calls the built-in
labeling.

• Otherwise, it calls selection_strategy. This predicate
computes several subsequences of the list of Indexes. Each
subsequence consists of alternations of ground elements
and non-ground variables. selection_strategy selects the
most known subsequence, namely the one containing the
smallest ratio of variable over ground indexes, preferring
the ones that include a ssbond. If in the selected subse-
quence there are too many variables, an arbitrary subse-
quence cut is done. After the subsequence is selected, the
procedure labeling_new_launch is called.

labeling_new_launch It calls the auxiliary predicate
labeling_new but stops the solution search when the
global runtime is greater than the input time limit. If this
is the case, the best computed solution is returned.

labeling_new This procedure receives the chosen sublist
to be folded. Each index variable in it, is assigned an
admissible value between 0 and 5. The order of values that
is tried for each index is described by a pre-computed aux-
iliary list. For each torsional index, a frequency statistics of
the 6 indexes is pre-computed and extracted from the
PDB, according to the specific aminoacid sequence
involved locally. We use this information to direct the
search and explore first the most common torsional
angles, in the hope that this selection rule reflects nature's
strategy.

Moreover, the energy associated to the fold is minimized.
For doing that, after each instantiation of a fixed number
t of variables in a phase, we collect the best known ground
admissible solution, its energy and its associated potential
matrix. We compare the current status to history and
decide if it is reasonable to cut the search tree. In particu-
lar, we designed a heuristic that allows to control the effec-
tiveness of the cut, adapting it dynamically to the status of
the fold. Practically, when the protein is partially speci-
fied, we estimate the ratio between ground and non-
ground variables in the potential matrix. If the ratio is low
(i.e. the protein is poorly determined), we allow the cur-
rent energy to be worse than the corresponding
counterpart in the best fold so far reached. When the ratio
is high (i.e. protein almost folded) we constrain the cur-
rent energy to be slightly lower than the previous best
known.


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Molecular dynamics simulations
In order to have a fair comparison with a similar approach
using all-atom protein models we built detailed all atom
models for six proteins in the studied set (namely those
with PDB id. code: 1VII, 1E0M, 2GP8, 1ENH, 2IGD,
1YPA) and imposed, through torsional constraints, the
secondary structure geometry found in the native struc-
ture. The constraining potential was 100 * (θ - θ0)2 kcal/
(mol rad2). The reference target angles (i.e. θ0 in the previ-
ous formula) were set to φ = -139 and ψ = 135 for residues
in β-strand and to φ = -48 and ψ = -57 for residues in α-
helices. For all constrained residues also the ω dihedral
angle was constrained at 180 degrees.

The chain was first built fully extended and minimized by
400 steepest descent minimization steps and by 500 con-
jugate gradients minimization steps.

The protein was then heated in 10 ps up to 900 K in 20000
steps using a timestep of 0.0005 ps. Then the temperature
was lowered down to 270 K in 20 steps. During each step
molecular dynamics simulation was carried out for 100 ps
for a total simulation time of 2 ns.

Simulations used the Generalized Born implicit solvent
method [37] as implemented in the program CHARMM
[38] with standard parameters for proteins. The forcefield
used was CHARMM v.27 [39].

In order to obtain globular protein during simulation a
constraint on the radius of gyration (computed only on
Cα atoms) was imposed. The target radius was decreased
during the simulation from a value proper of an extended
conformation down to the value given by 2.2N0.38 [34]
where N is the number of residues.

The potential used for enforcing compactness was:

 kcal/mol, where

, n is the number of atoms, rcg is

the center of geometry of the same group of atoms, and
Rg0 is the target gyration radius which is decreased during
simulated annealing down to the theoretical value based
on the formula cited above.

Detailed models from lattice models

The models obtained by  described here may be con-
verted into all-atom models which are realistic models of
proteins. As a test the structures of all the proteins tested
by simulated annealing described above were converted
using the Maxsprout server [40] into an all heavy atom
model. Hydrogens have been added using the module

HBUILD in the program CHARMM [38] and the resulting
structure was relaxed by energy minimization (using a dis-
tance dependent dielectric constant). First a minimization
was performed with all backbone atoms fixed, then only
Cα atoms were fixed and finally a 100 ps molecular
dynamics simulation (following a heating phase of 10 ps)
using the Generalized Born implicit solvent model was
performed. The resulting structure at the end of the simu-
lation was energy minimized.

The initial minimizations required 1500 minimization
steps each, because the starting structures were built from
the lattice models. The final minimization, on the struc-
ture relaxed by molecular dynamics simulation,
employed 900 minimization steps. During molecular
dynamics simulation the radius of gyration and backbone
torsion angles corresponding to residues constrained in

the ( ) procedure were constrained as described
above.
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