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Abstract

Background: Haplotype based linkage disequilibrium (LD) mapping has become a powerful and
cost-effective method for performing genetic association studies, particularly in the search for
genetic markers in linkage disequilibrium with complex disease loci. Various methods (e.g. Monte-
Carlo (Gibbs sampling); EM (expectation maximization); and Clark's method) have been used to
estimate haplotype frequencies from routine genotyping data.

Results: These algorithms can be very slow for large number of SNPs. In order to speed them up,
we have developed a new algorithm using numerical analysis technology, a so-called optimal step
length EM (OSLEM) that accelerates the calculation. By optimizing approximately the step length of
the EM algorithm, OSLEM can run at about twice the speed of EM. This algorithm has been used
for lipoprotein lipase (LPL) genotyping analysis.

Conclusions: This new optimal step length EM (OSLEM) algorithm can accelerate the calculation
for haplotype frequency estimation for genotyping data without pedigree information. An OSLEM

on-line server is available, as well as a free downloadable version.

Background

Estimation of haplotype frequencies from routine geno-
typing data plays an important role in LD analysis, and
can be achieved by varied methods, including Monte-Car-
lo (Gibbs sampling [1], PHASE method [2]), EM [3-5] and
Subtraction [6]. At least two studies have tested and com-
pared some of these programs. Xu and his collaborators
[7] have empirically evaluated and compared the accuracy
of the Subtraction method [6], the expectation-maximiza-
tion (EM) method, and the PHASE method [2] for esti-
mating haplotype frequency and for predicting haplotype

phase. Summarizing from the studies of Xu and his col-
laborators in [7]: "Where there was near complete linkage
disequilibrium (LD) between SNPs (the NAT2 gene), all
three methods provided effective and accurate estimates
for haplotype frequencies and individual haplotype phas-
es. For a genomic region in which marked LD was not
maintained (the chromosome X locus), the computation-
al methods were adequate in estimating overall haplotype
frequencies. However, none of the methods were accurate
in predicting individual haplotype phases. The EM and
the PHASE methods provided better estimates for overall
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haplotype frequencies relative to the Subtraction method
for both genomic regions." The PHASE algorithm is ex-
tremely slow. A comparison of run-times was reported for
five SNPs from the NAT2 gene [7]: Subtraction method,
0.01 second; EM method, 13.48 seconds; and PHASE
method, over 128 minutes. Zhang and his collaborators
[8] pointed out that, " The PHASE method did not yield
significantly different results from a simple maximum-
likelihood procedure." From the two comparative studies
[7,8] and from one simulation study [9], it was shown
convincingly that the expectation maximization (EM) al-
gorithm is accurate for estimation of haplotype frequen-
cies.

The EM algorithm is much faster than Monte-Carlo based
algorithms. Whereas it is fast with single runs for a relative
small number of SNPs, it can be slow with multiple runs
and for large number of SNPs. The EM algorithm is an op-
timization algorithm. In order to obtain a global maximi-
zation, EM should run many times from varied starting
points. This can be very time consuming. Although in the
standard EM algorithm procedure, the step length is the
optimal length under the conditional expectation, the
step length is not optimal in general. In order to run faster
and more accurately, we have developed a new algorithm
using numerical analysis technology, a so-called optimal
step length EM (OSLEM) to accelerate the calculation. By
optimizing approximately the step length of the EM (ex-
pectation maximization) algorithm, OSLEM can run at
about twice the speed of EM.

Algorithm

We start with the same premises and notations as Stephen
et al [2]. Given n diploid individuals from a population,
let G = (Gy,..., G,) denote the (known) genotypes for the
individuals, let H = (Hy,..., H,) denote the (unknown)
corresponding haplotype pairs, let F = (Fy,...,Fs) denote
the set of (unknown) population haplotype frequencies
(the M possible haplotypes are arbitrarily labeled 1,...,M).
Here H;, a random variable depends on F. Let g ; be the
set of all (ordered) haplotype pairs consistent with the
multilocus genotype G;, and suppose the distribution of

H;on g ;will follow the Hardy-Weinberg equilibrium.

The EM and OSLEM algorithms attempt to find the haplo-
type F that maximizes the likelihood.

L(F)=Pr(G|F) =f[Pr(Gi IF).

Here,
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Pr(Gi|F)= X

(byby JeH;

Fy K,

where H ; is the set of all (ordered) haplotype pairs con-
sistent with the multilocus genotype G;. Note that this
likelihood is just the probability of observing the sample
genotypes, as a function of the population haplotype fre-

quencies, under the assumption of Hardy-Weinberg equi-
librium (HWE).

Before running the iteration, for each genotype, find all
possible haplotype pairs that are consistent with the gen-
otype. Given k markers, there are 2k-! possible haplotype
pairs per genotype. In our implementation, if the haplo-
type was already generated, we will create a link to con-
nect the haplotype and the genotype. Otherwise, a new
haplotype will be generated and linked to the genotype.

We outline the EM and OSLEM algorithms as follows:

Stepl: Obtain an initial distribution for genotype ob-
served to corresponding haplotype pairs. For example,
equal distribution is commonly used but random genera-
tion is also possible.

Step2: Gene-Counting [11,12] calculating haplotype fre-
quencies from the haplotype pair distribution.

Step3: Recalculate distributions for genotypes by Hardy-
Weinberg equilibrium condition

DpreN

Step 4: Recalculate distribution by optimal step length:
DN = DN—l + 7\, (DpreN - DN—I) Whel'e 7\, >1

Step 5: Go to step 2 until step size becomes less then a giv-
en small value (precision).

Where Den, Dy and Dy are array variables and A is a
constant.

The EM algorithm jumps over Step 4, so it always takes A
= 1. In order to generate global maximization, the EM (or
OSLEM) procedures are usually repeated 100 or more
times for different initial distributions. In our implemen-
tation, we generate the initial distributions randomly
from the first one as the equal distributions.

We use the following procedure to calculate A in step 4.
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Table I: Single Run Comparisons of OSLEM and EM:
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Number of Loops

# SNPs Precision OSLEM EM
12 le-9 305 621
13 le-7 305 579
14 le-7 183 343
15 le-7 182 342
16 le-9 523 1149

CPU time
OSLEM: EM OSLEM EM OSLEM: EM
0.49 0.45 0.80 0.56
0.53 0.95 1.69 0.56
0.53 0.78 1.62 0.48
0.53 0.87 1.78 0.49
0.45 4.92 11.28 0.44

EM = Expectation maximization algorithm, OSLEM = Optimal Step Length EM algorithm The unit for CPU time is millisecond. The precision is the
sum of the absolute differences of the haplotype frequencies between two loops.

Do loop for every ambiguous genotype G; (genotypes
with more than one heterozygous locus),

Do loop for every haplotype pair (b, b;) that belongs to
G,

If (DpreN (1) - PN-1(,1)) <O

Calculate the upper bound for B, ;) = -Dn.yqrpy /
(DpreN(k, 1) - DN-1(k,1))

else
My =1+ Gif[Si/ (A + A - Ci]
lf }"(k,l) <0

}L(k’l) = 1,

(where C; is the counting number of genotype G;,
S; is the sum of the products of haplotype counts for all
haplotype pairs (b, b;) that belongs to G;, A}, is the haplo-
type count for by, and A; is the haplotype count for ;).

After the above two nested loops, calculate the average of
Mk,1y- If the average is bigger than the minimum of the
bounds By, 1), take the minimum upper bound as 1. We
use 2 as an upper bound for A. If the average is less than 1,
we set the average of Ay, 1) = 1.

This iteration procedure can be viewed as searching for a
fixed-point. By trying to solve the fixed-point equation ap-
proximately, we obtain an almost optimal step length for-
mula for A.

Results

By our tests using real data and tailored data, this new al-
gorithm runs about twice as fast and obtains the same re-
sults as the EM algorithm. To test the performance, we
generated the data in Table 1 for a single run (equal initial
distribution) and Table 2 for multiple runs (initial distri-

bution generated randomly). The whole run procedure in-
cludes three steps: the input/output step, data
manipulation step, and the haplotype frequency estima-
tion step. In the following tables, we only consider the
haplotype frequency estimation step. The tailored data is
edited from our epidemiological data. The data set is
available on our website.

We have applied OSLEM to reconstruct haplotypes for ep-
idemiological data. Lipoprotein lipase (LPL) is a glycopro-
tein involved in the transformation of dietary lipids into
sources of energy for peripheral tissues (e.g., heart, mus-
cle, adipose tissue) [10]. We performed an exhaustive
analysis of genotypes and haplotypes spanning the LPL
gene in 186 subjects whose blood lipid levels conferred a
high risk of atherosclerosis (hereby referred to as "cases")
and in 185 controls with non-atherogenic blood lipid
profiles. Those subjects, ages 35 to 74, are representative
of the general population of Geneva, Switzerland, in 1999
and 2000. Lipoprotein lipase sequence variants were sur-
veyed by first re-sequencing its 10 exons and introns/
flanking regions in a selected subgroup of the case-control
sample, followed by measurement of the most common
SNPs in all cases and controls. Haplotypes were recon-
structed from the individual SNPs separately for cases,
controls, and the total sample. The relative frequencies of
the estimated haplotypes in cases and controls are shown
in table 3.

Discussion

By optimizing the step length of the EM (expectation max-
imization) algorithm, we have developed an accurate and
faster algorithm for haplotype frequency estimation. This
algorithm has been used successfully for lipoprotein li-
pase (LPL) genotyping analysis. The genetic analysis of li-
poprotein lipase (LPL) gene-variants and their relation to
population based variance in lipid profiles is been pub-
lished separately [13].

The theoretical analysis of global optimization is, in gen-

eral, a challenging mathematical target. Thus, a rigorous
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Table 2: Multiple-Run Comparisons of OSLEM and EM:
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Table 2.1 Multiple-Run Maximum A = 2 Precision: le-7 Run: 1000 times

SNPs # OSLEM EM OSLEM : EM

12 3m10.30s 5m4.43s 62.51%
13 8m20.61s 14m33.71s 57.30%
14 11m29.68s 20m38.47s 55.69%
15 12m50.12s 23m38.03 54.31%
16 37m58.03s Ih17m41.10s 48.87%

Table 2.2 Multiple-Run Maximum A = 2 Precision: le-7 Run: 100 times

SNPs # OSLEM EM OSLEM : EM
12 19.59s 28.51s 65.21%
13 54.18s 88.05s 61.53%
14 65.65s 118.96s 55.19%
15 75.65s 130.90s 57.79%
16 228.39s 426.47s 53.55%
Table 3: OSLEM-reconstructed haplotypes:
Haplotype (LPL exons)* Frequencies within subgroups
345 6 8 9 10 All Cases Controls

0: 0 0 000 000 00 00 00 0.4582 0.4933 0.4459

I: 0 0 000 OvO 00 00 00 0.1191 0.1224 0.1000

2: 0 0 vvv vOv Ov vv vO 0.0767 0.0474 0.1077

3: 0 v 000 000 vv vO Ov 0.0389 0.0361 0.0363

4. 0 0 000 000 vv vO Ov 0.0320 0.0324 0.0271

5: 0 0 000 000 Ov vO Ov 0.0363 0.0279 0.0443

6: 0 0 vvv vOv vv vO Ov 0.0239 0.0250 0.0223

7 0 0 000 000 Ov vv vO 0.0240 0.0200 0.0248

8: v 0 000 v00 00 00 00 0.0200 0.0186 0.0152

9: 0 0 vvv vOv 00 00 00 0.0211 0.0172 0.0225

Totals: 0.8502 0.8403 0.8461

On 14 Single Nucleotide Polymorphisms of the lipoprotein lipase gene in 163 atherogenic cases and |57 non-atherogenic controls. Geneva, Swit-
zerland, 1999-2000. * SNPs are divided into subgroups according to their locations on exons, for example the first SNP is located on exon3, the
second on exon 4, the third, fourth, and fifth are on exon 5, and so on. In the haplotype sequences, v means minor variation and 0 means major var-

iation.

analysis of the rate of convergence for OSLEM may be
quite difficult, but is very important. For this reason, there
is a need for both analytic work and further computer sim-
ulation work.

It may be the case that there are multiple local maximiza-
tion points for the mathematical formulation of haplo-
type frequency estimation. In this case, it would be
possible to devise an algorithm to determine the extent of
local maximization, which, in turn, would allow one to

determine whether the globe optimal solution has been
obtained.

We have set up a web server to provide haplotype frequen-
cy estimation service. The URL is http://genome3.cp-
mc.columbia.edu/~genome/HDL)/.
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